1 //===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 // Loading constants inline is expensive on CSKY and it's in general better 11 // to place the constant nearby in code space and then it can be loaded with a 12 // simple 16/32 bit load instruction like lrw. 13 // 14 // The constants can be not just numbers but addresses of functions and labels. 15 // This can be particularly helpful in static relocation mode for embedded 16 // non-linux targets. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CSKY.h" 21 #include "CSKYConstantPoolValue.h" 22 #include "CSKYMachineFunctionInfo.h" 23 #include "CSKYSubtarget.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "CSKY-constant-islands" 60 61 STATISTIC(NumCPEs, "Number of constpool entries"); 62 STATISTIC(NumSplit, "Number of uncond branches inserted"); 63 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 64 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 65 66 namespace { 67 68 using Iter = MachineBasicBlock::iterator; 69 using ReverseIter = MachineBasicBlock::reverse_iterator; 70 71 /// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY 72 /// requires constant pool entries to be scattered among the instructions 73 /// inside a function. To do this, it completely ignores the normal LLVM 74 /// constant pool; instead, it places constants wherever it feels like with 75 /// special instructions. 76 /// 77 /// The terminology used in this pass includes: 78 /// Islands - Clumps of constants placed in the function. 79 /// Water - Potential places where an island could be formed. 80 /// CPE - A constant pool entry that has been placed somewhere, which 81 /// tracks a list of users. 82 83 class CSKYConstantIslands : public MachineFunctionPass { 84 /// BasicBlockInfo - Information about the offset and size of a single 85 /// basic block. 86 struct BasicBlockInfo { 87 /// Offset - Distance from the beginning of the function to the beginning 88 /// of this basic block. 89 /// 90 /// Offsets are computed assuming worst case padding before an aligned 91 /// block. This means that subtracting basic block offsets always gives a 92 /// conservative estimate of the real distance which may be smaller. 93 /// 94 /// Because worst case padding is used, the computed offset of an aligned 95 /// block may not actually be aligned. 96 unsigned Offset = 0; 97 98 /// Size - Size of the basic block in bytes. If the block contains 99 /// inline assembly, this is a worst case estimate. 100 /// 101 /// The size does not include any alignment padding whether from the 102 /// beginning of the block, or from an aligned jump table at the end. 103 unsigned Size = 0; 104 105 BasicBlockInfo() = default; 106 107 unsigned postOffset() const { return Offset + Size; } 108 }; 109 110 std::vector<BasicBlockInfo> BBInfo; 111 112 /// WaterList - A sorted list of basic blocks where islands could be placed 113 /// (i.e. blocks that don't fall through to the following block, due 114 /// to a return, unreachable, or unconditional branch). 115 std::vector<MachineBasicBlock *> WaterList; 116 117 /// NewWaterList - The subset of WaterList that was created since the 118 /// previous iteration by inserting unconditional branches. 119 SmallSet<MachineBasicBlock *, 4> NewWaterList; 120 121 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 122 123 /// CPUser - One user of a constant pool, keeping the machine instruction 124 /// pointer, the constant pool being referenced, and the max displacement 125 /// allowed from the instruction to the CP. The HighWaterMark records the 126 /// highest basic block where a new CPEntry can be placed. To ensure this 127 /// pass terminates, the CP entries are initially placed at the end of the 128 /// function and then move monotonically to lower addresses. The 129 /// exception to this rule is when the current CP entry for a particular 130 /// CPUser is out of range, but there is another CP entry for the same 131 /// constant value in range. We want to use the existing in-range CP 132 /// entry, but if it later moves out of range, the search for new water 133 /// should resume where it left off. The HighWaterMark is used to record 134 /// that point. 135 struct CPUser { 136 MachineInstr *MI; 137 MachineInstr *CPEMI; 138 MachineBasicBlock *HighWaterMark; 139 140 private: 141 unsigned MaxDisp; 142 143 public: 144 bool NegOk; 145 146 CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg) 147 : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) { 148 HighWaterMark = CPEMI->getParent(); 149 } 150 151 /// getMaxDisp - Returns the maximum displacement supported by MI. 152 unsigned getMaxDisp() const { return MaxDisp - 16; } 153 154 void setMaxDisp(unsigned Val) { MaxDisp = Val; } 155 }; 156 157 /// CPUsers - Keep track of all of the machine instructions that use various 158 /// constant pools and their max displacement. 159 std::vector<CPUser> CPUsers; 160 161 /// CPEntry - One per constant pool entry, keeping the machine instruction 162 /// pointer, the constpool index, and the number of CPUser's which 163 /// reference this entry. 164 struct CPEntry { 165 MachineInstr *CPEMI; 166 unsigned CPI; 167 unsigned RefCount; 168 169 CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0) 170 : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {} 171 }; 172 173 /// CPEntries - Keep track of all of the constant pool entry machine 174 /// instructions. For each original constpool index (i.e. those that 175 /// existed upon entry to this pass), it keeps a vector of entries. 176 /// Original elements are cloned as we go along; the clones are 177 /// put in the vector of the original element, but have distinct CPIs. 178 std::vector<std::vector<CPEntry>> CPEntries; 179 180 /// ImmBranch - One per immediate branch, keeping the machine instruction 181 /// pointer, conditional or unconditional, the max displacement, 182 /// and (if isCond is true) the corresponding unconditional branch 183 /// opcode. 184 struct ImmBranch { 185 MachineInstr *MI; 186 unsigned MaxDisp : 31; 187 bool IsCond : 1; 188 int UncondBr; 189 190 ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr) 191 : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {} 192 }; 193 194 /// ImmBranches - Keep track of all the immediate branch instructions. 195 /// 196 std::vector<ImmBranch> ImmBranches; 197 198 const CSKYSubtarget *STI = nullptr; 199 const CSKYInstrInfo *TII; 200 CSKYMachineFunctionInfo *MFI; 201 MachineFunction *MF = nullptr; 202 MachineConstantPool *MCP = nullptr; 203 204 unsigned PICLabelUId; 205 206 void initPICLabelUId(unsigned UId) { PICLabelUId = UId; } 207 208 unsigned createPICLabelUId() { return PICLabelUId++; } 209 210 public: 211 static char ID; 212 213 CSKYConstantIslands() : MachineFunctionPass(ID) {} 214 215 StringRef getPassName() const override { return "CSKY Constant Islands"; } 216 217 bool runOnMachineFunction(MachineFunction &F) override; 218 219 MachineFunctionProperties getRequiredProperties() const override { 220 return MachineFunctionProperties().set( 221 MachineFunctionProperties::Property::NoVRegs); 222 } 223 224 void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs); 225 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 226 Align getCPEAlign(const MachineInstr &CPEMI); 227 void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs); 228 unsigned getOffsetOf(MachineInstr *MI) const; 229 unsigned getUserOffset(CPUser &) const; 230 void dumpBBs(); 231 232 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, 233 bool NegativeOK); 234 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 235 const CPUser &U); 236 237 void computeBlockSize(MachineBasicBlock *MBB); 238 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 239 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 240 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 241 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI); 242 int findInRangeCPEntry(CPUser &U, unsigned UserOffset); 243 bool findAvailableWater(CPUser &U, unsigned UserOffset, 244 water_iterator &WaterIter); 245 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 246 MachineBasicBlock *&NewMBB); 247 bool handleConstantPoolUser(unsigned CPUserIndex); 248 void removeDeadCPEMI(MachineInstr *CPEMI); 249 bool removeUnusedCPEntries(); 250 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 251 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 252 bool DoDump = false); 253 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, 254 unsigned &Growth); 255 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 256 bool fixupImmediateBr(ImmBranch &Br); 257 bool fixupConditionalBr(ImmBranch &Br); 258 bool fixupUnconditionalBr(ImmBranch &Br); 259 }; 260 } // end anonymous namespace 261 262 char CSKYConstantIslands::ID = 0; 263 264 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 265 unsigned TrialOffset, 266 const CPUser &U) { 267 return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk); 268 } 269 270 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 271 /// print block size and offset information - debugging 272 LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() { 273 for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) { 274 const BasicBlockInfo &BBI = BBInfo[J]; 275 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 276 << format(" size=%#x\n", BBInfo[J].Size); 277 } 278 } 279 #endif 280 281 bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) { 282 MF = &Mf; 283 MCP = Mf.getConstantPool(); 284 STI = &Mf.getSubtarget<CSKYSubtarget>(); 285 286 LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: " 287 << MCP->getConstants().size() << " CP entries, aligned to " 288 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 289 290 TII = STI->getInstrInfo(); 291 MFI = MF->getInfo<CSKYMachineFunctionInfo>(); 292 293 // This pass invalidates liveness information when it splits basic blocks. 294 MF->getRegInfo().invalidateLiveness(); 295 296 // Renumber all of the machine basic blocks in the function, guaranteeing that 297 // the numbers agree with the position of the block in the function. 298 MF->RenumberBlocks(); 299 300 bool MadeChange = false; 301 302 // Perform the initial placement of the constant pool entries. To start with, 303 // we put them all at the end of the function. 304 std::vector<MachineInstr *> CPEMIs; 305 if (!MCP->isEmpty()) 306 doInitialPlacement(CPEMIs); 307 308 /// The next UID to take is the first unused one. 309 initPICLabelUId(CPEMIs.size()); 310 311 // Do the initial scan of the function, building up information about the 312 // sizes of each block, the location of all the water, and finding all of the 313 // constant pool users. 314 initializeFunctionInfo(CPEMIs); 315 CPEMIs.clear(); 316 LLVM_DEBUG(dumpBBs()); 317 318 /// Remove dead constant pool entries. 319 MadeChange |= removeUnusedCPEntries(); 320 321 // Iteratively place constant pool entries and fix up branches until there 322 // is no change. 323 unsigned NoCPIters = 0, NoBRIters = 0; 324 (void)NoBRIters; 325 while (true) { 326 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 327 bool CPChange = false; 328 for (unsigned I = 0, E = CPUsers.size(); I != E; ++I) 329 CPChange |= handleConstantPoolUser(I); 330 if (CPChange && ++NoCPIters > 30) 331 report_fatal_error("Constant Island pass failed to converge!"); 332 LLVM_DEBUG(dumpBBs()); 333 334 // Clear NewWaterList now. If we split a block for branches, it should 335 // appear as "new water" for the next iteration of constant pool placement. 336 NewWaterList.clear(); 337 338 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 339 bool BRChange = false; 340 for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I) 341 BRChange |= fixupImmediateBr(ImmBranches[I]); 342 if (BRChange && ++NoBRIters > 30) 343 report_fatal_error("Branch Fix Up pass failed to converge!"); 344 LLVM_DEBUG(dumpBBs()); 345 if (!CPChange && !BRChange) 346 break; 347 MadeChange = true; 348 } 349 350 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 351 352 BBInfo.clear(); 353 WaterList.clear(); 354 CPUsers.clear(); 355 CPEntries.clear(); 356 ImmBranches.clear(); 357 return MadeChange; 358 } 359 360 /// doInitialPlacement - Perform the initial placement of the constant pool 361 /// entries. To start with, we put them all at the end of the function. 362 void CSKYConstantIslands::doInitialPlacement( 363 std::vector<MachineInstr *> &CPEMIs) { 364 // Create the basic block to hold the CPE's. 365 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 366 MF->push_back(BB); 367 368 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 369 const Align MaxAlign = MCP->getConstantPoolAlign(); 370 371 // Mark the basic block as required by the const-pool. 372 BB->setAlignment(Align(2)); 373 374 // The function needs to be as aligned as the basic blocks. The linker may 375 // move functions around based on their alignment. 376 MF->ensureAlignment(BB->getAlignment()); 377 378 // Order the entries in BB by descending alignment. That ensures correct 379 // alignment of all entries as long as BB is sufficiently aligned. Keep 380 // track of the insertion point for each alignment. We are going to bucket 381 // sort the entries as they are created. 382 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1, 383 BB->end()); 384 385 // Add all of the constants from the constant pool to the end block, use an 386 // identity mapping of CPI's to CPE's. 387 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 388 389 const DataLayout &TD = MF->getDataLayout(); 390 for (unsigned I = 0, E = CPs.size(); I != E; ++I) { 391 unsigned Size = CPs[I].getSizeInBytes(TD); 392 assert(Size >= 4 && "Too small constant pool entry"); 393 Align Alignment = CPs[I].getAlign(); 394 // Verify that all constant pool entries are a multiple of their alignment. 395 // If not, we would have to pad them out so that instructions stay aligned. 396 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 397 398 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 399 unsigned LogAlign = Log2(Alignment); 400 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 401 402 MachineInstr *CPEMI = 403 BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 404 .addImm(I) 405 .addConstantPoolIndex(I) 406 .addImm(Size); 407 408 CPEMIs.push_back(CPEMI); 409 410 // Ensure that future entries with higher alignment get inserted before 411 // CPEMI. This is bucket sort with iterators. 412 for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A) 413 if (InsPoint[A] == InsAt) 414 InsPoint[A] = CPEMI; 415 // Add a new CPEntry, but no corresponding CPUser yet. 416 CPEntries.emplace_back(1, CPEntry(CPEMI, I)); 417 ++NumCPEs; 418 LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = " 419 << Size << ", align = " << Alignment.value() << '\n'); 420 } 421 LLVM_DEBUG(BB->dump()); 422 } 423 424 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 425 /// into the block immediately after it. 426 static bool bbHasFallthrough(MachineBasicBlock *MBB) { 427 // Get the next machine basic block in the function. 428 MachineFunction::iterator MBBI = MBB->getIterator(); 429 // Can't fall off end of function. 430 if (std::next(MBBI) == MBB->getParent()->end()) 431 return false; 432 433 MachineBasicBlock *NextBB = &*std::next(MBBI); 434 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 435 E = MBB->succ_end(); 436 I != E; ++I) 437 if (*I == NextBB) 438 return true; 439 440 return false; 441 } 442 443 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 444 /// look up the corresponding CPEntry. 445 CSKYConstantIslands::CPEntry * 446 CSKYConstantIslands::findConstPoolEntry(unsigned CPI, 447 const MachineInstr *CPEMI) { 448 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 449 // Number of entries per constpool index should be small, just do a 450 // linear search. 451 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 452 if (CPEs[I].CPEMI == CPEMI) 453 return &CPEs[I]; 454 } 455 return nullptr; 456 } 457 458 /// getCPEAlign - Returns the required alignment of the constant pool entry 459 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 460 Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { 461 assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY); 462 463 unsigned CPI = CPEMI.getOperand(1).getIndex(); 464 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 465 return MCP->getConstants()[CPI].getAlign(); 466 } 467 468 /// initializeFunctionInfo - Do the initial scan of the function, building up 469 /// information about the sizes of each block, the location of all the water, 470 /// and finding all of the constant pool users. 471 void CSKYConstantIslands::initializeFunctionInfo( 472 const std::vector<MachineInstr *> &CPEMIs) { 473 BBInfo.clear(); 474 BBInfo.resize(MF->getNumBlockIDs()); 475 476 // First thing, compute the size of all basic blocks, and see if the function 477 // has any inline assembly in it. If so, we have to be conservative about 478 // alignment assumptions, as we don't know for sure the size of any 479 // instructions in the inline assembly. 480 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 481 computeBlockSize(&*I); 482 483 // Compute block offsets. 484 adjustBBOffsetsAfter(&MF->front()); 485 486 // Now go back through the instructions and build up our data structures. 487 for (MachineBasicBlock &MBB : *MF) { 488 // If this block doesn't fall through into the next MBB, then this is 489 // 'water' that a constant pool island could be placed. 490 if (!bbHasFallthrough(&MBB)) 491 WaterList.push_back(&MBB); 492 for (MachineInstr &MI : MBB) { 493 if (MI.isDebugInstr()) 494 continue; 495 496 int Opc = MI.getOpcode(); 497 if (MI.isBranch() && !MI.isIndirectBranch()) { 498 bool IsCond = MI.isConditionalBranch(); 499 unsigned Bits = 0; 500 unsigned Scale = 1; 501 int UOpc = CSKY::BR32; 502 503 switch (MI.getOpcode()) { 504 case CSKY::BR16: 505 case CSKY::BF16: 506 case CSKY::BT16: 507 Bits = 10; 508 Scale = 2; 509 break; 510 default: 511 Bits = 16; 512 Scale = 2; 513 break; 514 } 515 516 // Record this immediate branch. 517 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 518 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc)); 519 } 520 521 if (Opc == CSKY::CONSTPOOL_ENTRY) 522 continue; 523 524 // Scan the instructions for constant pool operands. 525 for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op) 526 if (MI.getOperand(Op).isCPI()) { 527 // We found one. The addressing mode tells us the max displacement 528 // from the PC that this instruction permits. 529 530 // Basic size info comes from the TSFlags field. 531 unsigned Bits = 0; 532 unsigned Scale = 1; 533 bool NegOk = false; 534 535 switch (Opc) { 536 default: 537 llvm_unreachable("Unknown addressing mode for CP reference!"); 538 case CSKY::MOVIH32: 539 case CSKY::ORI32: 540 continue; 541 case CSKY::PseudoTLSLA32: 542 case CSKY::JSRI32: 543 case CSKY::JMPI32: 544 case CSKY::LRW32: 545 case CSKY::LRW32_Gen: 546 Bits = 16; 547 Scale = 4; 548 break; 549 case CSKY::f2FLRW_S: 550 case CSKY::f2FLRW_D: 551 Bits = 8; 552 Scale = 4; 553 break; 554 case CSKY::GRS32: 555 Bits = 17; 556 Scale = 2; 557 NegOk = true; 558 break; 559 } 560 // Remember that this is a user of a CP entry. 561 unsigned CPI = MI.getOperand(Op).getIndex(); 562 MachineInstr *CPEMI = CPEMIs[CPI]; 563 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 564 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk)); 565 566 // Increment corresponding CPEntry reference count. 567 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 568 assert(CPE && "Cannot find a corresponding CPEntry!"); 569 CPE->RefCount++; 570 } 571 } 572 } 573 } 574 575 /// computeBlockSize - Compute the size and some alignment information for MBB. 576 /// This function updates BBInfo directly. 577 void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 578 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 579 BBI.Size = 0; 580 581 for (const MachineInstr &MI : *MBB) 582 BBI.Size += TII->getInstSizeInBytes(MI); 583 } 584 585 /// getOffsetOf - Return the current offset of the specified machine instruction 586 /// from the start of the function. This offset changes as stuff is moved 587 /// around inside the function. 588 unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const { 589 MachineBasicBlock *MBB = MI->getParent(); 590 591 // The offset is composed of two things: the sum of the sizes of all MBB's 592 // before this instruction's block, and the offset from the start of the block 593 // it is in. 594 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 595 596 // Sum instructions before MI in MBB. 597 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 598 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 599 Offset += TII->getInstSizeInBytes(*I); 600 } 601 return Offset; 602 } 603 604 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 605 /// ID. 606 static bool compareMbbNumbers(const MachineBasicBlock *LHS, 607 const MachineBasicBlock *RHS) { 608 return LHS->getNumber() < RHS->getNumber(); 609 } 610 611 /// updateForInsertedWaterBlock - When a block is newly inserted into the 612 /// machine function, it upsets all of the block numbers. Renumber the blocks 613 /// and update the arrays that parallel this numbering. 614 void CSKYConstantIslands::updateForInsertedWaterBlock( 615 MachineBasicBlock *NewBB) { 616 // Renumber the MBB's to keep them consecutive. 617 NewBB->getParent()->RenumberBlocks(NewBB); 618 619 // Insert an entry into BBInfo to align it properly with the (newly 620 // renumbered) block numbers. 621 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 622 623 // Next, update WaterList. Specifically, we need to add NewMBB as having 624 // available water after it. 625 water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers); 626 WaterList.insert(IP, NewBB); 627 } 628 629 unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const { 630 unsigned UserOffset = getOffsetOf(U.MI); 631 632 UserOffset &= ~3u; 633 634 return UserOffset; 635 } 636 637 /// Split the basic block containing MI into two blocks, which are joined by 638 /// an unconditional branch. Update data structures and renumber blocks to 639 /// account for this change and returns the newly created block. 640 MachineBasicBlock * 641 CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { 642 MachineBasicBlock *OrigBB = MI.getParent(); 643 644 // Create a new MBB for the code after the OrigBB. 645 MachineBasicBlock *NewBB = 646 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 647 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 648 MF->insert(MBBI, NewBB); 649 650 // Splice the instructions starting with MI over to NewBB. 651 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 652 653 // Add an unconditional branch from OrigBB to NewBB. 654 // Note the new unconditional branch is not being recorded. 655 // There doesn't seem to be meaningful DebugInfo available; this doesn't 656 // correspond to anything in the source. 657 658 // TODO: Add support for 16bit instr. 659 BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB); 660 ++NumSplit; 661 662 // Update the CFG. All succs of OrigBB are now succs of NewBB. 663 NewBB->transferSuccessors(OrigBB); 664 665 // OrigBB branches to NewBB. 666 OrigBB->addSuccessor(NewBB); 667 668 // Update internal data structures to account for the newly inserted MBB. 669 // This is almost the same as updateForInsertedWaterBlock, except that 670 // the Water goes after OrigBB, not NewBB. 671 MF->RenumberBlocks(NewBB); 672 673 // Insert an entry into BBInfo to align it properly with the (newly 674 // renumbered) block numbers. 675 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 676 677 // Next, update WaterList. Specifically, we need to add OrigMBB as having 678 // available water after it (but not if it's already there, which happens 679 // when splitting before a conditional branch that is followed by an 680 // unconditional branch - in that case we want to insert NewBB). 681 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers); 682 MachineBasicBlock *WaterBB = *IP; 683 if (WaterBB == OrigBB) 684 WaterList.insert(std::next(IP), NewBB); 685 else 686 WaterList.insert(IP, OrigBB); 687 NewWaterList.insert(OrigBB); 688 689 // Figure out how large the OrigBB is. As the first half of the original 690 // block, it cannot contain a tablejump. The size includes 691 // the new jump we added. (It should be possible to do this without 692 // recounting everything, but it's very confusing, and this is rarely 693 // executed.) 694 computeBlockSize(OrigBB); 695 696 // Figure out how large the NewMBB is. As the second half of the original 697 // block, it may contain a tablejump. 698 computeBlockSize(NewBB); 699 700 // All BBOffsets following these blocks must be modified. 701 adjustBBOffsetsAfter(OrigBB); 702 703 return NewBB; 704 } 705 706 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 707 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 708 /// constant pool entry). 709 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 710 unsigned TrialOffset, 711 unsigned MaxDisp, bool NegativeOK) { 712 if (UserOffset <= TrialOffset) { 713 // User before the Trial. 714 if (TrialOffset - UserOffset <= MaxDisp) 715 return true; 716 } else if (NegativeOK) { 717 if (UserOffset - TrialOffset <= MaxDisp) 718 return true; 719 } 720 return false; 721 } 722 723 /// isWaterInRange - Returns true if a CPE placed after the specified 724 /// Water (a basic block) will be in range for the specific MI. 725 /// 726 /// Compute how much the function will grow by inserting a CPE after Water. 727 bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset, 728 MachineBasicBlock *Water, CPUser &U, 729 unsigned &Growth) { 730 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); 731 unsigned NextBlockOffset; 732 Align NextBlockAlignment; 733 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 734 if (NextBlock == MF->end()) { 735 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 736 NextBlockAlignment = Align(4); 737 } else { 738 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 739 NextBlockAlignment = NextBlock->getAlignment(); 740 } 741 unsigned Size = U.CPEMI->getOperand(2).getImm(); 742 unsigned CPEEnd = CPEOffset + Size; 743 744 // The CPE may be able to hide in the alignment padding before the next 745 // block. It may also cause more padding to be required if it is more aligned 746 // that the next block. 747 if (CPEEnd > NextBlockOffset) { 748 Growth = CPEEnd - NextBlockOffset; 749 // Compute the padding that would go at the end of the CPE to align the next 750 // block. 751 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 752 753 // If the CPE is to be inserted before the instruction, that will raise 754 // the offset of the instruction. Also account for unknown alignment padding 755 // in blocks between CPE and the user. 756 if (CPEOffset < UserOffset) 757 UserOffset += Growth; 758 } else 759 // CPE fits in existing padding. 760 Growth = 0; 761 762 return isOffsetInRange(UserOffset, CPEOffset, U); 763 } 764 765 /// isCPEntryInRange - Returns true if the distance between specific MI and 766 /// specific ConstPool entry instruction can fit in MI's displacement field. 767 bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI, 768 unsigned UserOffset, 769 MachineInstr *CPEMI, 770 unsigned MaxDisp, bool NegOk, 771 bool DoDump) { 772 unsigned CPEOffset = getOffsetOf(CPEMI); 773 774 if (DoDump) { 775 LLVM_DEBUG({ 776 unsigned Block = MI->getParent()->getNumber(); 777 const BasicBlockInfo &BBI = BBInfo[Block]; 778 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 779 << " max delta=" << MaxDisp 780 << format(" insn address=%#x", UserOffset) << " in " 781 << printMBBReference(*MI->getParent()) << ": " 782 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 783 << format("CPE address=%#x offset=%+d: ", CPEOffset, 784 int(CPEOffset - UserOffset)); 785 }); 786 } 787 788 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 789 } 790 791 #ifndef NDEBUG 792 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 793 /// unconditionally branches to its only successor. 794 static bool bbIsJumpedOver(MachineBasicBlock *MBB) { 795 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 796 return false; 797 MachineBasicBlock *Succ = *MBB->succ_begin(); 798 MachineBasicBlock *Pred = *MBB->pred_begin(); 799 MachineInstr *PredMI = &Pred->back(); 800 if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */) 801 return PredMI->getOperand(0).getMBB() == Succ; 802 return false; 803 } 804 #endif 805 806 void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 807 unsigned BBNum = BB->getNumber(); 808 for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) { 809 // Get the offset and known bits at the end of the layout predecessor. 810 // Include the alignment of the current block. 811 unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size; 812 BBInfo[I].Offset = Offset; 813 } 814 } 815 816 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 817 /// and instruction CPEMI, and decrement its refcount. If the refcount 818 /// becomes 0 remove the entry and instruction. Returns true if we removed 819 /// the entry, false if we didn't. 820 bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI, 821 MachineInstr *CPEMI) { 822 // Find the old entry. Eliminate it if it is no longer used. 823 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 824 assert(CPE && "Unexpected!"); 825 if (--CPE->RefCount == 0) { 826 removeDeadCPEMI(CPEMI); 827 CPE->CPEMI = nullptr; 828 --NumCPEs; 829 return true; 830 } 831 return false; 832 } 833 834 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 835 /// if not, see if an in-range clone of the CPE is in range, and if so, 836 /// change the data structures so the user references the clone. Returns: 837 /// 0 = no existing entry found 838 /// 1 = entry found, and there were no code insertions or deletions 839 /// 2 = entry found, and there were code insertions or deletions 840 int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) { 841 MachineInstr *UserMI = U.MI; 842 MachineInstr *CPEMI = U.CPEMI; 843 844 // Check to see if the CPE is already in-range. 845 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 846 true)) { 847 LLVM_DEBUG(dbgs() << "In range\n"); 848 return 1; 849 } 850 851 // No. Look for previously created clones of the CPE that are in range. 852 unsigned CPI = CPEMI->getOperand(1).getIndex(); 853 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 854 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 855 // We already tried this one 856 if (CPEs[I].CPEMI == CPEMI) 857 continue; 858 // Removing CPEs can leave empty entries, skip 859 if (CPEs[I].CPEMI == nullptr) 860 continue; 861 if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(), 862 U.NegOk)) { 863 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 864 << CPEs[I].CPI << "\n"); 865 // Point the CPUser node to the replacement 866 U.CPEMI = CPEs[I].CPEMI; 867 // Change the CPI in the instruction operand to refer to the clone. 868 for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J) 869 if (UserMI->getOperand(J).isCPI()) { 870 UserMI->getOperand(J).setIndex(CPEs[I].CPI); 871 break; 872 } 873 // Adjust the refcount of the clone... 874 CPEs[I].RefCount++; 875 // ...and the original. If we didn't remove the old entry, none of the 876 // addresses changed, so we don't need another pass. 877 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 878 } 879 } 880 return 0; 881 } 882 883 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 884 /// the specific unconditional branch instruction. 885 static inline unsigned getUnconditionalBrDisp(int Opc) { 886 unsigned Bits, Scale; 887 888 switch (Opc) { 889 case CSKY::BR16: 890 Bits = 10; 891 Scale = 2; 892 break; 893 case CSKY::BR32: 894 Bits = 16; 895 Scale = 2; 896 break; 897 default: 898 llvm_unreachable(""); 899 } 900 901 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 902 return MaxOffs; 903 } 904 905 /// findAvailableWater - Look for an existing entry in the WaterList in which 906 /// we can place the CPE referenced from U so it's within range of U's MI. 907 /// Returns true if found, false if not. If it returns true, WaterIter 908 /// is set to the WaterList entry. 909 /// To ensure that this pass 910 /// terminates, the CPE location for a particular CPUser is only allowed to 911 /// move to a lower address, so search backward from the end of the list and 912 /// prefer the first water that is in range. 913 bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 914 water_iterator &WaterIter) { 915 if (WaterList.empty()) 916 return false; 917 918 unsigned BestGrowth = ~0u; 919 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 920 --IP) { 921 MachineBasicBlock *WaterBB = *IP; 922 // Check if water is in range and is either at a lower address than the 923 // current "high water mark" or a new water block that was created since 924 // the previous iteration by inserting an unconditional branch. In the 925 // latter case, we want to allow resetting the high water mark back to 926 // this new water since we haven't seen it before. Inserting branches 927 // should be relatively uncommon and when it does happen, we want to be 928 // sure to take advantage of it for all the CPEs near that block, so that 929 // we don't insert more branches than necessary. 930 unsigned Growth; 931 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 932 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 933 NewWaterList.count(WaterBB)) && 934 Growth < BestGrowth) { 935 // This is the least amount of required padding seen so far. 936 BestGrowth = Growth; 937 WaterIter = IP; 938 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 939 << " Growth=" << Growth << '\n'); 940 941 // Keep looking unless it is perfect. 942 if (BestGrowth == 0) 943 return true; 944 } 945 if (IP == B) 946 break; 947 } 948 return BestGrowth != ~0u; 949 } 950 951 /// createNewWater - No existing WaterList entry will work for 952 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 953 /// block is used if in range, and the conditional branch munged so control 954 /// flow is correct. Otherwise the block is split to create a hole with an 955 /// unconditional branch around it. In either case NewMBB is set to a 956 /// block following which the new island can be inserted (the WaterList 957 /// is not adjusted). 958 void CSKYConstantIslands::createNewWater(unsigned CPUserIndex, 959 unsigned UserOffset, 960 MachineBasicBlock *&NewMBB) { 961 CPUser &U = CPUsers[CPUserIndex]; 962 MachineInstr *UserMI = U.MI; 963 MachineInstr *CPEMI = U.CPEMI; 964 MachineBasicBlock *UserMBB = UserMI->getParent(); 965 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 966 967 // If the block does not end in an unconditional branch already, and if the 968 // end of the block is within range, make new water there. 969 if (bbHasFallthrough(UserMBB)) { 970 // Size of branch to insert. 971 unsigned Delta = 4; 972 // Compute the offset where the CPE will begin. 973 unsigned CPEOffset = UserBBI.postOffset() + Delta; 974 975 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 976 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 977 << format(", expected CPE offset %#x\n", CPEOffset)); 978 NewMBB = &*++UserMBB->getIterator(); 979 // Add an unconditional branch from UserMBB to fallthrough block. Record 980 // it for branch lengthening; this new branch will not get out of range, 981 // but if the preceding conditional branch is out of range, the targets 982 // will be exchanged, and the altered branch may be out of range, so the 983 // machinery has to know about it. 984 985 // TODO: Add support for 16bit instr. 986 int UncondBr = CSKY::BR32; 987 auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 988 .addMBB(NewMBB) 989 .getInstr(); 990 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 991 ImmBranches.push_back( 992 ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); 993 BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI); 994 adjustBBOffsetsAfter(UserMBB); 995 return; 996 } 997 } 998 999 // What a big block. Find a place within the block to split it. 1000 1001 // Try to split the block so it's fully aligned. Compute the latest split 1002 // point where we can add a 4-byte branch instruction, and then align to 1003 // Align which is the largest possible alignment in the function. 1004 const Align Align = MF->getAlignment(); 1005 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1006 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1007 BaseInsertOffset)); 1008 1009 // The 4 in the following is for the unconditional branch we'll be inserting 1010 // Alignment of the island is handled 1011 // inside isOffsetInRange. 1012 BaseInsertOffset -= 4; 1013 1014 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1015 << " la=" << Log2(Align) << '\n'); 1016 1017 // This could point off the end of the block if we've already got constant 1018 // pool entries following this block; only the last one is in the water list. 1019 // Back past any possible branches (allow for a conditional and a maximally 1020 // long unconditional). 1021 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1022 BaseInsertOffset = UserBBI.postOffset() - 8; 1023 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1024 } 1025 unsigned EndInsertOffset = 1026 BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm(); 1027 MachineBasicBlock::iterator MI = UserMI; 1028 ++MI; 1029 unsigned CPUIndex = CPUserIndex + 1; 1030 unsigned NumCPUsers = CPUsers.size(); 1031 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1032 Offset < BaseInsertOffset; 1033 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1034 assert(MI != UserMBB->end() && "Fell off end of block"); 1035 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1036 CPUser &U = CPUsers[CPUIndex]; 1037 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1038 // Shift intertion point by one unit of alignment so it is within reach. 1039 BaseInsertOffset -= Align.value(); 1040 EndInsertOffset -= Align.value(); 1041 } 1042 // This is overly conservative, as we don't account for CPEMIs being 1043 // reused within the block, but it doesn't matter much. Also assume CPEs 1044 // are added in order with alignment padding. We may eventually be able 1045 // to pack the aligned CPEs better. 1046 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1047 CPUIndex++; 1048 } 1049 } 1050 1051 NewMBB = splitBlockBeforeInstr(*--MI); 1052 } 1053 1054 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1055 /// is out-of-range. If so, pick up the constant pool value and move it some 1056 /// place in-range. Return true if we changed any addresses (thus must run 1057 /// another pass of branch lengthening), false otherwise. 1058 bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1059 CPUser &U = CPUsers[CPUserIndex]; 1060 MachineInstr *UserMI = U.MI; 1061 MachineInstr *CPEMI = U.CPEMI; 1062 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1063 unsigned Size = CPEMI->getOperand(2).getImm(); 1064 // Compute this only once, it's expensive. 1065 unsigned UserOffset = getUserOffset(U); 1066 1067 // See if the current entry is within range, or there is a clone of it 1068 // in range. 1069 int result = findInRangeCPEntry(U, UserOffset); 1070 if (result == 1) 1071 return false; 1072 if (result == 2) 1073 return true; 1074 1075 // Look for water where we can place this CPE. 1076 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1077 MachineBasicBlock *NewMBB; 1078 water_iterator IP; 1079 if (findAvailableWater(U, UserOffset, IP)) { 1080 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1081 MachineBasicBlock *WaterBB = *IP; 1082 1083 // If the original WaterList entry was "new water" on this iteration, 1084 // propagate that to the new island. This is just keeping NewWaterList 1085 // updated to match the WaterList, which will be updated below. 1086 if (NewWaterList.erase(WaterBB)) 1087 NewWaterList.insert(NewIsland); 1088 1089 // The new CPE goes before the following block (NewMBB). 1090 NewMBB = &*++WaterBB->getIterator(); 1091 } else { 1092 LLVM_DEBUG(dbgs() << "No water found\n"); 1093 createNewWater(CPUserIndex, UserOffset, NewMBB); 1094 1095 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1096 // called while handling branches so that the water will be seen on the 1097 // next iteration for constant pools, but in this context, we don't want 1098 // it. Check for this so it will be removed from the WaterList. 1099 // Also remove any entry from NewWaterList. 1100 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1101 IP = llvm::find(WaterList, WaterBB); 1102 if (IP != WaterList.end()) 1103 NewWaterList.erase(WaterBB); 1104 1105 // We are adding new water. Update NewWaterList. 1106 NewWaterList.insert(NewIsland); 1107 } 1108 1109 // Remove the original WaterList entry; we want subsequent insertions in 1110 // this vicinity to go after the one we're about to insert. This 1111 // considerably reduces the number of times we have to move the same CPE 1112 // more than once and is also important to ensure the algorithm terminates. 1113 if (IP != WaterList.end()) 1114 WaterList.erase(IP); 1115 1116 // Okay, we know we can put an island before NewMBB now, do it! 1117 MF->insert(NewMBB->getIterator(), NewIsland); 1118 1119 // Update internal data structures to account for the newly inserted MBB. 1120 updateForInsertedWaterBlock(NewIsland); 1121 1122 // Decrement the old entry, and remove it if refcount becomes 0. 1123 decrementCPEReferenceCount(CPI, CPEMI); 1124 1125 // No existing clone of this CPE is within range. 1126 // We will be generating a new clone. Get a UID for it. 1127 unsigned ID = createPICLabelUId(); 1128 1129 // Now that we have an island to add the CPE to, clone the original CPE and 1130 // add it to the island. 1131 U.HighWaterMark = NewIsland; 1132 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 1133 .addImm(ID) 1134 .addConstantPoolIndex(CPI) 1135 .addImm(Size); 1136 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1137 ++NumCPEs; 1138 1139 // Mark the basic block as aligned as required by the const-pool entry. 1140 NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); 1141 1142 // Increase the size of the island block to account for the new entry. 1143 BBInfo[NewIsland->getNumber()].Size += Size; 1144 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1145 1146 // Finally, change the CPI in the instruction operand to be ID. 1147 for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I) 1148 if (UserMI->getOperand(I).isCPI()) { 1149 UserMI->getOperand(I).setIndex(ID); 1150 break; 1151 } 1152 1153 LLVM_DEBUG( 1154 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1155 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1156 1157 return true; 1158 } 1159 1160 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1161 /// sizes and offsets of impacted basic blocks. 1162 void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1163 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1164 unsigned Size = CPEMI->getOperand(2).getImm(); 1165 CPEMI->eraseFromParent(); 1166 BBInfo[CPEBB->getNumber()].Size -= Size; 1167 // All succeeding offsets have the current size value added in, fix this. 1168 if (CPEBB->empty()) { 1169 BBInfo[CPEBB->getNumber()].Size = 0; 1170 1171 // This block no longer needs to be aligned. 1172 CPEBB->setAlignment(Align(4)); 1173 } else { 1174 // Entries are sorted by descending alignment, so realign from the front. 1175 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); 1176 } 1177 1178 adjustBBOffsetsAfter(CPEBB); 1179 // An island has only one predecessor BB and one successor BB. Check if 1180 // this BB's predecessor jumps directly to this BB's successor. This 1181 // shouldn't happen currently. 1182 assert(!bbIsJumpedOver(CPEBB) && "How did this happen?"); 1183 // FIXME: remove the empty blocks after all the work is done? 1184 } 1185 1186 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1187 /// are zero. 1188 bool CSKYConstantIslands::removeUnusedCPEntries() { 1189 unsigned MadeChange = false; 1190 for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) { 1191 std::vector<CPEntry> &CPEs = CPEntries[I]; 1192 for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) { 1193 if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) { 1194 removeDeadCPEMI(CPEs[J].CPEMI); 1195 CPEs[J].CPEMI = nullptr; 1196 MadeChange = true; 1197 } 1198 } 1199 } 1200 return MadeChange; 1201 } 1202 1203 /// isBBInRange - Returns true if the distance between specific MI and 1204 /// specific BB can fit in MI's displacement field. 1205 bool CSKYConstantIslands::isBBInRange(MachineInstr *MI, 1206 MachineBasicBlock *DestBB, 1207 unsigned MaxDisp) { 1208 unsigned BrOffset = getOffsetOf(MI); 1209 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1210 1211 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1212 << " from " << printMBBReference(*MI->getParent()) 1213 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1214 << " to " << DestOffset << " offset " 1215 << int(DestOffset - BrOffset) << "\t" << *MI); 1216 1217 if (BrOffset <= DestOffset) { 1218 // Branch before the Dest. 1219 if (DestOffset - BrOffset <= MaxDisp) 1220 return true; 1221 } else { 1222 if (BrOffset - DestOffset <= MaxDisp) 1223 return true; 1224 } 1225 return false; 1226 } 1227 1228 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1229 /// away to fit in its displacement field. 1230 bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1231 MachineInstr *MI = Br.MI; 1232 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1233 1234 // Check to see if the DestBB is already in-range. 1235 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1236 return false; 1237 1238 if (!Br.IsCond) 1239 return fixupUnconditionalBr(Br); 1240 return fixupConditionalBr(Br); 1241 } 1242 1243 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1244 /// too far away to fit in its displacement field. If the LR register has been 1245 /// spilled in the epilogue, then we can use BSR to implement a far jump. 1246 /// Otherwise, add an intermediate branch instruction to a branch. 1247 bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1248 MachineInstr *MI = Br.MI; 1249 MachineBasicBlock *MBB = MI->getParent(); 1250 1251 if (!MFI->isLRSpilled()) 1252 report_fatal_error("underestimated function size"); 1253 1254 // Use BSR to implement far jump. 1255 Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2; 1256 MI->setDesc(TII->get(CSKY::BSR32_BR)); 1257 BBInfo[MBB->getNumber()].Size += 4; 1258 adjustBBOffsetsAfter(MBB); 1259 ++NumUBrFixed; 1260 1261 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1262 1263 return true; 1264 } 1265 1266 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1267 /// far away to fit in its displacement field. It is converted to an inverse 1268 /// conditional branch + an unconditional branch to the destination. 1269 bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1270 MachineInstr *MI = Br.MI; 1271 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1272 1273 SmallVector<MachineOperand, 4> Cond; 1274 Cond.push_back(MachineOperand::CreateImm(MI->getOpcode())); 1275 Cond.push_back(MI->getOperand(0)); 1276 TII->reverseBranchCondition(Cond); 1277 1278 // Add an unconditional branch to the destination and invert the branch 1279 // condition to jump over it: 1280 // bteqz L1 1281 // => 1282 // bnez L2 1283 // b L1 1284 // L2: 1285 1286 // If the branch is at the end of its MBB and that has a fall-through block, 1287 // direct the updated conditional branch to the fall-through block. Otherwise, 1288 // split the MBB before the next instruction. 1289 MachineBasicBlock *MBB = MI->getParent(); 1290 MachineInstr *BMI = &MBB->back(); 1291 bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB); 1292 1293 ++NumCBrFixed; 1294 if (BMI != MI) { 1295 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1296 BMI->isUnconditionalBranch()) { 1297 // Last MI in the BB is an unconditional branch. Can we simply invert the 1298 // condition and swap destinations: 1299 // beqz L1 1300 // b L2 1301 // => 1302 // bnez L2 1303 // b L1 1304 MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI); 1305 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1306 LLVM_DEBUG( 1307 dbgs() << " Invert Bcc condition and swap its destination with " 1308 << *BMI); 1309 BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB); 1310 MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest); 1311 1312 MI->setDesc(TII->get(Cond[0].getImm())); 1313 return true; 1314 } 1315 } 1316 } 1317 1318 if (NeedSplit) { 1319 splitBlockBeforeInstr(*MI); 1320 // No need for the branch to the next block. We're adding an unconditional 1321 // branch to the destination. 1322 int Delta = TII->getInstSizeInBytes(MBB->back()); 1323 BBInfo[MBB->getNumber()].Size -= Delta; 1324 MBB->back().eraseFromParent(); 1325 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1326 1327 // The conditional successor will be swapped between the BBs after this, so 1328 // update CFG. 1329 MBB->addSuccessor(DestBB); 1330 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1331 } 1332 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1333 1334 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1335 << " also invert condition and change dest. to " 1336 << printMBBReference(*NextBB) << "\n"); 1337 1338 // Insert a new conditional branch and a new unconditional branch. 1339 // Also update the ImmBranch as well as adding a new entry for the new branch. 1340 1341 BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm())) 1342 .addReg(MI->getOperand(0).getReg()) 1343 .addMBB(NextBB); 1344 1345 Br.MI = &MBB->back(); 1346 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1347 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1348 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1349 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1350 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1351 1352 // Remove the old conditional branch. It may or may not still be in MBB. 1353 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1354 MI->eraseFromParent(); 1355 adjustBBOffsetsAfter(MBB); 1356 return true; 1357 } 1358 1359 /// Returns a pass that converts branches to long branches. 1360 FunctionPass *llvm::createCSKYConstantIslandPass() { 1361 return new CSKYConstantIslands(); 1362 } 1363 1364 INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE, 1365 "CSKY constant island placement and branch shortening pass", 1366 false, false) 1367