1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions, 12 /// combined with a new form of predication called tail-predication, can be used 13 /// to provide implicit vector predication within a low-overhead loop. 14 /// This is implicit because the predicate of active/inactive lanes is 15 /// calculated by hardware, and thus does not need to be explicitly passed 16 /// to vector instructions. The instructions responsible for this are the 17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the 18 /// the total number of data elements processed by the loop. The loop-end 19 /// LETP instruction is responsible for decrementing and setting the remaining 20 /// elements to be processed and generating the mask of active lanes. 21 /// 22 /// The HardwareLoops pass inserts intrinsics identifying loops that the 23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 24 /// responsible for generating a vectorized loop in which the lanes are 25 /// predicated upon the iteration counter. This pass looks at these predicated 26 /// vector loops, that are targets for low-overhead loops, and prepares it for 27 /// code generation. Once the vectorizer has produced a masked loop, there's a 28 /// couple of final forms: 29 /// - A tail-predicated loop, with implicit predication. 30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT 31 /// blocks of instructions operating on different vector types. 32 /// 33 /// This pass: 34 /// 1) Checks if the predicates of the masked load/store instructions are 35 /// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes 36 /// the the scalar loop tripcount as its second argument, which we extract 37 /// to set up the number of elements processed by the loop. 38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target 39 /// specific VCTP intrinsic to represent the effect of tail predication. 40 /// This will be picked up by the ARM Low-overhead loop pass, which performs 41 /// the final transformation to a DLSTP or WLSTP tail-predicated loop. 42 43 #include "ARM.h" 44 #include "ARMSubtarget.h" 45 #include "ARMTargetTransformInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/TargetTransformInfo.h" 52 #include "llvm/CodeGen/TargetPassConfig.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "mve-tail-predication" 66 #define DESC "Transform predicated vector loops to use MVE tail predication" 67 68 cl::opt<TailPredication::Mode> EnableTailPredication( 69 "tail-predication", cl::desc("MVE tail-predication pass options"), 70 cl::init(TailPredication::Disabled), 71 cl::values(clEnumValN(TailPredication::Disabled, "disabled", 72 "Don't tail-predicate loops"), 73 clEnumValN(TailPredication::EnabledNoReductions, 74 "enabled-no-reductions", 75 "Enable tail-predication, but not for reduction loops"), 76 clEnumValN(TailPredication::Enabled, 77 "enabled", 78 "Enable tail-predication, including reduction loops"), 79 clEnumValN(TailPredication::ForceEnabledNoReductions, 80 "force-enabled-no-reductions", 81 "Enable tail-predication, but not for reduction loops, " 82 "and force this which might be unsafe"), 83 clEnumValN(TailPredication::ForceEnabled, 84 "force-enabled", 85 "Enable tail-predication, including reduction loops, " 86 "and force this which might be unsafe"))); 87 88 89 namespace { 90 91 class MVETailPredication : public LoopPass { 92 SmallVector<IntrinsicInst*, 4> MaskedInsts; 93 Loop *L = nullptr; 94 ScalarEvolution *SE = nullptr; 95 TargetTransformInfo *TTI = nullptr; 96 const ARMSubtarget *ST = nullptr; 97 98 public: 99 static char ID; 100 101 MVETailPredication() : LoopPass(ID) { } 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.addRequired<ScalarEvolutionWrapperPass>(); 105 AU.addRequired<LoopInfoWrapperPass>(); 106 AU.addRequired<TargetPassConfig>(); 107 AU.addRequired<TargetTransformInfoWrapperPass>(); 108 AU.addPreserved<LoopInfoWrapperPass>(); 109 AU.setPreservesCFG(); 110 } 111 112 bool runOnLoop(Loop *L, LPPassManager&) override; 113 114 private: 115 /// Perform the relevant checks on the loop and convert if possible. 116 bool TryConvert(Value *TripCount); 117 118 /// Return whether this is a vectorized loop, that contains masked 119 /// load/stores. 120 bool IsPredicatedVectorLoop(); 121 122 /// Perform several checks on the arguments of @llvm.get.active.lane.mask 123 /// intrinsic. E.g., check that the loop induction variable and the element 124 /// count are of the form we expect, and also perform overflow checks for 125 /// the new expressions that are created. 126 bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount, 127 FixedVectorType *VecTy); 128 129 /// Insert the intrinsic to represent the effect of tail predication. 130 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, 131 FixedVectorType *VecTy); 132 133 /// Rematerialize the iteration count in exit blocks, which enables 134 /// ARMLowOverheadLoops to better optimise away loop update statements inside 135 /// hardware-loops. 136 void RematerializeIterCount(); 137 }; 138 139 } // end namespace 140 141 static bool IsDecrement(Instruction &I) { 142 auto *Call = dyn_cast<IntrinsicInst>(&I); 143 if (!Call) 144 return false; 145 146 Intrinsic::ID ID = Call->getIntrinsicID(); 147 return ID == Intrinsic::loop_decrement_reg; 148 } 149 150 static bool IsMasked(Instruction *I) { 151 auto *Call = dyn_cast<IntrinsicInst>(I); 152 if (!Call) 153 return false; 154 155 Intrinsic::ID ID = Call->getIntrinsicID(); 156 return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load || 157 isGatherScatter(Call); 158 } 159 160 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 161 if (skipLoop(L) || !EnableTailPredication) 162 return false; 163 164 MaskedInsts.clear(); 165 Function &F = *L->getHeader()->getParent(); 166 auto &TPC = getAnalysis<TargetPassConfig>(); 167 auto &TM = TPC.getTM<TargetMachine>(); 168 ST = &TM.getSubtarget<ARMSubtarget>(F); 169 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 170 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 171 this->L = L; 172 173 // The MVE and LOB extensions are combined to enable tail-predication, but 174 // there's nothing preventing us from generating VCTP instructions for v8.1m. 175 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 176 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); 177 return false; 178 } 179 180 BasicBlock *Preheader = L->getLoopPreheader(); 181 if (!Preheader) 182 return false; 183 184 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 185 for (auto &I : *BB) { 186 auto *Call = dyn_cast<IntrinsicInst>(&I); 187 if (!Call) 188 continue; 189 190 Intrinsic::ID ID = Call->getIntrinsicID(); 191 if (ID == Intrinsic::set_loop_iterations || 192 ID == Intrinsic::test_set_loop_iterations) 193 return cast<IntrinsicInst>(&I); 194 } 195 return nullptr; 196 }; 197 198 // Look for the hardware loop intrinsic that sets the iteration count. 199 IntrinsicInst *Setup = FindLoopIterations(Preheader); 200 201 // The test.set iteration could live in the pre-preheader. 202 if (!Setup) { 203 if (!Preheader->getSinglePredecessor()) 204 return false; 205 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 206 if (!Setup) 207 return false; 208 } 209 210 // Search for the hardware loop intrinic that decrements the loop counter. 211 IntrinsicInst *Decrement = nullptr; 212 for (auto *BB : L->getBlocks()) { 213 for (auto &I : *BB) { 214 if (IsDecrement(I)) { 215 Decrement = cast<IntrinsicInst>(&I); 216 break; 217 } 218 } 219 } 220 221 if (!Decrement) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" 225 << *Decrement << "\n"); 226 227 if (!TryConvert(Setup->getArgOperand(0))) { 228 LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n"); 229 return false; 230 } 231 232 return true; 233 } 234 235 static FixedVectorType *getVectorType(IntrinsicInst *I) { 236 unsigned ID = I->getIntrinsicID(); 237 FixedVectorType *VecTy; 238 if (ID == Intrinsic::masked_load || isGather(I)) { 239 if (ID == Intrinsic::arm_mve_vldr_gather_base_wb || 240 ID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated) 241 // then the type is a StructType 242 VecTy = dyn_cast<FixedVectorType>(I->getType()->getContainedType(0)); 243 else 244 VecTy = dyn_cast<FixedVectorType>(I->getType()); 245 } else if (ID == Intrinsic::masked_store) { 246 VecTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType()); 247 } else { 248 VecTy = dyn_cast<FixedVectorType>(I->getOperand(2)->getType()); 249 } 250 assert(VecTy && "No scalable vectors expected here"); 251 return VecTy; 252 } 253 254 bool MVETailPredication::IsPredicatedVectorLoop() { 255 // Check that the loop contains at least one masked load/store intrinsic. 256 // We only support 'normal' vector instructions - other than masked 257 // load/stores. 258 bool ActiveLaneMask = false; 259 for (auto *BB : L->getBlocks()) { 260 for (auto &I : *BB) { 261 auto *Int = dyn_cast<IntrinsicInst>(&I); 262 if (!Int) 263 continue; 264 265 switch (Int->getIntrinsicID()) { 266 case Intrinsic::get_active_lane_mask: 267 ActiveLaneMask = true; 268 continue; 269 case Intrinsic::sadd_sat: 270 case Intrinsic::uadd_sat: 271 case Intrinsic::ssub_sat: 272 case Intrinsic::usub_sat: 273 case Intrinsic::experimental_vector_reduce_add: 274 continue; 275 case Intrinsic::fma: 276 case Intrinsic::trunc: 277 case Intrinsic::rint: 278 case Intrinsic::round: 279 case Intrinsic::floor: 280 case Intrinsic::ceil: 281 case Intrinsic::fabs: 282 if (ST->hasMVEFloatOps()) 283 continue; 284 break; 285 default: 286 break; 287 } 288 if (IsMasked(&I)) { 289 auto *VecTy = getVectorType(Int); 290 unsigned Lanes = VecTy->getNumElements(); 291 unsigned ElementWidth = VecTy->getScalarSizeInBits(); 292 // MVE vectors are 128-bit, but don't support 128 x i1. 293 // TODO: Can we support vectors larger than 128-bits? 294 unsigned MaxWidth = TTI->getRegisterBitWidth(true); 295 if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) 296 return false; 297 MaskedInsts.push_back(cast<IntrinsicInst>(&I)); 298 continue; 299 } 300 301 for (const Use &U : Int->args()) { 302 if (isa<VectorType>(U->getType())) 303 return false; 304 } 305 } 306 } 307 308 if (!ActiveLaneMask) { 309 LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n"); 310 return false; 311 } 312 return !MaskedInsts.empty(); 313 } 314 315 // Look through the exit block to see whether there's a duplicate predicate 316 // instruction. This can happen when we need to perform a select on values 317 // from the last and previous iteration. Instead of doing a straight 318 // replacement of that predicate with the vctp, clone the vctp and place it 319 // in the block. This means that the VPR doesn't have to be live into the 320 // exit block which should make it easier to convert this loop into a proper 321 // tail predicated loop. 322 static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) { 323 BasicBlock *Exit = L->getUniqueExitBlock(); 324 if (!Exit) { 325 LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); 326 return; 327 } 328 329 // Drop references and add operands to check for dead. 330 SmallPtrSet<Instruction*, 4> Dead; 331 while (!MaybeDead.empty()) { 332 auto *I = MaybeDead.front(); 333 MaybeDead.remove(I); 334 if (I->hasNUsesOrMore(1)) 335 continue; 336 337 for (auto &U : I->operands()) 338 if (auto *OpI = dyn_cast<Instruction>(U)) 339 MaybeDead.insert(OpI); 340 341 Dead.insert(I); 342 } 343 344 for (auto *I : Dead) { 345 LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); 346 I->eraseFromParent(); 347 } 348 349 for (auto I : L->blocks()) 350 DeleteDeadPHIs(I); 351 } 352 353 // The active lane intrinsic has this form: 354 // 355 // @llvm.get.active.lane.mask(IV, TC) 356 // 357 // Here we perform checks that this intrinsic behaves as expected, 358 // which means: 359 // 360 // 1) Check that the TripCount (TC) belongs to this loop (originally). 361 // 2) The element count (TC) needs to be sufficiently large that the decrement 362 // of element counter doesn't overflow, which means that we need to prove: 363 // ceil(ElementCount / VectorWidth) >= TripCount 364 // by rounding up ElementCount up: 365 // ((ElementCount + (VectorWidth - 1)) / VectorWidth 366 // and evaluate if expression isKnownNonNegative: 367 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 368 // 3) The IV must be an induction phi with an increment equal to the 369 // vector width. 370 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, 371 Value *TripCount, FixedVectorType *VecTy) { 372 bool ForceTailPredication = 373 EnableTailPredication == TailPredication::ForceEnabledNoReductions || 374 EnableTailPredication == TailPredication::ForceEnabled; 375 376 Value *ElemCount = ActiveLaneMask->getOperand(1); 377 auto *EC= SE->getSCEV(ElemCount); 378 auto *TC = SE->getSCEV(TripCount); 379 int VectorWidth = VecTy->getNumElements(); 380 ConstantInt *ConstElemCount = nullptr; 381 382 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to 383 // this loop. The scalar tripcount corresponds the number of elements 384 // processed by the loop, so we will refer to that from this point on. 385 if (!SE->isLoopInvariant(EC, L)) { 386 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n"); 387 return false; 388 } 389 390 if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) { 391 ConstantInt *TC = dyn_cast<ConstantInt>(TripCount); 392 if (!TC) { 393 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " 394 "set.loop.iterations\n"); 395 return false; 396 } 397 398 // Calculate 2 tripcount values and check that they are consistent with 399 // each other: 400 // i) The number of loop iterations extracted from the set.loop.iterations 401 // intrinsic, multipled by the vector width: 402 uint64_t TC1 = TC->getZExtValue() * VectorWidth; 403 404 // ii) TC1 has to be equal to TC + 1, with the + 1 to compensate for start 405 // counting from 0. 406 uint64_t TC2 = ConstElemCount->getZExtValue() + 1; 407 408 // If the tripcount values are inconsistent, we don't want to insert the 409 // VCTP and trigger tail-predication; it's better to keep intrinsic 410 // get.active.lane.mask and legalize this. 411 if (TC1 != TC2) { 412 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " 413 << TC1 << " from set.loop.iterations, and " 414 << TC2 << " from get.active.lane.mask\n"); 415 return false; 416 } 417 } else if (!ForceTailPredication) { 418 // 2) We need to prove that the sub expression that we create in the 419 // tail-predicated loop body, which calculates the remaining elements to be 420 // processed, is non-negative, i.e. it doesn't overflow: 421 // 422 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 423 // 424 // This is true if: 425 // 426 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth 427 // 428 // which what we will be using here. 429 // 430 auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)); 431 // ElementCount + (VW-1): 432 auto *ECPlusVWMinus1 = SE->getAddExpr(EC, 433 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); 434 435 // Ceil = ElementCount + (VW-1) / VW 436 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW); 437 438 LLVM_DEBUG( 439 dbgs() << "ARM TP: Analysing overflow behaviour for:\n"; 440 dbgs() << "ARM TP: - TripCount = "; TC->dump(); 441 dbgs() << "ARM TP: - ElemCount = "; EC->dump(); 442 dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n"; 443 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump(); 444 ); 445 446 // As an example, almost all the tripcount expressions (produced by the 447 // vectoriser) look like this: 448 // 449 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4) 450 // 451 // and "ElementCount + (VW-1) / VW": 452 // 453 // Ceil = ((3 + %N) /u 4) 454 // 455 // Check for equality of TC and Ceil by calculating SCEV expression 456 // TC - Ceil and test it for zero. 457 // 458 bool Zero = SE->getMinusSCEV( 459 SE->getBackedgeTakenCount(L), 460 SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW), 461 SE->getNegativeSCEV(VW)), 462 VW)) 463 ->isZero(); 464 465 if (!Zero) { 466 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n"); 467 return false; 468 } 469 } 470 471 // 3) Find out if IV is an induction phi. Note that we can't use Loop 472 // helpers here to get the induction variable, because the hardware loop is 473 // no longer in loopsimplify form, and also the hwloop intrinsic uses a 474 // different counter. Using SCEV, we check that the induction is of the 475 // form i = i + 4, where the increment must be equal to the VectorWidth. 476 auto *IV = ActiveLaneMask->getOperand(0); 477 auto *IVExpr = SE->getSCEV(IV); 478 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); 479 480 if (!AddExpr) { 481 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); 482 return false; 483 } 484 // Check that this AddRec is associated with this loop. 485 if (AddExpr->getLoop() != L) { 486 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); 487 return false; 488 } 489 auto *Base = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 490 if (!Base || !Base->isZero()) { 491 LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n"); 492 return false; 493 } 494 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); 495 if (!Step) { 496 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; 497 AddExpr->getOperand(1)->dump()); 498 return false; 499 } 500 auto StepValue = Step->getValue()->getSExtValue(); 501 if (VectorWidth == StepValue) 502 return true; 503 504 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match " 505 "vector width " << VectorWidth << "\n"); 506 507 return false; 508 } 509 510 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, 511 Value *TripCount, FixedVectorType *VecTy) { 512 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 513 Module *M = L->getHeader()->getModule(); 514 Type *Ty = IntegerType::get(M->getContext(), 32); 515 unsigned VectorWidth = VecTy->getNumElements(); 516 517 // Insert a phi to count the number of elements processed by the loop. 518 Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() ); 519 PHINode *Processed = Builder.CreatePHI(Ty, 2); 520 Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader()); 521 522 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and 523 // thus represent the effect of tail predication. 524 Builder.SetInsertPoint(ActiveLaneMask); 525 ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); 526 527 Intrinsic::ID VCTPID; 528 switch (VectorWidth) { 529 default: 530 llvm_unreachable("unexpected number of lanes"); 531 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 532 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 533 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 534 535 // FIXME: vctp64 currently not supported because the predicate 536 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE 537 // type, so problems happen at isel time. 538 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics 539 // purposes, but takes a v4i1 instead of a v2i1. 540 } 541 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 542 Value *VCTPCall = Builder.CreateCall(VCTP, Processed); 543 ActiveLaneMask->replaceAllUsesWith(VCTPCall); 544 545 // Add the incoming value to the new phi. 546 // TODO: This add likely already exists in the loop. 547 Value *Remaining = Builder.CreateSub(Processed, Factor); 548 Processed->addIncoming(Remaining, L->getLoopLatch()); 549 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " 550 << *Processed << "\n" 551 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); 552 } 553 554 bool MVETailPredication::TryConvert(Value *TripCount) { 555 if (!IsPredicatedVectorLoop()) { 556 LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n"); 557 return false; 558 } 559 560 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); 561 SetVector<Instruction*> Predicates; 562 563 auto getPredicateOp = [](IntrinsicInst *I) { 564 unsigned IntrinsicID = I->getIntrinsicID(); 565 if (IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated || 566 IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated) 567 return 5; 568 return (IntrinsicID == Intrinsic::masked_load || isGather(I)) ? 2 : 3; 569 }; 570 571 // Walk through the masked intrinsics and try to find whether the predicate 572 // operand is generated by intrinsic @llvm.get.active.lane.mask(). 573 for (auto *I : MaskedInsts) { 574 Value *PredOp = I->getArgOperand(getPredicateOp(I)); 575 auto *Predicate = dyn_cast<Instruction>(PredOp); 576 if (!Predicate || Predicates.count(Predicate)) 577 continue; 578 579 auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate); 580 if (!ActiveLaneMask || 581 ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask) 582 continue; 583 584 Predicates.insert(Predicate); 585 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " 586 << *ActiveLaneMask << "\n"); 587 588 auto *VecTy = getVectorType(I); 589 if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) { 590 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); 591 return false; 592 } 593 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); 594 InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy); 595 } 596 597 Cleanup(Predicates, L); 598 return true; 599 } 600 601 Pass *llvm::createMVETailPredicationPass() { 602 return new MVETailPredication(); 603 } 604 605 char MVETailPredication::ID = 0; 606 607 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 608 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 609