//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead /// branches to help accelerate DSP applications. These two extensions, /// combined with a new form of predication called tail-predication, can be used /// to provide implicit vector predication within a low-overhead loop. /// This is implicit because the predicate of active/inactive lanes is /// calculated by hardware, and thus does not need to be explicitly passed /// to vector instructions. The instructions responsible for this are the /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the /// the total number of data elements processed by the loop. The loop-end /// LETP instruction is responsible for decrementing and setting the remaining /// elements to be processed and generating the mask of active lanes. /// /// The HardwareLoops pass inserts intrinsics identifying loops that the /// backend will attempt to convert into a low-overhead loop. The vectorizer is /// responsible for generating a vectorized loop in which the lanes are /// predicated upon the iteration counter. This pass looks at these predicated /// vector loops, that are targets for low-overhead loops, and prepares it for /// code generation. Once the vectorizer has produced a masked loop, there's a /// couple of final forms: /// - A tail-predicated loop, with implicit predication. /// - A loop containing multiple VCPT instructions, predicating multiple VPT /// blocks of instructions operating on different vector types. /// /// This pass: /// 1) Checks if the predicates of the masked load/store instructions are /// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes /// the the scalar loop tripcount as its second argument, which we extract /// to set up the number of elements processed by the loop. /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target /// specific VCTP intrinsic to represent the effect of tail predication. /// This will be picked up by the ARM Low-overhead loop pass, which performs /// the final transformation to a DLSTP or WLSTP tail-predicated loop. #include "ARM.h" #include "ARMSubtarget.h" #include "ARMTargetTransformInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsARM.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" using namespace llvm; #define DEBUG_TYPE "mve-tail-predication" #define DESC "Transform predicated vector loops to use MVE tail predication" cl::opt EnableTailPredication( "tail-predication", cl::desc("MVE tail-predication pass options"), cl::init(TailPredication::Disabled), cl::values(clEnumValN(TailPredication::Disabled, "disabled", "Don't tail-predicate loops"), clEnumValN(TailPredication::EnabledNoReductions, "enabled-no-reductions", "Enable tail-predication, but not for reduction loops"), clEnumValN(TailPredication::Enabled, "enabled", "Enable tail-predication, including reduction loops"), clEnumValN(TailPredication::ForceEnabledNoReductions, "force-enabled-no-reductions", "Enable tail-predication, but not for reduction loops, " "and force this which might be unsafe"), clEnumValN(TailPredication::ForceEnabled, "force-enabled", "Enable tail-predication, including reduction loops, " "and force this which might be unsafe"))); namespace { class MVETailPredication : public LoopPass { SmallVector MaskedInsts; Loop *L = nullptr; ScalarEvolution *SE = nullptr; TargetTransformInfo *TTI = nullptr; const ARMSubtarget *ST = nullptr; public: static char ID; MVETailPredication() : LoopPass(ID) { } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } bool runOnLoop(Loop *L, LPPassManager&) override; private: /// Perform the relevant checks on the loop and convert if possible. bool TryConvert(Value *TripCount); /// Return whether this is a vectorized loop, that contains masked /// load/stores. bool IsPredicatedVectorLoop(); /// Perform several checks on the arguments of @llvm.get.active.lane.mask /// intrinsic. E.g., check that the loop induction variable and the element /// count are of the form we expect, and also perform overflow checks for /// the new expressions that are created. bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount, FixedVectorType *VecTy); /// Insert the intrinsic to represent the effect of tail predication. void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, FixedVectorType *VecTy); /// Rematerialize the iteration count in exit blocks, which enables /// ARMLowOverheadLoops to better optimise away loop update statements inside /// hardware-loops. void RematerializeIterCount(); }; } // end namespace static bool IsDecrement(Instruction &I) { auto *Call = dyn_cast(&I); if (!Call) return false; Intrinsic::ID ID = Call->getIntrinsicID(); return ID == Intrinsic::loop_decrement_reg; } static bool IsMasked(Instruction *I) { auto *Call = dyn_cast(I); if (!Call) return false; Intrinsic::ID ID = Call->getIntrinsicID(); return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load || isGatherScatter(Call); } bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { if (skipLoop(L) || !EnableTailPredication) return false; MaskedInsts.clear(); Function &F = *L->getHeader()->getParent(); auto &TPC = getAnalysis(); auto &TM = TPC.getTM(); ST = &TM.getSubtarget(F); TTI = &getAnalysis().getTTI(F); SE = &getAnalysis().getSE(); this->L = L; // The MVE and LOB extensions are combined to enable tail-predication, but // there's nothing preventing us from generating VCTP instructions for v8.1m. if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); return false; } BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return false; auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { for (auto &I : *BB) { auto *Call = dyn_cast(&I); if (!Call) continue; Intrinsic::ID ID = Call->getIntrinsicID(); if (ID == Intrinsic::set_loop_iterations || ID == Intrinsic::test_set_loop_iterations) return cast(&I); } return nullptr; }; // Look for the hardware loop intrinsic that sets the iteration count. IntrinsicInst *Setup = FindLoopIterations(Preheader); // The test.set iteration could live in the pre-preheader. if (!Setup) { if (!Preheader->getSinglePredecessor()) return false; Setup = FindLoopIterations(Preheader->getSinglePredecessor()); if (!Setup) return false; } // Search for the hardware loop intrinic that decrements the loop counter. IntrinsicInst *Decrement = nullptr; for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { if (IsDecrement(I)) { Decrement = cast(&I); break; } } } if (!Decrement) return false; LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" << *Decrement << "\n"); if (!TryConvert(Setup->getArgOperand(0))) { LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n"); return false; } return true; } static FixedVectorType *getVectorType(IntrinsicInst *I) { unsigned ID = I->getIntrinsicID(); FixedVectorType *VecTy; if (ID == Intrinsic::masked_load || isGather(I)) { if (ID == Intrinsic::arm_mve_vldr_gather_base_wb || ID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated) // then the type is a StructType VecTy = dyn_cast(I->getType()->getContainedType(0)); else VecTy = dyn_cast(I->getType()); } else if (ID == Intrinsic::masked_store) { VecTy = dyn_cast(I->getOperand(0)->getType()); } else { VecTy = dyn_cast(I->getOperand(2)->getType()); } assert(VecTy && "No scalable vectors expected here"); return VecTy; } bool MVETailPredication::IsPredicatedVectorLoop() { // Check that the loop contains at least one masked load/store intrinsic. // We only support 'normal' vector instructions - other than masked // load/stores. bool ActiveLaneMask = false; for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { auto *Int = dyn_cast(&I); if (!Int) continue; switch (Int->getIntrinsicID()) { case Intrinsic::get_active_lane_mask: ActiveLaneMask = true; continue; case Intrinsic::sadd_sat: case Intrinsic::uadd_sat: case Intrinsic::ssub_sat: case Intrinsic::usub_sat: case Intrinsic::experimental_vector_reduce_add: continue; case Intrinsic::fma: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::round: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::fabs: if (ST->hasMVEFloatOps()) continue; break; default: break; } if (IsMasked(&I)) { auto *VecTy = getVectorType(Int); unsigned Lanes = VecTy->getNumElements(); unsigned ElementWidth = VecTy->getScalarSizeInBits(); // MVE vectors are 128-bit, but don't support 128 x i1. // TODO: Can we support vectors larger than 128-bits? unsigned MaxWidth = TTI->getRegisterBitWidth(true); if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) return false; MaskedInsts.push_back(cast(&I)); continue; } for (const Use &U : Int->args()) { if (isa(U->getType())) return false; } } } if (!ActiveLaneMask) { LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n"); return false; } return !MaskedInsts.empty(); } // Look through the exit block to see whether there's a duplicate predicate // instruction. This can happen when we need to perform a select on values // from the last and previous iteration. Instead of doing a straight // replacement of that predicate with the vctp, clone the vctp and place it // in the block. This means that the VPR doesn't have to be live into the // exit block which should make it easier to convert this loop into a proper // tail predicated loop. static void Cleanup(SetVector &MaybeDead, Loop *L) { BasicBlock *Exit = L->getUniqueExitBlock(); if (!Exit) { LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); return; } // Drop references and add operands to check for dead. SmallPtrSet Dead; while (!MaybeDead.empty()) { auto *I = MaybeDead.front(); MaybeDead.remove(I); if (I->hasNUsesOrMore(1)) continue; for (auto &U : I->operands()) if (auto *OpI = dyn_cast(U)) MaybeDead.insert(OpI); Dead.insert(I); } for (auto *I : Dead) { LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); I->eraseFromParent(); } for (auto I : L->blocks()) DeleteDeadPHIs(I); } // The active lane intrinsic has this form: // // @llvm.get.active.lane.mask(IV, TC) // // Here we perform checks that this intrinsic behaves as expected, // which means: // // 1) Check that the TripCount (TC) belongs to this loop (originally). // 2) The element count (TC) needs to be sufficiently large that the decrement // of element counter doesn't overflow, which means that we need to prove: // ceil(ElementCount / VectorWidth) >= TripCount // by rounding up ElementCount up: // ((ElementCount + (VectorWidth - 1)) / VectorWidth // and evaluate if expression isKnownNonNegative: // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount // 3) The IV must be an induction phi with an increment equal to the // vector width. bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount, FixedVectorType *VecTy) { bool ForceTailPredication = EnableTailPredication == TailPredication::ForceEnabledNoReductions || EnableTailPredication == TailPredication::ForceEnabled; Value *ElemCount = ActiveLaneMask->getOperand(1); auto *EC= SE->getSCEV(ElemCount); auto *TC = SE->getSCEV(TripCount); int VectorWidth = VecTy->getNumElements(); ConstantInt *ConstElemCount = nullptr; // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to // this loop. The scalar tripcount corresponds the number of elements // processed by the loop, so we will refer to that from this point on. if (!SE->isLoopInvariant(EC, L)) { LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n"); return false; } if ((ConstElemCount = dyn_cast(ElemCount))) { ConstantInt *TC = dyn_cast(TripCount); if (!TC) { LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " "set.loop.iterations\n"); return false; } // Calculate 2 tripcount values and check that they are consistent with // each other: // i) The number of loop iterations extracted from the set.loop.iterations // intrinsic, multipled by the vector width: uint64_t TC1 = TC->getZExtValue() * VectorWidth; // ii) TC1 has to be equal to TC + 1, with the + 1 to compensate for start // counting from 0. uint64_t TC2 = ConstElemCount->getZExtValue() + 1; // If the tripcount values are inconsistent, we don't want to insert the // VCTP and trigger tail-predication; it's better to keep intrinsic // get.active.lane.mask and legalize this. if (TC1 != TC2) { LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " << TC1 << " from set.loop.iterations, and " << TC2 << " from get.active.lane.mask\n"); return false; } } else if (!ForceTailPredication) { // 2) We need to prove that the sub expression that we create in the // tail-predicated loop body, which calculates the remaining elements to be // processed, is non-negative, i.e. it doesn't overflow: // // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 // // This is true if: // // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth // // which what we will be using here. // auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)); // ElementCount + (VW-1): auto *ECPlusVWMinus1 = SE->getAddExpr(EC, SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); // Ceil = ElementCount + (VW-1) / VW auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW); LLVM_DEBUG( dbgs() << "ARM TP: Analysing overflow behaviour for:\n"; dbgs() << "ARM TP: - TripCount = "; TC->dump(); dbgs() << "ARM TP: - ElemCount = "; EC->dump(); dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n"; dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump(); ); // As an example, almost all the tripcount expressions (produced by the // vectoriser) look like this: // // TC = ((-4 + (4 * ((3 + %N) /u 4))) /u 4) // // and "ElementCount + (VW-1) / VW": // // Ceil = ((3 + %N) /u 4) // // Check for equality of TC and Ceil by calculating SCEV expression // TC - Ceil and test it for zero. // bool Zero = SE->getMinusSCEV( SE->getBackedgeTakenCount(L), SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW)), VW)) ->isZero(); if (!Zero) { LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n"); return false; } } // 3) Find out if IV is an induction phi. Note that we can't use Loop // helpers here to get the induction variable, because the hardware loop is // no longer in loopsimplify form, and also the hwloop intrinsic uses a // different counter. Using SCEV, we check that the induction is of the // form i = i + 4, where the increment must be equal to the VectorWidth. auto *IV = ActiveLaneMask->getOperand(0); auto *IVExpr = SE->getSCEV(IV); auto *AddExpr = dyn_cast(IVExpr); if (!AddExpr) { LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); return false; } // Check that this AddRec is associated with this loop. if (AddExpr->getLoop() != L) { LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); return false; } auto *Base = dyn_cast(AddExpr->getOperand(0)); if (!Base || !Base->isZero()) { LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n"); return false; } auto *Step = dyn_cast(AddExpr->getOperand(1)); if (!Step) { LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; AddExpr->getOperand(1)->dump()); return false; } auto StepValue = Step->getValue()->getSExtValue(); if (VectorWidth == StepValue) return true; LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match " "vector width " << VectorWidth << "\n"); return false; } void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, FixedVectorType *VecTy) { IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); Module *M = L->getHeader()->getModule(); Type *Ty = IntegerType::get(M->getContext(), 32); unsigned VectorWidth = VecTy->getNumElements(); // Insert a phi to count the number of elements processed by the loop. Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() ); PHINode *Processed = Builder.CreatePHI(Ty, 2); Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader()); // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and // thus represent the effect of tail predication. Builder.SetInsertPoint(ActiveLaneMask); ConstantInt *Factor = ConstantInt::get(cast(Ty), VectorWidth); Intrinsic::ID VCTPID; switch (VectorWidth) { default: llvm_unreachable("unexpected number of lanes"); case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; // FIXME: vctp64 currently not supported because the predicate // vector wants to be <2 x i1>, but v2i1 is not a legal MVE // type, so problems happen at isel time. // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics // purposes, but takes a v4i1 instead of a v2i1. } Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); Value *VCTPCall = Builder.CreateCall(VCTP, Processed); ActiveLaneMask->replaceAllUsesWith(VCTPCall); // Add the incoming value to the new phi. // TODO: This add likely already exists in the loop. Value *Remaining = Builder.CreateSub(Processed, Factor); Processed->addIncoming(Remaining, L->getLoopLatch()); LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " << *Processed << "\n" << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); } bool MVETailPredication::TryConvert(Value *TripCount) { if (!IsPredicatedVectorLoop()) { LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n"); return false; } LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); SetVector Predicates; auto getPredicateOp = [](IntrinsicInst *I) { unsigned IntrinsicID = I->getIntrinsicID(); if (IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated || IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated) return 5; return (IntrinsicID == Intrinsic::masked_load || isGather(I)) ? 2 : 3; }; // Walk through the masked intrinsics and try to find whether the predicate // operand is generated by intrinsic @llvm.get.active.lane.mask(). for (auto *I : MaskedInsts) { Value *PredOp = I->getArgOperand(getPredicateOp(I)); auto *Predicate = dyn_cast(PredOp); if (!Predicate || Predicates.count(Predicate)) continue; auto *ActiveLaneMask = dyn_cast(Predicate); if (!ActiveLaneMask || ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask) continue; Predicates.insert(Predicate); LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " << *ActiveLaneMask << "\n"); auto *VecTy = getVectorType(I); if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) { LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); return false; } LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy); } Cleanup(Predicates, L); return true; } Pass *llvm::createMVETailPredicationPass() { return new MVETailPredication(); } char MVETailPredication::ID = 0; INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)