1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "ARMTargetMachine.h" 13 #include "ARM.h" 14 #include "ARMLatencyMutations.h" 15 #include "ARMMachineFunctionInfo.h" 16 #include "ARMMacroFusion.h" 17 #include "ARMSubtarget.h" 18 #include "ARMTargetObjectFile.h" 19 #include "ARMTargetTransformInfo.h" 20 #include "MCTargetDesc/ARMMCTargetDesc.h" 21 #include "TargetInfo/ARMTargetInfo.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/ExecutionDomainFix.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 30 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 31 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 32 #include "llvm/CodeGen/MIRParser/MIParser.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineScheduler.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include "llvm/TargetParser/ARMTargetParser.h" 48 #include "llvm/TargetParser/TargetParser.h" 49 #include "llvm/TargetParser/Triple.h" 50 #include "llvm/Transforms/CFGuard.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include <cassert> 54 #include <memory> 55 #include <optional> 56 #include <string> 57 58 using namespace llvm; 59 60 static cl::opt<bool> 61 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, 62 cl::desc("Inhibit optimization of S->D register accesses on A15"), 63 cl::init(false)); 64 65 static cl::opt<bool> 66 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, 67 cl::desc("Run SimplifyCFG after expanding atomic operations" 68 " to make use of cmpxchg flow-based information"), 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden, 73 cl::desc("Enable ARM load/store optimization pass"), 74 cl::init(true)); 75 76 // FIXME: Unify control over GlobalMerge. 77 static cl::opt<cl::boolOrDefault> 78 EnableGlobalMerge("arm-global-merge", cl::Hidden, 79 cl::desc("Enable the global merge pass")); 80 81 namespace llvm { 82 void initializeARMExecutionDomainFixPass(PassRegistry&); 83 } 84 85 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() { 86 // Register the target. 87 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget()); 88 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget()); 89 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget()); 90 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget()); 91 92 PassRegistry &Registry = *PassRegistry::getPassRegistry(); 93 initializeGlobalISel(Registry); 94 initializeARMLoadStoreOptPass(Registry); 95 initializeARMPreAllocLoadStoreOptPass(Registry); 96 initializeARMParallelDSPPass(Registry); 97 initializeARMBranchTargetsPass(Registry); 98 initializeARMConstantIslandsPass(Registry); 99 initializeARMExecutionDomainFixPass(Registry); 100 initializeARMExpandPseudoPass(Registry); 101 initializeThumb2SizeReducePass(Registry); 102 initializeMVEVPTBlockPass(Registry); 103 initializeMVETPAndVPTOptimisationsPass(Registry); 104 initializeMVETailPredicationPass(Registry); 105 initializeARMLowOverheadLoopsPass(Registry); 106 initializeARMBlockPlacementPass(Registry); 107 initializeMVEGatherScatterLoweringPass(Registry); 108 initializeARMSLSHardeningPass(Registry); 109 initializeMVELaneInterleavingPass(Registry); 110 initializeARMFixCortexA57AES1742098Pass(Registry); 111 initializeARMDAGToDAGISelLegacyPass(Registry); 112 } 113 114 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 115 if (TT.isOSBinFormatMachO()) 116 return std::make_unique<TargetLoweringObjectFileMachO>(); 117 if (TT.isOSWindows()) 118 return std::make_unique<TargetLoweringObjectFileCOFF>(); 119 return std::make_unique<ARMElfTargetObjectFile>(); 120 } 121 122 static ARMBaseTargetMachine::ARMABI 123 computeTargetABI(const Triple &TT, StringRef CPU, 124 const TargetOptions &Options) { 125 StringRef ABIName = Options.MCOptions.getABIName(); 126 127 if (ABIName.empty()) 128 ABIName = ARM::computeDefaultTargetABI(TT, CPU); 129 130 if (ABIName == "aapcs16") 131 return ARMBaseTargetMachine::ARM_ABI_AAPCS16; 132 else if (ABIName.starts_with("aapcs")) 133 return ARMBaseTargetMachine::ARM_ABI_AAPCS; 134 else if (ABIName.starts_with("apcs")) 135 return ARMBaseTargetMachine::ARM_ABI_APCS; 136 137 llvm_unreachable("Unhandled/unknown ABI Name!"); 138 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN; 139 } 140 141 static std::string computeDataLayout(const Triple &TT, StringRef CPU, 142 const TargetOptions &Options, 143 bool isLittle) { 144 auto ABI = computeTargetABI(TT, CPU, Options); 145 std::string Ret; 146 147 if (isLittle) 148 // Little endian. 149 Ret += "e"; 150 else 151 // Big endian. 152 Ret += "E"; 153 154 Ret += DataLayout::getManglingComponent(TT); 155 156 // Pointers are 32 bits and aligned to 32 bits. 157 Ret += "-p:32:32"; 158 159 // Function pointers are aligned to 8 bits (because the LSB stores the 160 // ARM/Thumb state). 161 Ret += "-Fi8"; 162 163 // ABIs other than APCS have 64 bit integers with natural alignment. 164 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS) 165 Ret += "-i64:64"; 166 167 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 168 // bits, others to 64 bits. We always try to align to 64 bits. 169 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 170 Ret += "-f64:32:64"; 171 172 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others 173 // to 64. We always ty to give them natural alignment. 174 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS) 175 Ret += "-v64:32:64-v128:32:128"; 176 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16) 177 Ret += "-v128:64:128"; 178 179 // Try to align aggregates to 32 bits (the default is 64 bits, which has no 180 // particular hardware support on 32-bit ARM). 181 Ret += "-a:0:32"; 182 183 // Integer registers are 32 bits. 184 Ret += "-n32"; 185 186 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit 187 // aligned everywhere else. 188 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16) 189 Ret += "-S128"; 190 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS) 191 Ret += "-S64"; 192 else 193 Ret += "-S32"; 194 195 return Ret; 196 } 197 198 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 199 std::optional<Reloc::Model> RM) { 200 if (!RM) 201 // Default relocation model on Darwin is PIC. 202 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static; 203 204 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI) 205 assert(TT.isOSBinFormatELF() && 206 "ROPI/RWPI currently only supported for ELF"); 207 208 // DynamicNoPIC is only used on darwin. 209 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin()) 210 return Reloc::Static; 211 212 return *RM; 213 } 214 215 /// Create an ARM architecture model. 216 /// 217 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT, 218 StringRef CPU, StringRef FS, 219 const TargetOptions &Options, 220 std::optional<Reloc::Model> RM, 221 std::optional<CodeModel::Model> CM, 222 CodeGenOptLevel OL, bool isLittle) 223 : CodeGenTargetMachineImpl(T, computeDataLayout(TT, CPU, Options, isLittle), 224 TT, CPU, FS, Options, 225 getEffectiveRelocModel(TT, RM), 226 getEffectiveCodeModel(CM, CodeModel::Small), OL), 227 TargetABI(computeTargetABI(TT, CPU, Options)), 228 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) { 229 230 // Default to triple-appropriate float ABI 231 if (Options.FloatABIType == FloatABI::Default) { 232 if (isTargetHardFloat()) 233 this->Options.FloatABIType = FloatABI::Hard; 234 else 235 this->Options.FloatABIType = FloatABI::Soft; 236 } 237 238 // Default to triple-appropriate EABI 239 if (Options.EABIVersion == EABI::Default || 240 Options.EABIVersion == EABI::Unknown) { 241 // musl is compatible with glibc with regard to EABI version 242 if ((TargetTriple.getEnvironment() == Triple::GNUEABI || 243 TargetTriple.getEnvironment() == Triple::GNUEABIT64 || 244 TargetTriple.getEnvironment() == Triple::GNUEABIHF || 245 TargetTriple.getEnvironment() == Triple::GNUEABIHFT64 || 246 TargetTriple.getEnvironment() == Triple::MuslEABI || 247 TargetTriple.getEnvironment() == Triple::MuslEABIHF || 248 TargetTriple.getEnvironment() == Triple::OpenHOS) && 249 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin())) 250 this->Options.EABIVersion = EABI::GNU; 251 else 252 this->Options.EABIVersion = EABI::EABI5; 253 } 254 255 if (TT.isOSBinFormatMachO()) { 256 this->Options.TrapUnreachable = true; 257 this->Options.NoTrapAfterNoreturn = true; 258 } 259 260 // ARM supports the debug entry values. 261 setSupportsDebugEntryValues(true); 262 263 initAsmInfo(); 264 265 // ARM supports the MachineOutliner. 266 setMachineOutliner(true); 267 setSupportsDefaultOutlining(true); 268 } 269 270 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default; 271 272 MachineFunctionInfo *ARMBaseTargetMachine::createMachineFunctionInfo( 273 BumpPtrAllocator &Allocator, const Function &F, 274 const TargetSubtargetInfo *STI) const { 275 return ARMFunctionInfo::create<ARMFunctionInfo>( 276 Allocator, F, static_cast<const ARMSubtarget *>(STI)); 277 } 278 279 const ARMSubtarget * 280 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { 281 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 282 Attribute FSAttr = F.getFnAttribute("target-features"); 283 284 std::string CPU = 285 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 286 std::string FS = 287 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 288 289 // FIXME: This is related to the code below to reset the target options, 290 // we need to know whether or not the soft float flag is set on the 291 // function before we can generate a subtarget. We also need to use 292 // it as a key for the subtarget since that can be the only difference 293 // between two functions. 294 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 295 // If the soft float attribute is set on the function turn on the soft float 296 // subtarget feature. 297 if (SoftFloat) 298 FS += FS.empty() ? "+soft-float" : ",+soft-float"; 299 300 // Use the optminsize to identify the subtarget, but don't use it in the 301 // feature string. 302 std::string Key = CPU + FS; 303 if (F.hasMinSize()) 304 Key += "+minsize"; 305 306 auto &I = SubtargetMap[Key]; 307 if (!I) { 308 // This needs to be done before we create a new subtarget since any 309 // creation will depend on the TM and the code generation flags on the 310 // function that reside in TargetOptions. 311 resetTargetOptions(F); 312 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle, 313 F.hasMinSize()); 314 315 if (!I->isThumb() && !I->hasARMOps()) 316 F.getContext().emitError("Function '" + F.getName() + "' uses ARM " 317 "instructions, but the target does not support ARM mode execution."); 318 } 319 320 return I.get(); 321 } 322 323 TargetTransformInfo 324 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const { 325 return TargetTransformInfo(ARMTTIImpl(this, F)); 326 } 327 328 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT, 329 StringRef CPU, StringRef FS, 330 const TargetOptions &Options, 331 std::optional<Reloc::Model> RM, 332 std::optional<CodeModel::Model> CM, 333 CodeGenOptLevel OL, bool JIT) 334 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 335 336 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT, 337 StringRef CPU, StringRef FS, 338 const TargetOptions &Options, 339 std::optional<Reloc::Model> RM, 340 std::optional<CodeModel::Model> CM, 341 CodeGenOptLevel OL, bool JIT) 342 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 343 344 namespace { 345 346 /// ARM Code Generator Pass Configuration Options. 347 class ARMPassConfig : public TargetPassConfig { 348 public: 349 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM) 350 : TargetPassConfig(TM, PM) {} 351 352 ARMBaseTargetMachine &getARMTargetMachine() const { 353 return getTM<ARMBaseTargetMachine>(); 354 } 355 356 ScheduleDAGInstrs * 357 createMachineScheduler(MachineSchedContext *C) const override { 358 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 359 // add DAG Mutations here. 360 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 361 if (ST.hasFusion()) 362 DAG->addMutation(createARMMacroFusionDAGMutation()); 363 return DAG; 364 } 365 366 ScheduleDAGInstrs * 367 createPostMachineScheduler(MachineSchedContext *C) const override { 368 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 369 // add DAG Mutations here. 370 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>(); 371 if (ST.hasFusion()) 372 DAG->addMutation(createARMMacroFusionDAGMutation()); 373 if (auto Mutation = createARMLatencyMutations(ST, C->AA)) 374 DAG->addMutation(std::move(Mutation)); 375 return DAG; 376 } 377 378 void addIRPasses() override; 379 void addCodeGenPrepare() override; 380 bool addPreISel() override; 381 bool addInstSelector() override; 382 bool addIRTranslator() override; 383 bool addLegalizeMachineIR() override; 384 bool addRegBankSelect() override; 385 bool addGlobalInstructionSelect() override; 386 void addPreRegAlloc() override; 387 void addPreSched2() override; 388 void addPreEmitPass() override; 389 void addPreEmitPass2() override; 390 391 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 392 }; 393 394 class ARMExecutionDomainFix : public ExecutionDomainFix { 395 public: 396 static char ID; 397 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {} 398 StringRef getPassName() const override { 399 return "ARM Execution Domain Fix"; 400 } 401 }; 402 char ARMExecutionDomainFix::ID; 403 404 } // end anonymous namespace 405 406 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix", 407 "ARM Execution Domain Fix", false, false) 408 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 409 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix", 410 "ARM Execution Domain Fix", false, false) 411 412 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { 413 return new ARMPassConfig(*this, PM); 414 } 415 416 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const { 417 return getStandardCSEConfigForOpt(TM->getOptLevel()); 418 } 419 420 void ARMPassConfig::addIRPasses() { 421 if (TM->Options.ThreadModel == ThreadModel::Single) 422 addPass(createLowerAtomicPass()); 423 else 424 addPass(createAtomicExpandLegacyPass()); 425 426 // Cmpxchg instructions are often used with a subsequent comparison to 427 // determine whether it succeeded. We can exploit existing control-flow in 428 // ldrex/strex loops to simplify this, but it needs tidying up. 429 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAtomicTidy) 430 addPass(createCFGSimplificationPass( 431 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true), 432 [this](const Function &F) { 433 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F); 434 return ST.hasAnyDataBarrier() && !ST.isThumb1Only(); 435 })); 436 437 addPass(createMVEGatherScatterLoweringPass()); 438 addPass(createMVELaneInterleavingPass()); 439 440 TargetPassConfig::addIRPasses(); 441 442 // Run the parallel DSP pass. 443 if (getOptLevel() == CodeGenOptLevel::Aggressive) 444 addPass(createARMParallelDSPPass()); 445 446 // Match complex arithmetic patterns 447 if (TM->getOptLevel() >= CodeGenOptLevel::Default) 448 addPass(createComplexDeinterleavingPass(TM)); 449 450 // Match interleaved memory accesses to ldN/stN intrinsics. 451 if (TM->getOptLevel() != CodeGenOptLevel::None) 452 addPass(createInterleavedAccessPass()); 453 454 // Add Control Flow Guard checks. 455 if (TM->getTargetTriple().isOSWindows()) 456 addPass(createCFGuardCheckPass()); 457 458 if (TM->Options.JMCInstrument) 459 addPass(createJMCInstrumenterPass()); 460 } 461 462 void ARMPassConfig::addCodeGenPrepare() { 463 if (getOptLevel() != CodeGenOptLevel::None) 464 addPass(createTypePromotionLegacyPass()); 465 TargetPassConfig::addCodeGenPrepare(); 466 } 467 468 bool ARMPassConfig::addPreISel() { 469 if ((TM->getOptLevel() != CodeGenOptLevel::None && 470 EnableGlobalMerge == cl::BOU_UNSET) || 471 EnableGlobalMerge == cl::BOU_TRUE) { 472 // FIXME: This is using the thumb1 only constant value for 473 // maximal global offset for merging globals. We may want 474 // to look into using the old value for non-thumb1 code of 475 // 4095 based on the TargetMachine, but this starts to become 476 // tricky when doing code gen per function. 477 bool OnlyOptimizeForSize = 478 (TM->getOptLevel() < CodeGenOptLevel::Aggressive) && 479 (EnableGlobalMerge == cl::BOU_UNSET); 480 // Merging of extern globals is enabled by default on non-Mach-O as we 481 // expect it to be generally either beneficial or harmless. On Mach-O it 482 // is disabled as we emit the .subsections_via_symbols directive which 483 // means that merging extern globals is not safe. 484 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 485 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize, 486 MergeExternalByDefault)); 487 } 488 489 if (TM->getOptLevel() != CodeGenOptLevel::None) { 490 addPass(createHardwareLoopsLegacyPass()); 491 addPass(createMVETailPredicationPass()); 492 // FIXME: IR passes can delete address-taken basic blocks, deleting 493 // corresponding blockaddresses. ARMConstantPoolConstant holds references to 494 // address-taken basic blocks which can be invalidated if the function 495 // containing the blockaddress has already been codegen'd and the basic 496 // block is removed. Work around this by forcing all IR passes to run before 497 // any ISel takes place. We should have a more principled way of handling 498 // this. See D99707 for more details. 499 addPass(createBarrierNoopPass()); 500 } 501 502 return false; 503 } 504 505 bool ARMPassConfig::addInstSelector() { 506 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); 507 return false; 508 } 509 510 bool ARMPassConfig::addIRTranslator() { 511 addPass(new IRTranslator(getOptLevel())); 512 return false; 513 } 514 515 bool ARMPassConfig::addLegalizeMachineIR() { 516 addPass(new Legalizer()); 517 return false; 518 } 519 520 bool ARMPassConfig::addRegBankSelect() { 521 addPass(new RegBankSelect()); 522 return false; 523 } 524 525 bool ARMPassConfig::addGlobalInstructionSelect() { 526 addPass(new InstructionSelect(getOptLevel())); 527 return false; 528 } 529 530 void ARMPassConfig::addPreRegAlloc() { 531 if (getOptLevel() != CodeGenOptLevel::None) { 532 if (getOptLevel() == CodeGenOptLevel::Aggressive) 533 addPass(&MachinePipelinerID); 534 535 addPass(createMVETPAndVPTOptimisationsPass()); 536 537 addPass(createMLxExpansionPass()); 538 539 if (EnableARMLoadStoreOpt) 540 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true)); 541 542 if (!DisableA15SDOptimization) 543 addPass(createA15SDOptimizerPass()); 544 } 545 } 546 547 void ARMPassConfig::addPreSched2() { 548 if (getOptLevel() != CodeGenOptLevel::None) { 549 if (EnableARMLoadStoreOpt) 550 addPass(createARMLoadStoreOptimizationPass()); 551 552 addPass(new ARMExecutionDomainFix()); 553 addPass(createBreakFalseDeps()); 554 } 555 556 // Expand some pseudo instructions into multiple instructions to allow 557 // proper scheduling. 558 addPass(createARMExpandPseudoPass()); 559 560 if (getOptLevel() != CodeGenOptLevel::None) { 561 // When optimising for size, always run the Thumb2SizeReduction pass before 562 // IfConversion. Otherwise, check whether IT blocks are restricted 563 // (e.g. in v8, IfConversion depends on Thumb instruction widths) 564 addPass(createThumb2SizeReductionPass([this](const Function &F) { 565 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() || 566 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT(); 567 })); 568 569 addPass(createIfConverter([](const MachineFunction &MF) { 570 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 571 })); 572 } 573 addPass(createThumb2ITBlockPass()); 574 575 // Add both scheduling passes to give the subtarget an opportunity to pick 576 // between them. 577 if (getOptLevel() != CodeGenOptLevel::None) { 578 addPass(&PostMachineSchedulerID); 579 addPass(&PostRASchedulerID); 580 } 581 582 addPass(createMVEVPTBlockPass()); 583 addPass(createARMIndirectThunks()); 584 addPass(createARMSLSHardeningPass()); 585 } 586 587 void ARMPassConfig::addPreEmitPass() { 588 addPass(createThumb2SizeReductionPass()); 589 590 // Constant island pass work on unbundled instructions. 591 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 592 return MF.getSubtarget<ARMSubtarget>().isThumb2(); 593 })); 594 595 // Don't optimize barriers or block placement at -O0. 596 if (getOptLevel() != CodeGenOptLevel::None) { 597 addPass(createARMBlockPlacementPass()); 598 addPass(createARMOptimizeBarriersPass()); 599 } 600 } 601 602 void ARMPassConfig::addPreEmitPass2() { 603 // Inserts fixup instructions before unsafe AES operations. Instructions may 604 // be inserted at the start of blocks and at within blocks so this pass has to 605 // come before those below. 606 addPass(createARMFixCortexA57AES1742098Pass()); 607 // Inserts BTIs at the start of functions and indirectly-called basic blocks, 608 // so passes cannot add to the start of basic blocks once this has run. 609 addPass(createARMBranchTargetsPass()); 610 // Inserts Constant Islands. Block sizes cannot be increased after this point, 611 // as this may push the branch ranges and load offsets of accessing constant 612 // pools out of range.. 613 addPass(createARMConstantIslandPass()); 614 // Finalises Low-Overhead Loops. This replaces pseudo instructions with real 615 // instructions, but the pseudos all have conservative sizes so that block 616 // sizes will only be decreased by this pass. 617 addPass(createARMLowOverheadLoopsPass()); 618 619 if (TM->getTargetTriple().isOSWindows()) { 620 // Identify valid longjmp targets for Windows Control Flow Guard. 621 addPass(createCFGuardLongjmpPass()); 622 // Identify valid eh continuation targets for Windows EHCont Guard. 623 addPass(createEHContGuardCatchretPass()); 624 } 625 } 626 627 yaml::MachineFunctionInfo * 628 ARMBaseTargetMachine::createDefaultFuncInfoYAML() const { 629 return new yaml::ARMFunctionInfo(); 630 } 631 632 yaml::MachineFunctionInfo * 633 ARMBaseTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 634 const auto *MFI = MF.getInfo<ARMFunctionInfo>(); 635 return new yaml::ARMFunctionInfo(*MFI); 636 } 637 638 bool ARMBaseTargetMachine::parseMachineFunctionInfo( 639 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 640 SMDiagnostic &Error, SMRange &SourceRange) const { 641 const auto &YamlMFI = static_cast<const yaml::ARMFunctionInfo &>(MFI); 642 MachineFunction &MF = PFS.MF; 643 MF.getInfo<ARMFunctionInfo>()->initializeBaseYamlFields(YamlMFI); 644 return false; 645 } 646 647 void ARMBaseTargetMachine::reset() { SubtargetMap.clear(); } 648