1//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the Thumb instruction set. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Thumb specific DAG Nodes. 15// 16 17def ARMtsecall : SDNode<"ARMISD::tSECALL", SDT_ARMcall, 18 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 19 SDNPVariadic]>; 20 21def imm_sr_XFORM: SDNodeXForm<imm, [{ 22 unsigned Imm = N->getZExtValue(); 23 return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), SDLoc(N), MVT::i32); 24}]>; 25def ThumbSRImmAsmOperand: ImmAsmOperand<1,32> { let Name = "ImmThumbSR"; } 26def imm_sr : Operand<i32>, ImmLeaf<i32, [{ 27 return Imm > 0 && Imm <= 32; 28}], imm_sr_XFORM> { 29 let PrintMethod = "printThumbSRImm"; 30 let ParserMatchClass = ThumbSRImmAsmOperand; 31} 32 33def imm0_7_neg : PatLeaf<(i32 imm), [{ 34 return (uint32_t)-N->getZExtValue() < 8; 35}], imm_neg_XFORM>; 36 37def ThumbModImmNeg1_7AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg1_7"; } 38def mod_imm1_7_neg : Operand<i32>, PatLeaf<(imm), [{ 39 unsigned Value = -(unsigned)N->getZExtValue(); 40 return 0 < Value && Value < 8; 41 }], imm_neg_XFORM> { 42 let ParserMatchClass = ThumbModImmNeg1_7AsmOperand; 43} 44 45def ThumbModImmNeg8_255AsmOperand : AsmOperandClass { let Name = "ThumbModImmNeg8_255"; } 46def mod_imm8_255_neg : Operand<i32>, PatLeaf<(imm), [{ 47 unsigned Value = -(unsigned)N->getZExtValue(); 48 return 7 < Value && Value < 256; 49 }], imm_neg_XFORM> { 50 let ParserMatchClass = ThumbModImmNeg8_255AsmOperand; 51} 52 53 54def imm0_255_comp : PatLeaf<(i32 imm), [{ 55 return ~((uint32_t)N->getZExtValue()) < 256; 56}]>; 57 58def imm8_255_neg : PatLeaf<(i32 imm), [{ 59 unsigned Val = -N->getZExtValue(); 60 return Val >= 8 && Val < 256; 61}], imm_neg_XFORM>; 62 63// Break imm's up into two pieces: an immediate + a left shift. This uses 64// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt 65// to get the val/shift pieces. 66def thumb_immshifted : PatLeaf<(imm), [{ 67 return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue()); 68}]>; 69 70def thumb_immshifted_val : SDNodeXForm<imm, [{ 71 unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue()); 72 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); 73}]>; 74 75def thumb_immshifted_shamt : SDNodeXForm<imm, [{ 76 unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue()); 77 return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32); 78}]>; 79 80def imm256_510 : ImmLeaf<i32, [{ 81 return Imm >= 256 && Imm < 511; 82}]>; 83 84def thumb_imm256_510_addend : SDNodeXForm<imm, [{ 85 return CurDAG->getTargetConstant(N->getZExtValue() - 255, SDLoc(N), MVT::i32); 86}]>; 87 88// Scaled 4 immediate. 89def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; } 90def t_imm0_1020s4 : Operand<i32> { 91 let PrintMethod = "printThumbS4ImmOperand"; 92 let ParserMatchClass = t_imm0_1020s4_asmoperand; 93 let OperandType = "OPERAND_IMMEDIATE"; 94} 95 96def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; } 97def t_imm0_508s4 : Operand<i32> { 98 let PrintMethod = "printThumbS4ImmOperand"; 99 let ParserMatchClass = t_imm0_508s4_asmoperand; 100 let OperandType = "OPERAND_IMMEDIATE"; 101} 102// Alias use only, so no printer is necessary. 103def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; } 104def t_imm0_508s4_neg : Operand<i32> { 105 let ParserMatchClass = t_imm0_508s4_neg_asmoperand; 106 let OperandType = "OPERAND_IMMEDIATE"; 107} 108 109// Define Thumb specific addressing modes. 110 111// unsigned 8-bit, 2-scaled memory offset 112class OperandUnsignedOffset_b8s2 : AsmOperandClass { 113 let Name = "UnsignedOffset_b8s2"; 114 let PredicateMethod = "isUnsignedOffset<8, 2>"; 115} 116 117def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2; 118 119// thumb style PC relative operand. signed, 8 bits magnitude, 120// two bits shift. can be represented as either [pc, #imm], #imm, 121// or relocatable expression... 122def ThumbMemPC : AsmOperandClass { 123 let Name = "ThumbMemPC"; 124} 125 126let OperandType = "OPERAND_PCREL" in { 127def t_brtarget : Operand<OtherVT> { 128 let EncoderMethod = "getThumbBRTargetOpValue"; 129 let DecoderMethod = "DecodeThumbBROperand"; 130} 131 132// ADR instruction labels. 133def t_adrlabel : Operand<i32> { 134 let EncoderMethod = "getThumbAdrLabelOpValue"; 135 let PrintMethod = "printAdrLabelOperand<2>"; 136 let ParserMatchClass = UnsignedOffset_b8s2; 137} 138 139 140def thumb_br_target : Operand<OtherVT> { 141 let ParserMatchClass = ThumbBranchTarget; 142 let EncoderMethod = "getThumbBranchTargetOpValue"; 143 let OperandType = "OPERAND_PCREL"; 144} 145 146def thumb_bl_target : Operand<i32> { 147 let ParserMatchClass = ThumbBranchTarget; 148 let EncoderMethod = "getThumbBLTargetOpValue"; 149 let DecoderMethod = "DecodeThumbBLTargetOperand"; 150} 151 152// Target for BLX *from* thumb mode. 153def thumb_blx_target : Operand<i32> { 154 let ParserMatchClass = ARMBranchTarget; 155 let EncoderMethod = "getThumbBLXTargetOpValue"; 156 let DecoderMethod = "DecodeThumbBLXOffset"; 157} 158 159def thumb_bcc_target : Operand<OtherVT> { 160 let ParserMatchClass = ThumbBranchTarget; 161 let EncoderMethod = "getThumbBCCTargetOpValue"; 162 let DecoderMethod = "DecodeThumbBCCTargetOperand"; 163} 164 165def thumb_cb_target : Operand<OtherVT> { 166 let ParserMatchClass = ThumbBranchTarget; 167 let EncoderMethod = "getThumbCBTargetOpValue"; 168 let DecoderMethod = "DecodeThumbCmpBROperand"; 169} 170} // OperandType = "OPERAND_PCREL" 171 172// t_addrmode_pc := <label> => pc + imm8 * 4 173// 174def t_addrmode_pc : MemOperand { 175 let EncoderMethod = "getAddrModePCOpValue"; 176 let DecoderMethod = "DecodeThumbAddrModePC"; 177 let PrintMethod = "printThumbLdrLabelOperand"; 178 let ParserMatchClass = ThumbMemPC; 179} 180 181// t_addrmode_rr := reg + reg 182// 183def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; } 184def t_addrmode_rr : MemOperand, 185 ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> { 186 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 187 let PrintMethod = "printThumbAddrModeRROperand"; 188 let DecoderMethod = "DecodeThumbAddrModeRR"; 189 let ParserMatchClass = t_addrmode_rr_asm_operand; 190 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 191} 192 193// t_addrmode_rr_sext := reg + reg 194// 195// This is similar to t_addrmode_rr, but uses different heuristics for 196// ldrsb/ldrsh. 197def t_addrmode_rr_sext : MemOperand, 198 ComplexPattern<i32, 2, "SelectThumbAddrModeRRSext", []> { 199 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 200 let PrintMethod = "printThumbAddrModeRROperand"; 201 let DecoderMethod = "DecodeThumbAddrModeRR"; 202 let ParserMatchClass = t_addrmode_rr_asm_operand; 203 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 204} 205 206// t_addrmode_rrs := reg + reg 207// 208// We use separate scaled versions because the Select* functions need 209// to explicitly check for a matching constant and return false here so that 210// the reg+imm forms will match instead. This is a horrible way to do that, 211// as it forces tight coupling between the methods, but it's how selectiondag 212// currently works. 213def t_addrmode_rrs1 : MemOperand, 214 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> { 215 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 216 let PrintMethod = "printThumbAddrModeRROperand"; 217 let DecoderMethod = "DecodeThumbAddrModeRR"; 218 let ParserMatchClass = t_addrmode_rr_asm_operand; 219 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 220} 221def t_addrmode_rrs2 : MemOperand, 222 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> { 223 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 224 let DecoderMethod = "DecodeThumbAddrModeRR"; 225 let PrintMethod = "printThumbAddrModeRROperand"; 226 let ParserMatchClass = t_addrmode_rr_asm_operand; 227 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 228} 229def t_addrmode_rrs4 : MemOperand, 230 ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> { 231 let EncoderMethod = "getThumbAddrModeRegRegOpValue"; 232 let DecoderMethod = "DecodeThumbAddrModeRR"; 233 let PrintMethod = "printThumbAddrModeRROperand"; 234 let ParserMatchClass = t_addrmode_rr_asm_operand; 235 let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); 236} 237 238// t_addrmode_is4 := reg + imm5 * 4 239// 240def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; } 241def t_addrmode_is4 : MemOperand, 242 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> { 243 let EncoderMethod = "getAddrModeISOpValue"; 244 let DecoderMethod = "DecodeThumbAddrModeIS"; 245 let PrintMethod = "printThumbAddrModeImm5S4Operand"; 246 let ParserMatchClass = t_addrmode_is4_asm_operand; 247 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 248} 249 250// t_addrmode_is2 := reg + imm5 * 2 251// 252def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; } 253def t_addrmode_is2 : MemOperand, 254 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> { 255 let EncoderMethod = "getAddrModeISOpValue"; 256 let DecoderMethod = "DecodeThumbAddrModeIS"; 257 let PrintMethod = "printThumbAddrModeImm5S2Operand"; 258 let ParserMatchClass = t_addrmode_is2_asm_operand; 259 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 260} 261 262// t_addrmode_is1 := reg + imm5 263// 264def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; } 265def t_addrmode_is1 : MemOperand, 266 ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> { 267 let EncoderMethod = "getAddrModeISOpValue"; 268 let DecoderMethod = "DecodeThumbAddrModeIS"; 269 let PrintMethod = "printThumbAddrModeImm5S1Operand"; 270 let ParserMatchClass = t_addrmode_is1_asm_operand; 271 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 272} 273 274// t_addrmode_sp := sp + imm8 * 4 275// 276// FIXME: This really shouldn't have an explicit SP operand at all. It should 277// be implicit, just like in the instruction encoding itself. 278def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; } 279def t_addrmode_sp : MemOperand, 280 ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> { 281 let EncoderMethod = "getAddrModeThumbSPOpValue"; 282 let DecoderMethod = "DecodeThumbAddrModeSP"; 283 let PrintMethod = "printThumbAddrModeSPOperand"; 284 let ParserMatchClass = t_addrmode_sp_asm_operand; 285 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); 286} 287 288// Inspects parent to determine whether an or instruction can be implemented as 289// an add (i.e. whether we know overflow won't occur in the add). 290let WantsParent = true in 291def AddLikeOrOp : ComplexPattern<i32, 1, "SelectAddLikeOr">; 292 293// Pattern to exclude immediates from matching 294def non_imm32 : PatLeaf<(i32 GPR), [{ return !isa<ConstantSDNode>(N); }]>; 295 296//===----------------------------------------------------------------------===// 297// Miscellaneous Instructions. 298// 299 300// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE 301// from removing one half of the matched pairs. That breaks PEI, which assumes 302// these will always be in pairs, and asserts if it finds otherwise. Better way? 303let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 304def tADJCALLSTACKUP : 305 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary, 306 [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, 307 Requires<[IsThumb, IsThumb1Only]>; 308 309def tADJCALLSTACKDOWN : 310 PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2), NoItinerary, 311 [(ARMcallseq_start imm:$amt, imm:$amt2)]>, 312 Requires<[IsThumb, IsThumb1Only]>; 313} 314 315class T1SystemEncoding<bits<8> opc> 316 : T1Encoding<0b101111> { 317 let Inst{9-8} = 0b11; 318 let Inst{7-0} = opc; 319} 320 321def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm", 322 [(int_arm_hint imm0_15:$imm)]>, 323 T1SystemEncoding<0x00>, 324 Requires<[IsThumb, HasV6M]> { 325 bits<4> imm; 326 let Inst{7-4} = imm; 327} 328 329// Note: When EmitPriority == 1, the alias will be used for printing 330class tHintAlias<string Asm, dag Result, bit EmitPriority = 0> : tInstAlias<Asm, Result, EmitPriority> { 331 let Predicates = [IsThumb, HasV6M]; 332} 333 334def : tHintAlias<"nop$p", (tHINT 0, pred:$p), 1>; // A8.6.110 335def : tHintAlias<"yield$p", (tHINT 1, pred:$p), 1>; // A8.6.410 336def : tHintAlias<"wfe$p", (tHINT 2, pred:$p), 1>; // A8.6.408 337def : tHintAlias<"wfi$p", (tHINT 3, pred:$p), 1>; // A8.6.409 338def : tHintAlias<"sev$p", (tHINT 4, pred:$p), 1>; // A8.6.157 339def : tInstAlias<"sevl$p", (tHINT 5, pred:$p), 1> { 340 let Predicates = [IsThumb2, HasV8]; 341} 342 343// The imm operand $val can be used by a debugger to store more information 344// about the breakpoint. 345def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val", 346 []>, 347 T1Encoding<0b101111> { 348 let Inst{9-8} = 0b10; 349 // A8.6.22 350 bits<8> val; 351 let Inst{7-0} = val; 352} 353// default immediate for breakpoint mnemonic 354def : InstAlias<"bkpt", (tBKPT 0), 0>, Requires<[IsThumb]>; 355 356def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val", 357 []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> { 358 let Inst{9-6} = 0b1010; 359 bits<6> val; 360 let Inst{5-0} = val; 361} 362 363def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end", 364 []>, T1Encoding<0b101101>, Requires<[IsThumb, IsNotMClass]>, Deprecated<HasV8Ops> { 365 bits<1> end; 366 // A8.6.156 367 let Inst{9-5} = 0b10010; 368 let Inst{4} = 1; 369 let Inst{3} = end; 370 let Inst{2-0} = 0b000; 371} 372 373// Change Processor State is a system instruction -- for disassembly only. 374def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags), 375 NoItinerary, "cps$imod $iflags", []>, 376 T1Misc<0b0110011> { 377 // A8.6.38 & B6.1.1 378 bit imod; 379 bits<3> iflags; 380 381 let Inst{4} = imod; 382 let Inst{3} = 0; 383 let Inst{2-0} = iflags; 384 let DecoderMethod = "DecodeThumbCPS"; 385} 386 387// For both thumb1 and thumb2. 388let isNotDuplicable = 1, isCodeGenOnly = 1 in 389def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "", 390 [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>, 391 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 392 // A8.6.6 393 bits<3> dst; 394 let Inst{6-3} = 0b1111; // Rm = pc 395 let Inst{2-0} = dst; 396} 397 398// ADD <Rd>, sp, #<imm8> 399// FIXME: This should not be marked as having side effects, and it should be 400// rematerializable. Clearing the side effect bit causes miscompilations, 401// probably because the instruction can be moved around. 402def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm), 403 IIC_iALUi, "add", "\t$dst, $sp, $imm", []>, 404 T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> { 405 // A6.2 & A8.6.8 406 bits<3> dst; 407 bits<8> imm; 408 let Inst{10-8} = dst; 409 let Inst{7-0} = imm; 410 let DecoderMethod = "DecodeThumbAddSpecialReg"; 411} 412 413// Thumb1 frame lowering is rather fragile, we hope to be able to use 414// tADDrSPi, but we may need to insert a sequence that clobbers CPSR. 415def tADDframe : PseudoInst<(outs tGPR:$dst), (ins i32imm:$base, i32imm:$offset), 416 NoItinerary, []>, 417 Requires<[IsThumb, IsThumb1Only]> { 418 let Defs = [CPSR]; 419} 420 421// ADD sp, sp, #<imm7> 422def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), 423 IIC_iALUi, "add", "\t$Rdn, $imm", []>, 424 T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> { 425 // A6.2.5 & A8.6.8 426 bits<7> imm; 427 let Inst{6-0} = imm; 428 let DecoderMethod = "DecodeThumbAddSPImm"; 429} 430 431// SUB sp, sp, #<imm7> 432// FIXME: The encoding and the ASM string don't match up. 433def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm), 434 IIC_iALUi, "sub", "\t$Rdn, $imm", []>, 435 T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> { 436 // A6.2.5 & A8.6.214 437 bits<7> imm; 438 let Inst{6-0} = imm; 439 let DecoderMethod = "DecodeThumbAddSPImm"; 440} 441 442def : tInstSubst<"add${p} sp, $imm", 443 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; 444def : tInstSubst<"add${p} sp, sp, $imm", 445 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>; 446 447// Can optionally specify SP as a three operand instruction. 448def : tInstAlias<"add${p} sp, sp, $imm", 449 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>; 450def : tInstAlias<"sub${p} sp, sp, $imm", 451 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>; 452 453// ADD <Rm>, sp 454def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr, 455 "add", "\t$Rdn, $sp, $Rn", []>, 456 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 457 // A8.6.9 Encoding T1 458 bits<4> Rdn; 459 let Inst{7} = Rdn{3}; 460 let Inst{6-3} = 0b1101; 461 let Inst{2-0} = Rdn{2-0}; 462 let DecoderMethod = "DecodeThumbAddSPReg"; 463} 464 465// ADD sp, <Rm> 466def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr, 467 "add", "\t$Rdn, $Rm", []>, 468 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 469 // A8.6.9 Encoding T2 470 bits<4> Rm; 471 let Inst{7} = 1; 472 let Inst{6-3} = Rm; 473 let Inst{2-0} = 0b101; 474 let DecoderMethod = "DecodeThumbAddSPReg"; 475} 476 477//===----------------------------------------------------------------------===// 478// Control Flow Instructions. 479// 480 481// Indirect branches 482let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 483 def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>, 484 T1Special<{1,1,0,?}>, Sched<[WriteBr]> { 485 // A6.2.3 & A8.6.25 486 bits<4> Rm; 487 let Inst{6-3} = Rm; 488 let Inst{2-0} = 0b000; 489 let Unpredictable{2-0} = 0b111; 490 } 491 def tBXNS : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bxns${p}\t$Rm", []>, 492 Requires<[IsThumb, Has8MSecExt]>, 493 T1Special<{1,1,0,?}>, Sched<[WriteBr]> { 494 bits<4> Rm; 495 let Inst{6-3} = Rm; 496 let Inst{2-0} = 0b100; 497 let Unpredictable{1-0} = 0b11; 498 } 499} 500 501let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 502 def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br, 503 [(ARMretglue)], (tBX LR, pred:$p)>, Sched<[WriteBr]>; 504 505 // alternative return for CMSE entry functions 506 def tBXNS_RET : tPseudoInst<(outs), (ins), 2, IIC_Br, 507 [(ARMseretglue)]>, Sched<[WriteBr]>; 508 509 // Alternative return instruction used by vararg functions. 510 def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p), 511 2, IIC_Br, [], 512 (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; 513} 514 515// All calls clobber the non-callee saved registers. SP is marked as a use to 516// prevent stack-pointer assignments that appear immediately before calls from 517// potentially appearing dead. 518let isCall = 1, 519 Defs = [LR], Uses = [SP] in { 520 // Also used for Thumb2 521 def tBL : TIx2<0b11110, 0b11, 1, 522 (outs), (ins pred:$p, thumb_bl_target:$func), IIC_Br, 523 "bl${p}\t$func", 524 [(ARMcall tglobaladdr:$func)]>, 525 Requires<[IsThumb]>, Sched<[WriteBrL]> { 526 bits<24> func; 527 let Inst{26} = func{23}; 528 let Inst{25-16} = func{20-11}; 529 let Inst{13} = func{22}; 530 let Inst{11} = func{21}; 531 let Inst{10-0} = func{10-0}; 532 } 533 534 // ARMv5T and above, also used for Thumb2 535 def tBLXi : TIx2<0b11110, 0b11, 0, 536 (outs), (ins pred:$p, thumb_blx_target:$func), IIC_Br, 537 "blx${p}\t$func", []>, 538 Requires<[IsThumb, HasV5T, IsNotMClass]>, Sched<[WriteBrL]> { 539 bits<24> func; 540 let Inst{26} = func{23}; 541 let Inst{25-16} = func{20-11}; 542 let Inst{13} = func{22}; 543 let Inst{11} = func{21}; 544 let Inst{10-1} = func{10-1}; 545 let Inst{0} = 0; // func{0} is assumed zero 546 } 547 548 // Also used for Thumb2 549 def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br, 550 "blx${p}\t$func", []>, 551 Requires<[IsThumb, HasV5T]>, 552 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24; 553 bits<4> func; 554 let Inst{6-3} = func; 555 let Inst{2-0} = 0b000; 556 } 557 def tBLXr_noip : ARMPseudoExpand<(outs), (ins pred:$p, GPRnoip:$func), 558 2, IIC_Br, [], (tBLXr pred:$p, GPR:$func)>, 559 Requires<[IsThumb, HasV5T]>, 560 Sched<[WriteBrL]>; 561 562 563 // ARMv8-M Security Extensions 564 def tBLXNSr : TI<(outs), (ins pred:$p, GPRnopc:$func), IIC_Br, 565 "blxns${p}\t$func", []>, 566 Requires<[IsThumb, Has8MSecExt]>, 567 T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { 568 bits<4> func; 569 let Inst{6-3} = func; 570 let Inst{2-0} = 0b100; 571 let Unpredictable{1-0} = 0b11; 572 } 573 574 def tBLXNS_CALL : PseudoInst<(outs), (ins GPRnopc:$func), IIC_Br, 575 [(ARMtsecall GPRnopc:$func)]>, 576 Requires<[IsThumb, Has8MSecExt]>, Sched<[WriteBr]>; 577 578 // ARMv4T 579 def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func), 580 4, IIC_Br, 581 [(ARMcall_nolink tGPR:$func)]>, 582 Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>; 583 584 // Also used for Thumb2 585 // push lr before the call 586 def tBL_PUSHLR : tPseudoInst<(outs), (ins GPRlr:$ra, pred:$p, thumb_bl_target:$func), 587 4, IIC_Br, 588 []>, 589 Requires<[IsThumb]>, Sched<[WriteBr]>; 590} 591 592def : ARMPat<(ARMcall GPR:$func), (tBLXr $func)>, 593 Requires<[IsThumb, HasV5T, NoSLSBLRMitigation]>; 594def : ARMPat<(ARMcall GPRnoip:$func), (tBLXr_noip $func)>, 595 Requires<[IsThumb, HasV5T, SLSBLRMitigation]>; 596 597let isBranch = 1, isTerminator = 1, isBarrier = 1 in { 598 let isPredicable = 1 in 599 def tB : T1pI<(outs), (ins t_brtarget:$target), IIC_Br, 600 "b", "\t$target", [(br bb:$target)]>, 601 T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> { 602 bits<11> target; 603 let Inst{10-0} = target; 604 let AsmMatchConverter = "cvtThumbBranches"; 605 } 606 607 // Far jump 608 // Just a pseudo for a tBL instruction. Needed to let regalloc know about 609 // the clobber of LR. 610 let Defs = [LR] in 611 def tBfar : tPseudoExpand<(outs), (ins thumb_bl_target:$target, pred:$p), 612 4, IIC_Br, [], 613 (tBL pred:$p, thumb_bl_target:$target)>, 614 Sched<[WriteBrTbl]>; 615 616 def tBR_JTr : tPseudoInst<(outs), 617 (ins tGPR:$target, i32imm:$jt), 618 0, IIC_Br, 619 [(ARMbrjt tGPR:$target, tjumptable:$jt)]>, 620 Sched<[WriteBrTbl]> { 621 let Size = 2; 622 let isNotDuplicable = 1; 623 list<Predicate> Predicates = [IsThumb, IsThumb1Only]; 624 } 625} 626 627// FIXME: should be able to write a pattern for ARMBrcond, but can't use 628// a two-value operand where a dag node expects two operands. :( 629let isBranch = 1, isTerminator = 1 in 630 def tBcc : T1I<(outs), (ins thumb_bcc_target:$target, pred:$p), IIC_Br, 631 "b${p}\t$target", 632 [/*(ARMbrcond bb:$target, imm:$cc)*/]>, 633 T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> { 634 bits<4> p; 635 bits<8> target; 636 let Inst{11-8} = p; 637 let Inst{7-0} = target; 638 let AsmMatchConverter = "cvtThumbBranches"; 639} 640 641 642// Tail calls 643let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { 644 // IOS versions. 645 let Uses = [SP] in { 646 def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst), 647 4, IIC_Br, [], 648 (tBX GPR:$dst, (ops 14, zero_reg))>, 649 Requires<[IsThumb]>, Sched<[WriteBr]>; 650 } 651 // tTAILJMPd: MachO version uses a Thumb2 branch (no Thumb1 tail calls 652 // on MachO), so it's in ARMInstrThumb2.td. 653 // Non-MachO version: 654 let Uses = [SP] in { 655 def tTAILJMPdND : tPseudoExpand<(outs), 656 (ins t_brtarget:$dst, pred:$p), 657 4, IIC_Br, [], 658 (tB t_brtarget:$dst, pred:$p)>, 659 Requires<[IsThumb, IsNotMachO]>, Sched<[WriteBr]>; 660 } 661} 662 663 664// A8.6.218 Supervisor Call (Software Interrupt) 665// A8.6.16 B: Encoding T1 666// If Inst{11-8} == 0b1111 then SEE SVC 667let isCall = 1, Uses = [SP] in 668def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br, 669 "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> { 670 bits<8> imm; 671 let Inst{15-12} = 0b1101; 672 let Inst{11-8} = 0b1111; 673 let Inst{7-0} = imm; 674} 675 676// The assembler uses 0xDEFE for a trap instruction. 677let isTrap = 1 in 678def tTRAP : TI<(outs), (ins), IIC_Br, 679 "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> { 680 let Inst = 0xdefe; 681} 682 683//===----------------------------------------------------------------------===// 684// Load Store Instructions. 685// 686 687// PC-relative loads need to be matched first as constant pool accesses need to 688// always be PC-relative. We do this using AddedComplexity, as the pattern is 689// simpler than the patterns of the other load instructions. 690let canFoldAsLoad = 1, isReMaterializable = 1, AddedComplexity = 10 in 691def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i, 692 "ldr", "\t$Rt, $addr", 693 [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>, 694 T1Encoding<{0,1,0,0,1,?}>, Sched<[WriteLd]> { 695 // A6.2 & A8.6.59 696 bits<3> Rt; 697 bits<8> addr; 698 let Inst{10-8} = Rt; 699 let Inst{7-0} = addr; 700} 701 702// SP-relative loads should be matched before standard immediate-offset loads as 703// it means we avoid having to move SP to another register. 704let canFoldAsLoad = 1 in 705def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i, 706 "ldr", "\t$Rt, $addr", 707 [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>, 708 T1LdStSP<{1,?,?}>, Sched<[WriteLd]> { 709 bits<3> Rt; 710 bits<8> addr; 711 let Inst{10-8} = Rt; 712 let Inst{7-0} = addr; 713} 714 715// Loads: reg/reg and reg/imm5 716let canFoldAsLoad = 1, isReMaterializable = 1 in 717multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, 718 Operand AddrMode_r, Operand AddrMode_i, 719 AddrMode am, InstrItinClass itin_r, 720 InstrItinClass itin_i, string asm, 721 PatFrag opnode> { 722 // Immediate-offset loads should be matched before register-offset loads as 723 // when the offset is a constant it's simpler to first check if it fits in the 724 // immediate offset field then fall back to register-offset if it doesn't. 725 def i : // reg/imm5 726 T1pILdStEncodeImm<imm_opc, 1 /* Load */, 727 (outs tGPR:$Rt), (ins AddrMode_i:$addr), 728 am, itin_i, asm, "\t$Rt, $addr", 729 [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>; 730 // Register-offset loads are matched last. 731 def r : // reg/reg 732 T1pILdStEncode<reg_opc, 733 (outs tGPR:$Rt), (ins AddrMode_r:$addr), 734 am, itin_r, asm, "\t$Rt, $addr", 735 [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>; 736} 737// Stores: reg/reg and reg/imm5 738multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc, 739 Operand AddrMode_r, Operand AddrMode_i, 740 AddrMode am, InstrItinClass itin_r, 741 InstrItinClass itin_i, string asm, 742 PatFrag opnode> { 743 def i : // reg/imm5 744 T1pILdStEncodeImm<imm_opc, 0 /* Store */, 745 (outs), (ins tGPR:$Rt, AddrMode_i:$addr), 746 am, itin_i, asm, "\t$Rt, $addr", 747 [(opnode tGPR:$Rt, AddrMode_i:$addr)]>; 748 def r : // reg/reg 749 T1pILdStEncode<reg_opc, 750 (outs), (ins tGPR:$Rt, AddrMode_r:$addr), 751 am, itin_r, asm, "\t$Rt, $addr", 752 [(opnode tGPR:$Rt, AddrMode_r:$addr)]>; 753} 754 755// A8.6.57 & A8.6.60 756defm tLDR : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rr, 757 t_addrmode_is4, AddrModeT1_4, 758 IIC_iLoad_r, IIC_iLoad_i, "ldr", 759 load>, Sched<[WriteLd]>; 760 761// A8.6.64 & A8.6.61 762defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rr, 763 t_addrmode_is1, AddrModeT1_1, 764 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb", 765 zextloadi8>, Sched<[WriteLd]>; 766 767// A8.6.76 & A8.6.73 768defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rr, 769 t_addrmode_is2, AddrModeT1_2, 770 IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh", 771 zextloadi16>, Sched<[WriteLd]>; 772 773let AddedComplexity = 10 in 774def tLDRSB : // A8.6.80 775 T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr), 776 AddrModeT1_1, IIC_iLoad_bh_r, 777 "ldrsb", "\t$Rt, $addr", 778 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>; 779 780let AddedComplexity = 10 in 781def tLDRSH : // A8.6.84 782 T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr_sext:$addr), 783 AddrModeT1_2, IIC_iLoad_bh_r, 784 "ldrsh", "\t$Rt, $addr", 785 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr_sext:$addr))]>, Sched<[WriteLd]>; 786 787 788def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i, 789 "str", "\t$Rt, $addr", 790 [(store tGPR:$Rt, t_addrmode_sp:$addr)]>, 791 T1LdStSP<{0,?,?}>, Sched<[WriteST]> { 792 bits<3> Rt; 793 bits<8> addr; 794 let Inst{10-8} = Rt; 795 let Inst{7-0} = addr; 796} 797 798// A8.6.194 & A8.6.192 799defm tSTR : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rr, 800 t_addrmode_is4, AddrModeT1_4, 801 IIC_iStore_r, IIC_iStore_i, "str", 802 store>, Sched<[WriteST]>; 803 804// A8.6.197 & A8.6.195 805defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rr, 806 t_addrmode_is1, AddrModeT1_1, 807 IIC_iStore_bh_r, IIC_iStore_bh_i, "strb", 808 truncstorei8>, Sched<[WriteST]>; 809 810// A8.6.207 & A8.6.205 811defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rr, 812 t_addrmode_is2, AddrModeT1_2, 813 IIC_iStore_bh_r, IIC_iStore_bh_i, "strh", 814 truncstorei16>, Sched<[WriteST]>; 815 816 817//===----------------------------------------------------------------------===// 818// Load / store multiple Instructions. 819// 820 821// These require base address to be written back or one of the loaded regs. 822let hasSideEffects = 0 in { 823 824let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in 825def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), 826 IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> { 827 bits<3> Rn; 828 bits<8> regs; 829 let Inst{10-8} = Rn; 830 let Inst{7-0} = regs; 831} 832 833// Writeback version is just a pseudo, as there's no encoding difference. 834// Writeback happens iff the base register is not in the destination register 835// list. 836let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 837def tLDMIA_UPD : 838 InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain, 839 "$Rn = $wb", IIC_iLoad_mu>, 840 PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> { 841 let Size = 2; 842 let OutOperandList = (outs tGPR:$wb); 843 let InOperandList = (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops); 844 let Pattern = []; 845 let isCodeGenOnly = 1; 846 let isPseudo = 1; 847 list<Predicate> Predicates = [IsThumb]; 848} 849 850// There is no non-writeback version of STM for Thumb. 851let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 852def tSTMIA_UPD : Thumb1I<(outs tGPR:$wb), 853 (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops), 854 AddrModeNone, 2, IIC_iStore_mu, 855 "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>, 856 T1Encoding<{1,1,0,0,0,?}> { 857 bits<3> Rn; 858 bits<8> regs; 859 let Inst{10-8} = Rn; 860 let Inst{7-0} = regs; 861} 862 863} // hasSideEffects 864 865def : InstAlias<"ldm${p} $Rn!, $regs", 866 (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs), 0>, 867 Requires<[IsThumb, IsThumb1Only]>; 868 869let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1, 870 variadicOpsAreDefs = 1 in 871def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), 872 IIC_iPop, 873 "pop${p}\t$regs", []>, 874 T1Misc<{1,1,0,?,?,?,?}>, Sched<[WriteLd]> { 875 bits<16> regs; 876 let Inst{8} = regs{15}; 877 let Inst{7-0} = regs{7-0}; 878} 879 880let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in 881def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), 882 IIC_iStore_m, 883 "push${p}\t$regs", []>, 884 T1Misc<{0,1,0,?,?,?,?}>, Sched<[WriteST]> { 885 bits<16> regs; 886 let Inst{8} = regs{14}; 887 let Inst{7-0} = regs{7-0}; 888} 889 890//===----------------------------------------------------------------------===// 891// Arithmetic Instructions. 892// 893 894// Helper classes for encoding T1pI patterns: 895class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 896 string opc, string asm, list<dag> pattern> 897 : T1pI<oops, iops, itin, opc, asm, pattern>, 898 T1DataProcessing<opA> { 899 bits<3> Rm; 900 bits<3> Rn; 901 let Inst{5-3} = Rm; 902 let Inst{2-0} = Rn; 903} 904class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin, 905 string opc, string asm, list<dag> pattern> 906 : T1pI<oops, iops, itin, opc, asm, pattern>, 907 T1Misc<opA> { 908 bits<3> Rm; 909 bits<3> Rd; 910 let Inst{5-3} = Rm; 911 let Inst{2-0} = Rd; 912} 913 914// Helper classes for encoding T1sI patterns: 915class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 916 string opc, string asm, list<dag> pattern> 917 : T1sI<oops, iops, itin, opc, asm, pattern>, 918 T1DataProcessing<opA> { 919 bits<3> Rd; 920 bits<3> Rn; 921 let Inst{5-3} = Rn; 922 let Inst{2-0} = Rd; 923} 924class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 925 string opc, string asm, list<dag> pattern> 926 : T1sI<oops, iops, itin, opc, asm, pattern>, 927 T1General<opA> { 928 bits<3> Rm; 929 bits<3> Rn; 930 bits<3> Rd; 931 let Inst{8-6} = Rm; 932 let Inst{5-3} = Rn; 933 let Inst{2-0} = Rd; 934} 935class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 936 string opc, string asm, list<dag> pattern> 937 : T1sI<oops, iops, itin, opc, asm, pattern>, 938 T1General<opA> { 939 bits<3> Rd; 940 bits<3> Rm; 941 let Inst{5-3} = Rm; 942 let Inst{2-0} = Rd; 943} 944 945// Helper classes for encoding T1sIt patterns: 946class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin, 947 string opc, string asm, list<dag> pattern> 948 : T1sIt<oops, iops, itin, opc, asm, pattern>, 949 T1DataProcessing<opA> { 950 bits<3> Rdn; 951 bits<3> Rm; 952 let Inst{5-3} = Rm; 953 let Inst{2-0} = Rdn; 954} 955class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin, 956 string opc, string asm, list<dag> pattern> 957 : T1sIt<oops, iops, itin, opc, asm, pattern>, 958 T1General<opA> { 959 bits<3> Rdn; 960 bits<8> imm8; 961 let Inst{10-8} = Rdn; 962 let Inst{7-0} = imm8; 963} 964 965let isAdd = 1 in { 966 // Add with carry register 967 let isCommutable = 1, Uses = [CPSR] in 968 def tADC : // A8.6.2 969 T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, 970 "adc", "\t$Rdn, $Rm", 971 []>, Sched<[WriteALU]>; 972 973 // Add immediate 974 def tADDi3 : // A8.6.4 T1 975 T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 976 IIC_iALUi, 977 "add", "\t$Rd, $Rm, $imm3", 978 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>, 979 Sched<[WriteALU]> { 980 bits<3> imm3; 981 let Inst{8-6} = imm3; 982 } 983 984 def tADDi8 : // A8.6.4 T2 985 T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn), 986 (ins tGPR:$Rn, imm0_255_expr:$imm8), IIC_iALUi, 987 "add", "\t$Rdn, $imm8", 988 [(set tGPR:$Rdn, (add tGPR:$Rn, imm0_255_expr:$imm8))]>, 989 Sched<[WriteALU]>; 990 991 // Add register 992 let isCommutable = 1 in 993 def tADDrr : // A8.6.6 T1 994 T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 995 IIC_iALUr, 996 "add", "\t$Rd, $Rn, $Rm", 997 [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, 998 Sched<[WriteALU]>; 999 1000 /// Similar to the above except these set the 's' bit so the 1001 /// instruction modifies the CPSR register. 1002 /// 1003 /// These opcodes will be converted to the real non-S opcodes by 1004 /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand. 1005 let hasPostISelHook = 1, Defs = [CPSR] in { 1006 let isCommutable = 1, Uses = [CPSR] in 1007 def tADCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1008 2, IIC_iALUr, 1009 [(set tGPR:$Rdn, CPSR, (ARMadde tGPR:$Rn, tGPR:$Rm, 1010 CPSR))]>, 1011 Requires<[IsThumb1Only]>, 1012 Sched<[WriteALU]>; 1013 1014 def tADDSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1015 2, IIC_iALUi, 1016 [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rm, 1017 imm0_7:$imm3))]>, 1018 Requires<[IsThumb1Only]>, 1019 Sched<[WriteALU]>; 1020 1021 def tADDSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255_expr:$imm8), 1022 2, IIC_iALUi, 1023 [(set tGPR:$Rdn, CPSR, (ARMaddc tGPR:$Rn, 1024 imm0_255_expr:$imm8))]>, 1025 Requires<[IsThumb1Only]>, 1026 Sched<[WriteALU]>; 1027 1028 let isCommutable = 1 in 1029 def tADDSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1030 2, IIC_iALUr, 1031 [(set tGPR:$Rd, CPSR, (ARMaddc tGPR:$Rn, 1032 tGPR:$Rm))]>, 1033 Requires<[IsThumb1Only]>, 1034 Sched<[WriteALU]>; 1035 } 1036 1037 let hasSideEffects = 0 in 1038 def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr, 1039 "add", "\t$Rdn, $Rm", []>, 1040 T1Special<{0,0,?,?}>, Sched<[WriteALU]> { 1041 // A8.6.6 T2 1042 bits<4> Rdn; 1043 bits<4> Rm; 1044 let Inst{7} = Rdn{3}; 1045 let Inst{6-3} = Rm; 1046 let Inst{2-0} = Rdn{2-0}; 1047 } 1048} 1049 1050// Thumb has more flexible short encodings for ADD than ORR, so use those where 1051// possible. 1052def : T1Pat<(or AddLikeOrOp:$Rn, imm0_7:$imm), (tADDi3 $Rn, imm0_7:$imm)>; 1053 1054def : T1Pat<(or AddLikeOrOp:$Rn, imm8_255:$imm), (tADDi8 $Rn, imm8_255:$imm)>; 1055 1056def : T1Pat<(or AddLikeOrOp:$Rn, tGPR:$Rm), (tADDrr $Rn, $Rm)>; 1057 1058 1059def : tInstAlias <"add${s}${p} $Rdn, $Rm", 1060 (tADDrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>; 1061 1062def : tInstSubst<"sub${s}${p} $rd, $rn, $imm", 1063 (tADDi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>; 1064def : tInstSubst<"sub${s}${p} $rdn, $imm", 1065 (tADDi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>; 1066 1067 1068// AND register 1069let isCommutable = 1 in 1070def tAND : // A8.6.12 1071 T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1072 IIC_iBITr, 1073 "and", "\t$Rdn, $Rm", 1074 [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1075 1076// ASR immediate 1077def tASRri : // A8.6.14 1078 T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), 1079 IIC_iMOVsi, 1080 "asr", "\t$Rd, $Rm, $imm5", 1081 [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>, 1082 Sched<[WriteALU]> { 1083 bits<5> imm5; 1084 let Inst{10-6} = imm5; 1085} 1086 1087// ASR register 1088def tASRrr : // A8.6.15 1089 T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1090 IIC_iMOVsr, 1091 "asr", "\t$Rdn, $Rm", 1092 [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1093 1094// BIC register 1095def tBIC : // A8.6.20 1096 T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1097 IIC_iBITr, 1098 "bic", "\t$Rdn, $Rm", 1099 [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>, 1100 Sched<[WriteALU]>; 1101 1102// CMN register 1103let isCompare = 1, Defs = [CPSR] in { 1104//FIXME: Disable CMN, as CCodes are backwards from compare expectations 1105// Compare-to-zero still works out, just not the relationals 1106//def tCMN : // A8.6.33 1107// T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs), 1108// IIC_iCMPr, 1109// "cmn", "\t$lhs, $rhs", 1110// [(set CPSR, (ARMcmp tGPR:$lhs, (ineg tGPR:$rhs)))]>; 1111 1112def tCMNz : // A8.6.33 1113 T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm), 1114 IIC_iCMPr, 1115 "cmn", "\t$Rn, $Rm", 1116 [(set CPSR, (ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm)))]>, 1117 Sched<[WriteCMP]>; 1118 1119} // isCompare = 1, Defs = [CPSR] 1120 1121// CMP immediate 1122let isCompare = 1, Defs = [CPSR] in { 1123def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi, 1124 "cmp", "\t$Rn, $imm8", 1125 [(set CPSR, (ARMcmp tGPR:$Rn, imm0_255:$imm8))]>, 1126 T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> { 1127 // A8.6.35 1128 bits<3> Rn; 1129 bits<8> imm8; 1130 let Inst{10-8} = Rn; 1131 let Inst{7-0} = imm8; 1132} 1133 1134// CMP register 1135def tCMPr : // A8.6.36 T1 1136 T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm), 1137 IIC_iCMPr, 1138 "cmp", "\t$Rn, $Rm", 1139 [(set CPSR, (ARMcmp tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteCMP]>; 1140 1141def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr, 1142 "cmp", "\t$Rn, $Rm", []>, 1143 T1Special<{0,1,?,?}>, Sched<[WriteCMP]> { 1144 // A8.6.36 T2 1145 bits<4> Rm; 1146 bits<4> Rn; 1147 let Inst{7} = Rn{3}; 1148 let Inst{6-3} = Rm; 1149 let Inst{2-0} = Rn{2-0}; 1150} 1151} // isCompare = 1, Defs = [CPSR] 1152 1153 1154// XOR register 1155let isCommutable = 1 in 1156def tEOR : // A8.6.45 1157 T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1158 IIC_iBITr, 1159 "eor", "\t$Rdn, $Rm", 1160 [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1161 1162// LSL immediate 1163def tLSLri : // A8.6.88 1164 T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5), 1165 IIC_iMOVsi, 1166 "lsl", "\t$Rd, $Rm, $imm5", 1167 [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>, 1168 Sched<[WriteALU]> { 1169 bits<5> imm5; 1170 let Inst{10-6} = imm5; 1171} 1172 1173// LSL register 1174def tLSLrr : // A8.6.89 1175 T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1176 IIC_iMOVsr, 1177 "lsl", "\t$Rdn, $Rm", 1178 [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1179 1180// LSR immediate 1181def tLSRri : // A8.6.90 1182 T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5), 1183 IIC_iMOVsi, 1184 "lsr", "\t$Rd, $Rm, $imm5", 1185 [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>, 1186 Sched<[WriteALU]> { 1187 bits<5> imm5; 1188 let Inst{10-6} = imm5; 1189} 1190 1191// LSR register 1192def tLSRrr : // A8.6.91 1193 T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1194 IIC_iMOVsr, 1195 "lsr", "\t$Rdn, $Rm", 1196 [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1197 1198// Move register 1199let isMoveImm = 1 in 1200def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255_expr:$imm8), IIC_iMOVi, 1201 "mov", "\t$Rd, $imm8", 1202 [(set tGPR:$Rd, imm0_255_expr:$imm8)]>, 1203 T1General<{1,0,0,?,?}>, Sched<[WriteALU]> { 1204 // A8.6.96 1205 bits<3> Rd; 1206 bits<8> imm8; 1207 let Inst{10-8} = Rd; 1208 let Inst{7-0} = imm8; 1209} 1210// Because we have an explicit tMOVSr below, we need an alias to handle 1211// the immediate "movs" form here. Blech. 1212def : tInstAlias <"movs $Rdn, $imm8", 1213 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255_expr:$imm8, 14, zero_reg)>; 1214 1215// A7-73: MOV(2) - mov setting flag. 1216 1217let hasSideEffects = 0, isMoveReg = 1 in { 1218def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone, 1219 2, IIC_iMOVr, 1220 "mov", "\t$Rd, $Rm", "", []>, 1221 T1Special<{1,0,?,?}>, Sched<[WriteALU]> { 1222 // A8.6.97 1223 bits<4> Rd; 1224 bits<4> Rm; 1225 let Inst{7} = Rd{3}; 1226 let Inst{6-3} = Rm; 1227 let Inst{2-0} = Rd{2-0}; 1228} 1229let Defs = [CPSR] in 1230def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr, 1231 "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> { 1232 // A8.6.97 1233 bits<3> Rd; 1234 bits<3> Rm; 1235 let Inst{15-6} = 0b0000000000; 1236 let Inst{5-3} = Rm; 1237 let Inst{2-0} = Rd; 1238} 1239} // hasSideEffects 1240 1241// Multiply register 1242let isCommutable = 1 in 1243def tMUL : // A8.6.105 T1 1244 Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2, 1245 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd", 1246 [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>, 1247 T1DataProcessing<0b1101>, Sched<[WriteMUL32, ReadMUL, ReadMUL]> { 1248 bits<3> Rd; 1249 bits<3> Rn; 1250 let Inst{5-3} = Rn; 1251 let Inst{2-0} = Rd; 1252 let AsmMatchConverter = "cvtThumbMultiply"; 1253} 1254 1255def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn, 1256 pred:$p)>; 1257 1258// Move inverse register 1259def tMVN : // A8.6.107 1260 T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr, 1261 "mvn", "\t$Rd, $Rn", 1262 [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>; 1263 1264// Bitwise or register 1265let isCommutable = 1 in 1266def tORR : // A8.6.114 1267 T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1268 IIC_iBITr, 1269 "orr", "\t$Rdn, $Rm", 1270 [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>; 1271 1272// Swaps 1273def tREV : // A8.6.134 1274 T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1275 IIC_iUNAr, 1276 "rev", "\t$Rd, $Rm", 1277 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>, 1278 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1279 1280def tREV16 : // A8.6.135 1281 T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1282 IIC_iUNAr, 1283 "rev16", "\t$Rd, $Rm", 1284 [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>, 1285 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1286 1287def tREVSH : // A8.6.136 1288 T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1289 IIC_iUNAr, 1290 "revsh", "\t$Rd, $Rm", 1291 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>, 1292 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1293 1294// Rotate right register 1295def tROR : // A8.6.139 1296 T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1297 IIC_iMOVsr, 1298 "ror", "\t$Rdn, $Rm", 1299 [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>, 1300 Sched<[WriteALU]>; 1301 1302// Negate register 1303def tRSB : // A8.6.141 1304 T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn), 1305 IIC_iALUi, 1306 "rsb", "\t$Rd, $Rn, #0", 1307 [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>; 1308 1309// Subtract with carry register 1310let Uses = [CPSR] in 1311def tSBC : // A8.6.151 1312 T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1313 IIC_iALUr, 1314 "sbc", "\t$Rdn, $Rm", 1315 []>, 1316 Sched<[WriteALU]>; 1317 1318// Subtract immediate 1319def tSUBi3 : // A8.6.210 T1 1320 T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1321 IIC_iALUi, 1322 "sub", "\t$Rd, $Rm, $imm3", 1323 [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>, 1324 Sched<[WriteALU]> { 1325 bits<3> imm3; 1326 let Inst{8-6} = imm3; 1327} 1328 1329def tSUBi8 : // A8.6.210 T2 1330 T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn), 1331 (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi, 1332 "sub", "\t$Rdn, $imm8", 1333 [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>, 1334 Sched<[WriteALU]>; 1335 1336def : tInstSubst<"add${s}${p} $rd, $rn, $imm", 1337 (tSUBi3 tGPR:$rd, s_cc_out:$s, tGPR:$rn, mod_imm1_7_neg:$imm, pred:$p)>; 1338 1339 1340def : tInstSubst<"add${s}${p} $rdn, $imm", 1341 (tSUBi8 tGPR:$rdn, s_cc_out:$s, mod_imm8_255_neg:$imm, pred:$p)>; 1342 1343 1344// Subtract register 1345def tSUBrr : // A8.6.212 1346 T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1347 IIC_iALUr, 1348 "sub", "\t$Rd, $Rn, $Rm", 1349 [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>, 1350 Sched<[WriteALU]>; 1351 1352def : tInstAlias <"sub${s}${p} $Rdn, $Rm", 1353 (tSUBrr tGPR:$Rdn,s_cc_out:$s, tGPR:$Rdn, tGPR:$Rm, pred:$p)>; 1354 1355/// Similar to the above except these set the 's' bit so the 1356/// instruction modifies the CPSR register. 1357/// 1358/// These opcodes will be converted to the real non-S opcodes by 1359/// AdjustInstrPostInstrSelection after giving then an optional CPSR operand. 1360let hasPostISelHook = 1, Defs = [CPSR] in { 1361 let Uses = [CPSR] in 1362 def tSBCS : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), 1363 2, IIC_iALUr, 1364 [(set tGPR:$Rdn, CPSR, (ARMsube tGPR:$Rn, tGPR:$Rm, 1365 CPSR))]>, 1366 Requires<[IsThumb1Only]>, 1367 Sched<[WriteALU]>; 1368 1369 def tSUBSi3 : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3), 1370 2, IIC_iALUi, 1371 [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rm, 1372 imm0_7:$imm3))]>, 1373 Requires<[IsThumb1Only]>, 1374 Sched<[WriteALU]>; 1375 1376 def tSUBSi8 : tPseudoInst<(outs tGPR:$Rdn), (ins tGPR:$Rn, imm0_255:$imm8), 1377 2, IIC_iALUi, 1378 [(set tGPR:$Rdn, CPSR, (ARMsubc tGPR:$Rn, 1379 imm8_255:$imm8))]>, 1380 Requires<[IsThumb1Only]>, 1381 Sched<[WriteALU]>; 1382 1383 def tSUBSrr : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), 1384 2, IIC_iALUr, 1385 [(set tGPR:$Rd, CPSR, (ARMsubc tGPR:$Rn, 1386 tGPR:$Rm))]>, 1387 Requires<[IsThumb1Only]>, 1388 Sched<[WriteALU]>; 1389 1390 def tRSBS : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn), 1391 2, IIC_iALUr, 1392 [(set tGPR:$Rd, CPSR, (ARMsubc 0, tGPR:$Rn))]>, 1393 Requires<[IsThumb1Only]>, 1394 Sched<[WriteALU]>; 1395 1396 def tLSLSri : tPseudoInst<(outs tGPR:$Rd), (ins tGPR:$Rn, imm0_31:$imm5), 1397 2, IIC_iALUr, 1398 [(set tGPR:$Rd, CPSR, (ARMlsls tGPR:$Rn, imm0_31:$imm5))]>, 1399 Requires<[IsThumb1Only]>, 1400 Sched<[WriteALU]>; 1401} 1402 1403// Sign-extend byte 1404def tSXTB : // A8.6.222 1405 T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1406 IIC_iUNAr, 1407 "sxtb", "\t$Rd, $Rm", 1408 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>, 1409 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1410 Sched<[WriteALU]>; 1411 1412// Sign-extend short 1413def tSXTH : // A8.6.224 1414 T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1415 IIC_iUNAr, 1416 "sxth", "\t$Rd, $Rm", 1417 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>, 1418 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1419 Sched<[WriteALU]>; 1420 1421// Test 1422let isCompare = 1, isCommutable = 1, Defs = [CPSR] in 1423def tTST : // A8.6.230 1424 T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr, 1425 "tst", "\t$Rn, $Rm", 1426 [(set CPSR, (ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0))]>, 1427 Sched<[WriteALU]>; 1428 1429// A8.8.247 UDF - Undefined (Encoding T1) 1430def tUDF : TI<(outs), (ins imm0_255:$imm8), IIC_Br, "udf\t$imm8", 1431 [(int_arm_undefined imm0_255:$imm8)]>, Encoding16 { 1432 bits<8> imm8; 1433 let Inst{15-12} = 0b1101; 1434 let Inst{11-8} = 0b1110; 1435 let Inst{7-0} = imm8; 1436} 1437 1438def : Pat<(debugtrap), (tBKPT 0)>, Requires<[IsThumb, HasV5T]>; 1439def : Pat<(debugtrap), (tUDF 254)>, Requires<[IsThumb, NoV5T]>; 1440 1441def t__brkdiv0 : TI<(outs), (ins), IIC_Br, "__brkdiv0", 1442 [(int_arm_undefined 249)]>, Encoding16, 1443 Requires<[IsThumb, IsWindows]> { 1444 let Inst = 0xdef9; 1445 let isTerminator = 1; 1446} 1447 1448// Zero-extend byte 1449def tUXTB : // A8.6.262 1450 T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1451 IIC_iUNAr, 1452 "uxtb", "\t$Rd, $Rm", 1453 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>, 1454 Requires<[IsThumb, IsThumb1Only, HasV6]>, 1455 Sched<[WriteALU]>; 1456 1457// Zero-extend short 1458def tUXTH : // A8.6.264 1459 T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm), 1460 IIC_iUNAr, 1461 "uxth", "\t$Rd, $Rm", 1462 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>, 1463 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>; 1464 1465// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation. 1466// Expanded after instruction selection into a branch sequence. 1467let usesCustomInserter = 1 in // Expanded after instruction selection. 1468 def tMOVCCr_pseudo : 1469 PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$p), 1470 NoItinerary, []>; 1471 1472def : Pat<(ARMcmov tGPR:$false, tGPR:$true, imm:$cc, CPSR), 1473 (tMOVCCr_pseudo $false, $true, imm:$cc, CPSR)>; 1474 1475// tLEApcrel - Load a pc-relative address into a register without offending the 1476// assembler. 1477 1478def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p), 1479 IIC_iALUi, "adr{$p}\t$Rd, $addr", []>, 1480 T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> { 1481 bits<3> Rd; 1482 bits<8> addr; 1483 let Inst{10-8} = Rd; 1484 let Inst{7-0} = addr; 1485 let DecoderMethod = "DecodeThumbAddSpecialReg"; 1486} 1487 1488let hasSideEffects = 0, isReMaterializable = 1 in 1489def tLEApcrel : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p), 1490 2, IIC_iALUi, []>, Sched<[WriteALU]>; 1491 1492let hasSideEffects = 1 in 1493def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd), 1494 (ins i32imm:$label, pred:$p), 1495 2, IIC_iALUi, []>, Sched<[WriteALU]>; 1496 1497// Thumb-1 doesn't have the TBB or TBH instructions, but we can synthesize them 1498// and make use of the same compressed jump table format as Thumb-2. 1499let Size = 2, isBranch = 1, isTerminator = 1, isBarrier = 1, 1500 isIndirectBranch = 1, isNotDuplicable = 1 in { 1501def tTBB_JT : tPseudoInst<(outs), 1502 (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0, 1503 IIC_Br, []>, Sched<[WriteBr]>; 1504 1505def tTBH_JT : tPseudoInst<(outs), 1506 (ins tGPRwithpc:$base, tGPR:$index, i32imm:$jt, i32imm:$pclbl), 0, 1507 IIC_Br, []>, Sched<[WriteBr]>; 1508} 1509 1510//===----------------------------------------------------------------------===// 1511// TLS Instructions 1512// 1513 1514// __aeabi_read_tp preserves the registers r1-r3. 1515// This is a pseudo inst so that we can get the encoding right, 1516// complete with fixup for the aeabi_read_tp function. 1517let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in 1518def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br, 1519 [(set R0, ARMthread_pointer)]>, 1520 Requires<[IsThumb, IsReadTPSoft]>, 1521 Sched<[WriteBr]>; 1522 1523//===----------------------------------------------------------------------===// 1524// SJLJ Exception handling intrinsics 1525// 1526 1527// eh_sjlj_setjmp() is an instruction sequence to store the return address and 1528// save #0 in R0 for the non-longjmp case. Since by its nature we may be coming 1529// from some other function to get here, and we're using the stack frame for the 1530// containing function to save/restore registers, we can't keep anything live in 1531// regs across the eh_sjlj_setjmp(), else it will almost certainly have been 1532// tromped upon when we get here from a longjmp(). We force everything out of 1533// registers except for our own input by listing the relevant registers in 1534// Defs. By doing so, we also cause the prologue/epilogue code to actively 1535// preserve all of the callee-saved registers, which is exactly what we want. 1536// $val is a scratch register for our use. 1537// This gets lowered to an instruction sequence of 12 bytes 1538let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12, CPSR ], 1539 hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, Size = 12, 1540 usesCustomInserter = 1 in 1541def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val), 1542 AddrModeNone, 0, NoItinerary, "","", 1543 [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>; 1544 1545// This gets lowered to an instruction sequence of 10 bytes 1546// FIXME: Non-IOS version(s) 1547let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, 1548 Size = 10, Defs = [ R7, LR, SP ] in 1549def tInt_eh_sjlj_longjmp : XI<(outs), (ins tGPR:$src, tGPR:$scratch), 1550 AddrModeNone, 0, IndexModeNone, 1551 Pseudo, NoItinerary, "", "", 1552 [(ARMeh_sjlj_longjmp tGPR:$src, tGPR:$scratch)]>, 1553 Requires<[IsThumb,IsNotWindows]>; 1554 1555// This gets lowered to an instruction sequence of 12 bytes 1556// (Windows is Thumb2-only) 1557let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, 1558 Size = 12, Defs = [ R11, LR, SP ] in 1559def tInt_WIN_eh_sjlj_longjmp 1560 : XI<(outs), (ins GPR:$src, GPR:$scratch), AddrModeNone, 0, IndexModeNone, 1561 Pseudo, NoItinerary, "", "", [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, 1562 Requires<[IsThumb,IsWindows]>; 1563 1564//===----------------------------------------------------------------------===// 1565// Non-Instruction Patterns 1566// 1567 1568// Comparisons 1569def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8), 1570 (tCMPi8 tGPR:$Rn, imm0_255:$imm8)>; 1571def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm), 1572 (tCMPr tGPR:$Rn, tGPR:$Rm)>; 1573 1574// Bswap 16 with load/store 1575def : T1Pat<(srl (bswap (extloadi16 t_addrmode_is2:$addr)), (i32 16)), 1576 (tREV16 (tLDRHi t_addrmode_is2:$addr))>; 1577def : T1Pat<(srl (bswap (extloadi16 t_addrmode_rr:$addr)), (i32 16)), 1578 (tREV16 (tLDRHr t_addrmode_rr:$addr))>; 1579def : T1Pat<(srl (bswap top16Zero:$Rn), (i32 16)), 1580 (tREV16 tGPR:$Rn)>; 1581def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), 1582 t_addrmode_is2:$addr), 1583 (tSTRHi(tREV16 tGPR:$Rn), t_addrmode_is2:$addr)>; 1584def : T1Pat<(truncstorei16 (srl (bswap tGPR:$Rn), (i32 16)), 1585 t_addrmode_rr:$addr), 1586 (tSTRHr (tREV16 tGPR:$Rn), t_addrmode_rr:$addr)>; 1587 1588// ConstantPool 1589def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>; 1590 1591// GlobalAddress 1592def tLDRLIT_ga_pcrel : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr), 1593 IIC_iLoadiALU, 1594 [(set tGPR:$dst, 1595 (ARMWrapperPIC tglobaladdr:$addr))]>, 1596 Requires<[IsThumb, DontUseMovtInPic]>; 1597 1598def tLDRLIT_ga_abs : PseudoInst<(outs tGPR:$dst), (ins i32imm:$src), 1599 IIC_iLoad_i, 1600 [(set tGPR:$dst, 1601 (ARMWrapper tglobaladdr:$src))]>, 1602 Requires<[IsThumb, DontUseMovt, DontGenExecuteOnly]>; 1603 1604// 32-bit immediate using mov/add with the 4 :lower0_7: to :upper8_15: 1605// relocations. 1606// This is a single pseudo instruction to make it re-materializable. 1607// FIXME: Remove this when we can do generalized remat. 1608let Defs = [CPSR], isReMaterializable = 1, isMoveImm = 1, Size = 16, hasNoSchedulingInfo = 1 in 1609def tMOVi32imm : PseudoInst<(outs rGPR:$dst), (ins i32imm:$src), NoItinerary, 1610 [(set rGPR:$dst, (i32 imm:$src))]>, 1611 Requires<[IsThumb1Only, GenExecuteOnly, DontUseMovt]>; 1612 1613def : ARMPat<(ARMWrapper tglobaladdr :$dst), (tMOVi32imm tglobaladdr :$dst)>, 1614 Requires<[GenT1ExecuteOnly]>; 1615def : ARMPat<(ARMWrapper texternalsym :$dst), (tMOVi32imm texternalsym :$dst)>, 1616 Requires<[GenT1ExecuteOnly]>; 1617 1618 1619// TLS globals 1620def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr), 1621 (tLDRLIT_ga_pcrel tglobaltlsaddr:$addr)>, 1622 Requires<[IsThumb, DontUseMovtInPic]>; 1623def : Pat<(ARMWrapper tglobaltlsaddr:$addr), 1624 (tLDRLIT_ga_abs tglobaltlsaddr:$addr)>, 1625 Requires<[IsThumb, DontUseMovt]>; 1626 1627 1628// JumpTable 1629def : T1Pat<(ARMWrapperJT tjumptable:$dst), 1630 (tLEApcrelJT tjumptable:$dst)>; 1631 1632// Direct calls 1633def : T1Pat<(ARMcall texternalsym:$func), (tBL texternalsym:$func)>, 1634 Requires<[IsThumb]>; 1635 1636// zextload i1 -> zextload i8 1637def : T1Pat<(zextloadi1 t_addrmode_is1:$addr), 1638 (tLDRBi t_addrmode_is1:$addr)>; 1639def : T1Pat<(zextloadi1 t_addrmode_rr:$addr), 1640 (tLDRBr t_addrmode_rr:$addr)>; 1641 1642// extload from the stack -> word load from the stack, as it avoids having to 1643// materialize the base in a separate register. This only works when a word 1644// load puts the byte/halfword value in the same place in the register that the 1645// byte/halfword load would, i.e. when little-endian. 1646def : T1Pat<(extloadi1 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1647 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1648def : T1Pat<(extloadi8 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1649 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1650def : T1Pat<(extloadi16 t_addrmode_sp:$addr), (tLDRspi t_addrmode_sp:$addr)>, 1651 Requires<[IsThumb, IsThumb1Only, IsLE]>; 1652 1653// extload -> zextload 1654def : T1Pat<(extloadi1 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; 1655def : T1Pat<(extloadi1 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; 1656def : T1Pat<(extloadi8 t_addrmode_is1:$addr), (tLDRBi t_addrmode_is1:$addr)>; 1657def : T1Pat<(extloadi8 t_addrmode_rr:$addr), (tLDRBr t_addrmode_rr:$addr)>; 1658def : T1Pat<(extloadi16 t_addrmode_is2:$addr), (tLDRHi t_addrmode_is2:$addr)>; 1659def : T1Pat<(extloadi16 t_addrmode_rr:$addr), (tLDRHr t_addrmode_rr:$addr)>; 1660 1661// post-inc loads and stores 1662 1663// post-inc LDR -> LDM r0!, {r1}. The way operands are layed out in LDMs is 1664// different to how ISel expects them for a post-inc load, so use a pseudo 1665// and expand it just after ISel. 1666let usesCustomInserter = 1, mayLoad =1, 1667 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in 1668 def tLDR_postidx: tPseudoInst<(outs tGPR:$Rt, tGPR:$Rn_wb), 1669 (ins tGPR:$Rn, pred:$p), 1670 4, IIC_iStore_ru, 1671 []>; 1672 1673// post-inc STR -> STM r0!, {r1}. The layout of this (because it doesn't def 1674// multiple registers) is the same in ISel as MachineInstr, so there's no need 1675// for a pseudo. 1676def : T1Pat<(post_store tGPR:$Rt, tGPR:$Rn, 4), 1677 (tSTMIA_UPD tGPR:$Rn, tGPR:$Rt)>; 1678 1679// If it's impossible to use [r,r] address mode for sextload, select to 1680// ldsr{b|h} r, 0 instead, in a hope that the mov 0 will be more likely to be 1681// commoned out than a sxth. 1682let AddedComplexity = 10 in { 1683def : T1Pat<(sextloadi8 tGPR:$Rn), 1684 (tLDRSB tGPR:$Rn, (tMOVi8 0))>, 1685 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1686def : T1Pat<(sextloadi16 tGPR:$Rn), 1687 (tLDRSH tGPR:$Rn, (tMOVi8 0))>, 1688 Requires<[IsThumb, IsThumb1Only, HasV6]>; 1689} 1690 1691def : T1Pat<(sextloadi8 t_addrmode_is1:$addr), 1692 (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>; 1693def : T1Pat<(sextloadi8 t_addrmode_rr:$addr), 1694 (tASRri (tLSLri (tLDRBr t_addrmode_rr:$addr), 24), 24)>; 1695def : T1Pat<(sextloadi16 t_addrmode_is2:$addr), 1696 (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>; 1697def : T1Pat<(sextloadi16 t_addrmode_rr:$addr), 1698 (tASRri (tLSLri (tLDRHr t_addrmode_rr:$addr), 16), 16)>; 1699 1700def : T1Pat<(atomic_load_8 t_addrmode_is1:$src), 1701 (tLDRBi t_addrmode_is1:$src)>; 1702def : T1Pat<(atomic_load_8 t_addrmode_rr:$src), 1703 (tLDRBr t_addrmode_rr:$src)>; 1704def : T1Pat<(atomic_load_16 t_addrmode_is2:$src), 1705 (tLDRHi t_addrmode_is2:$src)>; 1706def : T1Pat<(atomic_load_16 t_addrmode_rr:$src), 1707 (tLDRHr t_addrmode_rr:$src)>; 1708def : T1Pat<(atomic_load_32 t_addrmode_is4:$src), 1709 (tLDRi t_addrmode_is4:$src)>; 1710def : T1Pat<(atomic_load_32 t_addrmode_rr:$src), 1711 (tLDRr t_addrmode_rr:$src)>; 1712def : T1Pat<(atomic_store_8 tGPR:$val, t_addrmode_is1:$ptr), 1713 (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>; 1714def : T1Pat<(atomic_store_8 tGPR:$val, t_addrmode_rr:$ptr), 1715 (tSTRBr tGPR:$val, t_addrmode_rr:$ptr)>; 1716def : T1Pat<(atomic_store_16 tGPR:$val, t_addrmode_is2:$ptr), 1717 (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>; 1718def : T1Pat<(atomic_store_16 tGPR:$val, t_addrmode_rr:$ptr), 1719 (tSTRHr tGPR:$val, t_addrmode_rr:$ptr)>; 1720def : T1Pat<(atomic_store_32 tGPR:$val, t_addrmode_is4:$ptr), 1721 (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>; 1722def : T1Pat<(atomic_store_32 tGPR:$val, t_addrmode_rr:$ptr), 1723 (tSTRr tGPR:$val, t_addrmode_rr:$ptr)>; 1724 1725// Large immediate handling. 1726 1727// Two piece imms. 1728def : T1Pat<(i32 thumb_immshifted:$src), 1729 (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)), 1730 (thumb_immshifted_shamt imm:$src))>; 1731 1732def : T1Pat<(i32 imm0_255_comp:$src), 1733 (tMVN (tMOVi8 (imm_not_XFORM imm:$src)))>; 1734 1735def : T1Pat<(i32 imm256_510:$src), 1736 (tADDi8 (tMOVi8 255), 1737 (thumb_imm256_510_addend imm:$src))>; 1738 1739// Pseudo instruction that combines ldr from constpool and add pc. This should 1740// be expanded into two instructions late to allow if-conversion and 1741// scheduling. 1742let isReMaterializable = 1 in 1743def tLDRpci_pic : PseudoInst<(outs tGPR:$dst), (ins i32imm:$addr, pclabel:$cp), 1744 NoItinerary, 1745 [(set tGPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)), 1746 imm:$cp))]>, 1747 Requires<[IsThumb, IsThumb1Only]>; 1748 1749// Pseudo-instruction for merged POP and return. 1750// FIXME: remove when we have a way to marking a MI with these properties. 1751let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, 1752 hasExtraDefRegAllocReq = 1 in 1753def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops), 1754 2, IIC_iPop_Br, [], 1755 (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>; 1756 1757// Indirect branch using "mov pc, $Rm" 1758let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1759 def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p), 1760 2, IIC_Br, [(brind GPR:$Rm)], 1761 (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>; 1762} 1763 1764 1765// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00 1766// encoding is available on ARMv6K, but we don't differentiate that finely. 1767def : InstAlias<"nop", (tMOVr R8, R8, 14, zero_reg), 0>, Requires<[IsThumb, IsThumb1Only]>; 1768 1769 1770// "neg" is and alias for "rsb rd, rn, #0" 1771def : tInstAlias<"neg${s}${p} $Rd, $Rm", 1772 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>; 1773 1774 1775// Implied destination operand forms for shifts. 1776def : tInstAlias<"lsl${s}${p} $Rdm, $imm", 1777 (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>; 1778def : tInstAlias<"lsr${s}${p} $Rdm, $imm", 1779 (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; 1780def : tInstAlias<"asr${s}${p} $Rdm, $imm", 1781 (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>; 1782 1783// Pseudo instruction ldr Rt, =immediate 1784def tLDRConstPool 1785 : tAsmPseudo<"ldr${p} $Rt, $immediate", 1786 (ins tGPR:$Rt, const_pool_asm_imm:$immediate, pred:$p)>; 1787 1788//===---------------------------------- 1789// Atomic cmpxchg for -O0 1790//===---------------------------------- 1791 1792// See ARMInstrInfo.td. These two thumb specific pseudos are required to 1793// restrict the register class for the UXTB/UXTH ops used in the expansion. 1794 1795let Constraints = "@earlyclobber $Rd,@earlyclobber $temp", 1796 mayLoad = 1, mayStore = 1 in { 1797def tCMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, tGPR:$temp), 1798 (ins GPR:$addr, tGPR:$desired, GPR:$new), 1799 NoItinerary, []>, Sched<[]>; 1800 1801def tCMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, tGPR:$temp), 1802 (ins GPR:$addr, tGPR:$desired, GPR:$new), 1803 NoItinerary, []>, Sched<[]>; 1804 1805def tCMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, tGPR:$temp), 1806 (ins GPR:$addr, GPR:$desired, GPR:$new), 1807 NoItinerary, []>, Sched<[]>; 1808} 1809