xref: /llvm-project/llvm/lib/Target/AMDGPU/SIModeRegister.cpp (revision 96ecead5a2217f77ff7879bf5a0662b18faa81cf)
1 //===-- SIModeRegister.cpp - Mode Register --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass inserts changes to the Mode register settings as required.
10 /// Note that currently it only deals with the Double Precision Floating Point
11 /// rounding mode setting, but is intended to be generic enough to be easily
12 /// expanded.
13 ///
14 //===----------------------------------------------------------------------===//
15 //
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "SIInstrInfo.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <queue>
32 
33 #define DEBUG_TYPE "si-mode-register"
34 
35 STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");
36 
37 using namespace llvm;
38 
39 struct Status {
40   // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
41   // known value
42   unsigned Mask;
43   unsigned Mode;
44 
45   Status() : Mask(0), Mode(0){};
46 
47   Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
48     Mode &= Mask;
49   };
50 
51   // merge two status values such that only values that don't conflict are
52   // preserved
53   Status merge(const Status &S) const {
54     return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
55   }
56 
57   // merge an unknown value by using the unknown value's mask to remove bits
58   // from the result
59   Status mergeUnknown(unsigned newMask) {
60     return Status(Mask & ~newMask, Mode & ~newMask);
61   }
62 
63   // intersect two Status values to produce a mode and mask that is a subset
64   // of both values
65   Status intersect(const Status &S) const {
66     unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
67     unsigned NewMode = (Mode & NewMask);
68     return Status(NewMask, NewMode);
69   }
70 
71   // produce the delta required to change the Mode to the required Mode
72   Status delta(const Status &S) const {
73     return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
74   }
75 
76   bool operator==(const Status &S) const {
77     return (Mask == S.Mask) && (Mode == S.Mode);
78   }
79 
80   bool operator!=(const Status &S) const { return !(*this == S); }
81 
82   bool isCompatible(Status &S) {
83     return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
84   }
85 
86   bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); }
87 };
88 
89 class BlockData {
90 public:
91   // The Status that represents the mode register settings required by the
92   // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
93   Status Require;
94 
95   // The Status that represents the net changes to the Mode register made by
96   // this block, Calculated in Phase 1.
97   Status Change;
98 
99   // The Status that represents the mode register settings on exit from this
100   // block. Calculated in Phase 2.
101   Status Exit;
102 
103   // The Status that represents the intersection of exit Mode register settings
104   // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
105   Status Pred;
106 
107   // In Phase 1 we record the first instruction that has a mode requirement,
108   // which is used in Phase 3 if we need to insert a mode change.
109   MachineInstr *FirstInsertionPoint;
110 
111   BlockData() : FirstInsertionPoint(nullptr){};
112 };
113 
114 namespace {
115 
116 class SIModeRegister : public MachineFunctionPass {
117 public:
118   static char ID;
119 
120   std::vector<std::unique_ptr<BlockData>> BlockInfo;
121   std::queue<MachineBasicBlock *> Phase2List;
122 
123   // The default mode register setting currently only caters for the floating
124   // point double precision rounding mode.
125   // We currently assume the default rounding mode is Round to Nearest
126   // NOTE: this should come from a per function rounding mode setting once such
127   // a setting exists.
128   unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
129   Status DefaultStatus =
130       Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));
131 
132 public:
133   SIModeRegister() : MachineFunctionPass(ID) {}
134 
135   bool runOnMachineFunction(MachineFunction &MF) override;
136 
137   void getAnalysisUsage(AnalysisUsage &AU) const override {
138     AU.setPreservesCFG();
139     MachineFunctionPass::getAnalysisUsage(AU);
140   }
141 
142   void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);
143 
144   void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);
145 
146   void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);
147 
148   Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);
149 
150   void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
151                     const SIInstrInfo *TII, Status InstrMode);
152 };
153 } // End anonymous namespace.
154 
155 INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
156                 "Insert required mode register values", false, false)
157 
158 char SIModeRegister::ID = 0;
159 
160 char &llvm::SIModeRegisterID = SIModeRegister::ID;
161 
162 FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }
163 
164 // Determine the Mode register setting required for this instruction.
165 // Instructions which don't use the Mode register return a null Status.
166 // Note this currently only deals with instructions that use the floating point
167 // double precision setting.
168 Status SIModeRegister::getInstructionMode(MachineInstr &MI,
169                                           const SIInstrInfo *TII) {
170   if (TII->usesFPDPRounding(MI)) {
171     switch (MI.getOpcode()) {
172     case AMDGPU::V_INTERP_P1LL_F16:
173     case AMDGPU::V_INTERP_P1LV_F16:
174     case AMDGPU::V_INTERP_P2_F16:
175       // f16 interpolation instructions need double precision round to zero
176       return Status(FP_ROUND_MODE_DP(3),
177                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
178     default:
179       return DefaultStatus;
180     }
181   }
182   return Status();
183 }
184 
185 // Insert a setreg instruction to update the Mode register.
186 // It is possible (though unlikely) for an instruction to require a change to
187 // the value of disjoint parts of the Mode register when we don't know the
188 // value of the intervening bits. In that case we need to use more than one
189 // setreg instruction.
190 void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
191                                   const SIInstrInfo *TII, Status InstrMode) {
192   while (InstrMode.Mask) {
193     unsigned Offset = countTrailingZeros<unsigned>(InstrMode.Mask);
194     unsigned Width = countTrailingOnes<unsigned>(InstrMode.Mask >> Offset);
195     unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
196     BuildMI(MBB, MI, 0, TII->get(AMDGPU::S_SETREG_IMM32_B32))
197         .addImm(Value)
198         .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) |
199                 (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) |
200                 (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_));
201     ++NumSetregInserted;
202     InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
203   }
204 }
205 
206 // In Phase 1 we iterate through the instructions of the block and for each
207 // instruction we get its mode usage. If the instruction uses the Mode register
208 // we:
209 // - update the Change status, which tracks the changes to the Mode register
210 //   made by this block
211 // - if this instruction's requirements are compatible with the current setting
212 //   of the Mode register we merge the modes
213 // - if it isn't compatible and an InsertionPoint isn't set, then we set the
214 //   InsertionPoint to the current instruction, and we remember the current
215 //   mode
216 // - if it isn't compatible and InsertionPoint is set we insert a seteg before
217 //   that instruction (unless this instruction forms part of the block's
218 //   entry requirements in which case the insertion is deferred until Phase 3
219 //   when predecessor exit values are known), and move the insertion point to
220 //   this instruction
221 // - if this is a setreg instruction we treat it as an incompatible instruction.
222 //   This is sub-optimal but avoids some nasty corner cases, and is expected to
223 //   occur very rarely.
224 // - on exit we have set the Require, Change, and initial Exit modes.
225 void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
226                                         const SIInstrInfo *TII) {
227   auto NewInfo = std::make_unique<BlockData>();
228   MachineInstr *InsertionPoint = nullptr;
229   // RequirePending is used to indicate whether we are collecting the initial
230   // requirements for the block, and need to defer the first InsertionPoint to
231   // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
232   // we discover an explict setreg that means this block doesn't have any
233   // initial requirements.
234   bool RequirePending = true;
235   Status IPChange;
236   for (MachineInstr &MI : MBB) {
237     Status InstrMode = getInstructionMode(MI, TII);
238     if ((MI.getOpcode() == AMDGPU::S_SETREG_B32) ||
239         (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32)) {
240       // We preserve any explicit mode register setreg instruction we encounter,
241       // as we assume it has been inserted by a higher authority (this is
242       // likely to be a very rare occurrence).
243       unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
244       if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) !=
245           AMDGPU::Hwreg::ID_MODE)
246         continue;
247 
248       unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >>
249                         AMDGPU::Hwreg::WIDTH_M1_SHIFT_) +
250                        1;
251       unsigned Offset =
252           (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_;
253       unsigned Mask = ((1 << Width) - 1) << Offset;
254 
255       // If an InsertionPoint is set we will insert a setreg there.
256       if (InsertionPoint) {
257         insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
258         InsertionPoint = nullptr;
259       }
260       // If this is an immediate then we know the value being set, but if it is
261       // not an immediate then we treat the modified bits of the mode register
262       // as unknown.
263       if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32) {
264         unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
265         unsigned Mode = (Val << Offset) & Mask;
266         Status Setreg = Status(Mask, Mode);
267         // If we haven't already set the initial requirements for the block we
268         // don't need to as the requirements start from this explicit setreg.
269         RequirePending = false;
270         NewInfo->Change = NewInfo->Change.merge(Setreg);
271       } else {
272         NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
273       }
274     } else if (!NewInfo->Change.isCompatible(InstrMode)) {
275       // This instruction uses the Mode register and its requirements aren't
276       // compatible with the current mode.
277       if (InsertionPoint) {
278         // If the required mode change cannot be included in the current
279         // InsertionPoint changes, we need a setreg and start a new
280         // InsertionPoint.
281         if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
282           if (RequirePending) {
283             // This is the first insertionPoint in the block so we will defer
284             // the insertion of the setreg to Phase 3 where we know whether or
285             // not it is actually needed.
286             NewInfo->FirstInsertionPoint = InsertionPoint;
287             NewInfo->Require = NewInfo->Change;
288             RequirePending = false;
289           } else {
290             insertSetreg(MBB, InsertionPoint, TII,
291                          IPChange.delta(NewInfo->Change));
292             IPChange = NewInfo->Change;
293           }
294           // Set the new InsertionPoint
295           InsertionPoint = &MI;
296         }
297         NewInfo->Change = NewInfo->Change.merge(InstrMode);
298       } else {
299         // No InsertionPoint is currently set - this is either the first in
300         // the block or we have previously seen an explicit setreg.
301         InsertionPoint = &MI;
302         IPChange = NewInfo->Change;
303         NewInfo->Change = NewInfo->Change.merge(InstrMode);
304       }
305     }
306   }
307   if (RequirePending) {
308     // If we haven't yet set the initial requirements for the block we set them
309     // now.
310     NewInfo->FirstInsertionPoint = InsertionPoint;
311     NewInfo->Require = NewInfo->Change;
312   } else if (InsertionPoint) {
313     // We need to insert a setreg at the InsertionPoint
314     insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
315   }
316   NewInfo->Exit = NewInfo->Change;
317   BlockInfo[MBB.getNumber()] = std::move(NewInfo);
318 }
319 
320 // In Phase 2 we revisit each block and calculate the common Mode register
321 // value provided by all predecessor blocks. If the Exit value for the block
322 // is changed, then we add the successor blocks to the worklist so that the
323 // exit value is propagated.
324 void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
325                                         const SIInstrInfo *TII) {
326   //  BlockData *BI = BlockInfo[MBB.getNumber()];
327   unsigned ThisBlock = MBB.getNumber();
328   if (MBB.pred_empty()) {
329     // There are no predecessors, so use the default starting status.
330     BlockInfo[ThisBlock]->Pred = DefaultStatus;
331   } else {
332     // Build a status that is common to all the predecessors by intersecting
333     // all the predecessor exit status values.
334     MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
335     MachineBasicBlock &PB = *(*P);
336     BlockInfo[ThisBlock]->Pred = BlockInfo[PB.getNumber()]->Exit;
337 
338     for (P = std::next(P); P != E; P = std::next(P)) {
339       MachineBasicBlock *Pred = *P;
340       BlockInfo[ThisBlock]->Pred = BlockInfo[ThisBlock]->Pred.intersect(
341           BlockInfo[Pred->getNumber()]->Exit);
342     }
343   }
344   Status TmpStatus =
345       BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
346   if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
347     BlockInfo[ThisBlock]->Exit = TmpStatus;
348     // Add the successors to the work list so we can propagate the changed exit
349     // status.
350     for (MachineBasicBlock::succ_iterator S = MBB.succ_begin(),
351                                           E = MBB.succ_end();
352          S != E; S = std::next(S)) {
353       MachineBasicBlock &B = *(*S);
354       Phase2List.push(&B);
355     }
356   }
357 }
358 
359 // In Phase 3 we revisit each block and if it has an insertion point defined we
360 // check whether the predecessor mode meets the block's entry requirements. If
361 // not we insert an appropriate setreg instruction to modify the Mode register.
362 void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
363                                         const SIInstrInfo *TII) {
364   //  BlockData *BI = BlockInfo[MBB.getNumber()];
365   unsigned ThisBlock = MBB.getNumber();
366   if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
367     Status Delta =
368         BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
369     if (BlockInfo[ThisBlock]->FirstInsertionPoint)
370       insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
371     else
372       insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
373   }
374 }
375 
376 bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
377   BlockInfo.resize(MF.getNumBlockIDs());
378   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
379   const SIInstrInfo *TII = ST.getInstrInfo();
380 
381   // Processing is performed in a number of phases
382 
383   // Phase 1 - determine the initial mode required by each block, and add setreg
384   // instructions for intra block requirements.
385   for (MachineBasicBlock &BB : MF)
386     processBlockPhase1(BB, TII);
387 
388   // Phase 2 - determine the exit mode from each block. We add all blocks to the
389   // list here, but will also add any that need to be revisited during Phase 2
390   // processing.
391   for (MachineBasicBlock &BB : MF)
392     Phase2List.push(&BB);
393   while (!Phase2List.empty()) {
394     processBlockPhase2(*Phase2List.front(), TII);
395     Phase2List.pop();
396   }
397 
398   // Phase 3 - add an initial setreg to each block where the required entry mode
399   // is not satisfied by the exit mode of all its predecessors.
400   for (MachineBasicBlock &BB : MF)
401     processBlockPhase3(BB, TII);
402 
403   BlockInfo.clear();
404 
405   return NumSetregInserted > 0;
406 }
407