1 //===-- SIModeRegister.cpp - Mode Register --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This pass inserts changes to the Mode register settings as required. 10 /// Note that currently it only deals with the Double Precision Floating Point 11 /// rounding mode setting, but is intended to be generic enough to be easily 12 /// expanded. 13 /// 14 //===----------------------------------------------------------------------===// 15 // 16 #include "AMDGPU.h" 17 #include "GCNSubtarget.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/MachineFunctionPass.h" 21 #include <queue> 22 23 #define DEBUG_TYPE "si-mode-register" 24 25 STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted."); 26 27 using namespace llvm; 28 29 struct Status { 30 // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a 31 // known value 32 unsigned Mask = 0; 33 unsigned Mode = 0; 34 35 Status() = default; 36 37 Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) { 38 Mode &= Mask; 39 }; 40 41 // merge two status values such that only values that don't conflict are 42 // preserved 43 Status merge(const Status &S) const { 44 return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask))); 45 } 46 47 // merge an unknown value by using the unknown value's mask to remove bits 48 // from the result 49 Status mergeUnknown(unsigned newMask) { 50 return Status(Mask & ~newMask, Mode & ~newMask); 51 } 52 53 // intersect two Status values to produce a mode and mask that is a subset 54 // of both values 55 Status intersect(const Status &S) const { 56 unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode); 57 unsigned NewMode = (Mode & NewMask); 58 return Status(NewMask, NewMode); 59 } 60 61 // produce the delta required to change the Mode to the required Mode 62 Status delta(const Status &S) const { 63 return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode); 64 } 65 66 bool operator==(const Status &S) const { 67 return (Mask == S.Mask) && (Mode == S.Mode); 68 } 69 70 bool operator!=(const Status &S) const { return !(*this == S); } 71 72 bool isCompatible(Status &S) { 73 return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode); 74 } 75 76 bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); } 77 }; 78 79 class BlockData { 80 public: 81 // The Status that represents the mode register settings required by the 82 // FirstInsertionPoint (if any) in this block. Calculated in Phase 1. 83 Status Require; 84 85 // The Status that represents the net changes to the Mode register made by 86 // this block, Calculated in Phase 1. 87 Status Change; 88 89 // The Status that represents the mode register settings on exit from this 90 // block. Calculated in Phase 2. 91 Status Exit; 92 93 // The Status that represents the intersection of exit Mode register settings 94 // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3. 95 Status Pred; 96 97 // In Phase 1 we record the first instruction that has a mode requirement, 98 // which is used in Phase 3 if we need to insert a mode change. 99 MachineInstr *FirstInsertionPoint = nullptr; 100 101 // A flag to indicate whether an Exit value has been set (we can't tell by 102 // examining the Exit value itself as all values may be valid results). 103 bool ExitSet = false; 104 105 BlockData() = default; 106 }; 107 108 namespace { 109 110 class SIModeRegister : public MachineFunctionPass { 111 public: 112 static char ID; 113 114 std::vector<std::unique_ptr<BlockData>> BlockInfo; 115 std::queue<MachineBasicBlock *> Phase2List; 116 117 // The default mode register setting currently only caters for the floating 118 // point double precision rounding mode. 119 // We currently assume the default rounding mode is Round to Nearest 120 // NOTE: this should come from a per function rounding mode setting once such 121 // a setting exists. 122 unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST; 123 Status DefaultStatus = 124 Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode)); 125 126 bool Changed = false; 127 128 public: 129 SIModeRegister() : MachineFunctionPass(ID) {} 130 131 bool runOnMachineFunction(MachineFunction &MF) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.setPreservesCFG(); 135 MachineFunctionPass::getAnalysisUsage(AU); 136 } 137 138 void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII); 139 140 void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII); 141 142 void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII); 143 144 Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII); 145 146 void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I, 147 const SIInstrInfo *TII, Status InstrMode); 148 }; 149 } // End anonymous namespace. 150 151 INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE, 152 "Insert required mode register values", false, false) 153 154 char SIModeRegister::ID = 0; 155 156 char &llvm::SIModeRegisterID = SIModeRegister::ID; 157 158 FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); } 159 160 // Determine the Mode register setting required for this instruction. 161 // Instructions which don't use the Mode register return a null Status. 162 // Note this currently only deals with instructions that use the floating point 163 // double precision setting. 164 Status SIModeRegister::getInstructionMode(MachineInstr &MI, 165 const SIInstrInfo *TII) { 166 unsigned Opcode = MI.getOpcode(); 167 if (TII->usesFPDPRounding(MI) || 168 Opcode == AMDGPU::FPTRUNC_ROUND_F16_F32_PSEUDO || 169 Opcode == AMDGPU::FPTRUNC_ROUND_F32_F64_PSEUDO) { 170 switch (Opcode) { 171 case AMDGPU::V_INTERP_P1LL_F16: 172 case AMDGPU::V_INTERP_P1LV_F16: 173 case AMDGPU::V_INTERP_P2_F16: 174 // f16 interpolation instructions need double precision round to zero 175 return Status(FP_ROUND_MODE_DP(3), 176 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO)); 177 case AMDGPU::FPTRUNC_ROUND_F16_F32_PSEUDO: { 178 unsigned Mode = MI.getOperand(2).getImm(); 179 MI.removeOperand(2); 180 // Replacing the pseudo by a real instruction in place 181 if (TII->getSubtarget().hasTrue16BitInsts()) { 182 MachineBasicBlock &MBB = *MI.getParent(); 183 MachineInstrBuilder B(*MBB.getParent(), MI); 184 MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_fake16_e64)); 185 MachineOperand Src0 = MI.getOperand(1); 186 MI.removeOperand(1); 187 B.addImm(0); // src0_modifiers 188 B.add(Src0); // re-add src0 operand 189 B.addImm(0); // clamp 190 B.addImm(0); // omod 191 } else 192 MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32)); 193 return Status(FP_ROUND_MODE_DP(3), FP_ROUND_MODE_DP(Mode)); 194 } 195 case AMDGPU::FPTRUNC_ROUND_F32_F64_PSEUDO: { 196 unsigned Mode = MI.getOperand(2).getImm(); 197 MI.removeOperand(2); 198 MI.setDesc(TII->get(AMDGPU::V_CVT_F32_F64_e32)); 199 return Status(FP_ROUND_MODE_DP(3), FP_ROUND_MODE_DP(Mode)); 200 } 201 default: 202 return DefaultStatus; 203 } 204 } 205 return Status(); 206 } 207 208 // Insert a setreg instruction to update the Mode register. 209 // It is possible (though unlikely) for an instruction to require a change to 210 // the value of disjoint parts of the Mode register when we don't know the 211 // value of the intervening bits. In that case we need to use more than one 212 // setreg instruction. 213 void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI, 214 const SIInstrInfo *TII, Status InstrMode) { 215 while (InstrMode.Mask) { 216 unsigned Offset = llvm::countr_zero<unsigned>(InstrMode.Mask); 217 unsigned Width = llvm::countr_one<unsigned>(InstrMode.Mask >> Offset); 218 unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1); 219 using namespace AMDGPU::Hwreg; 220 BuildMI(MBB, MI, nullptr, TII->get(AMDGPU::S_SETREG_IMM32_B32)) 221 .addImm(Value) 222 .addImm(HwregEncoding::encode(ID_MODE, Offset, Width)); 223 ++NumSetregInserted; 224 Changed = true; 225 InstrMode.Mask &= ~(((1 << Width) - 1) << Offset); 226 } 227 } 228 229 // In Phase 1 we iterate through the instructions of the block and for each 230 // instruction we get its mode usage. If the instruction uses the Mode register 231 // we: 232 // - update the Change status, which tracks the changes to the Mode register 233 // made by this block 234 // - if this instruction's requirements are compatible with the current setting 235 // of the Mode register we merge the modes 236 // - if it isn't compatible and an InsertionPoint isn't set, then we set the 237 // InsertionPoint to the current instruction, and we remember the current 238 // mode 239 // - if it isn't compatible and InsertionPoint is set we insert a seteg before 240 // that instruction (unless this instruction forms part of the block's 241 // entry requirements in which case the insertion is deferred until Phase 3 242 // when predecessor exit values are known), and move the insertion point to 243 // this instruction 244 // - if this is a setreg instruction we treat it as an incompatible instruction. 245 // This is sub-optimal but avoids some nasty corner cases, and is expected to 246 // occur very rarely. 247 // - on exit we have set the Require, Change, and initial Exit modes. 248 void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB, 249 const SIInstrInfo *TII) { 250 auto NewInfo = std::make_unique<BlockData>(); 251 MachineInstr *InsertionPoint = nullptr; 252 // RequirePending is used to indicate whether we are collecting the initial 253 // requirements for the block, and need to defer the first InsertionPoint to 254 // Phase 3. It is set to false once we have set FirstInsertionPoint, or when 255 // we discover an explicit setreg that means this block doesn't have any 256 // initial requirements. 257 bool RequirePending = true; 258 Status IPChange; 259 for (MachineInstr &MI : MBB) { 260 Status InstrMode = getInstructionMode(MI, TII); 261 if (MI.getOpcode() == AMDGPU::S_SETREG_B32 || 262 MI.getOpcode() == AMDGPU::S_SETREG_B32_mode || 263 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || 264 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) { 265 // We preserve any explicit mode register setreg instruction we encounter, 266 // as we assume it has been inserted by a higher authority (this is 267 // likely to be a very rare occurrence). 268 unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm(); 269 using namespace AMDGPU::Hwreg; 270 auto [Id, Offset, Width] = HwregEncoding::decode(Dst); 271 if (Id != ID_MODE) 272 continue; 273 274 unsigned Mask = maskTrailingOnes<unsigned>(Width) << Offset; 275 276 // If an InsertionPoint is set we will insert a setreg there. 277 if (InsertionPoint) { 278 insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change)); 279 InsertionPoint = nullptr; 280 } 281 // If this is an immediate then we know the value being set, but if it is 282 // not an immediate then we treat the modified bits of the mode register 283 // as unknown. 284 if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || 285 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) { 286 unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm(); 287 unsigned Mode = (Val << Offset) & Mask; 288 Status Setreg = Status(Mask, Mode); 289 // If we haven't already set the initial requirements for the block we 290 // don't need to as the requirements start from this explicit setreg. 291 RequirePending = false; 292 NewInfo->Change = NewInfo->Change.merge(Setreg); 293 } else { 294 NewInfo->Change = NewInfo->Change.mergeUnknown(Mask); 295 } 296 } else if (!NewInfo->Change.isCompatible(InstrMode)) { 297 // This instruction uses the Mode register and its requirements aren't 298 // compatible with the current mode. 299 if (InsertionPoint) { 300 // If the required mode change cannot be included in the current 301 // InsertionPoint changes, we need a setreg and start a new 302 // InsertionPoint. 303 if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) { 304 if (RequirePending) { 305 // This is the first insertionPoint in the block so we will defer 306 // the insertion of the setreg to Phase 3 where we know whether or 307 // not it is actually needed. 308 NewInfo->FirstInsertionPoint = InsertionPoint; 309 NewInfo->Require = NewInfo->Change; 310 RequirePending = false; 311 } else { 312 insertSetreg(MBB, InsertionPoint, TII, 313 IPChange.delta(NewInfo->Change)); 314 IPChange = NewInfo->Change; 315 } 316 // Set the new InsertionPoint 317 InsertionPoint = &MI; 318 } 319 NewInfo->Change = NewInfo->Change.merge(InstrMode); 320 } else { 321 // No InsertionPoint is currently set - this is either the first in 322 // the block or we have previously seen an explicit setreg. 323 InsertionPoint = &MI; 324 IPChange = NewInfo->Change; 325 NewInfo->Change = NewInfo->Change.merge(InstrMode); 326 } 327 } 328 } 329 if (RequirePending) { 330 // If we haven't yet set the initial requirements for the block we set them 331 // now. 332 NewInfo->FirstInsertionPoint = InsertionPoint; 333 NewInfo->Require = NewInfo->Change; 334 } else if (InsertionPoint) { 335 // We need to insert a setreg at the InsertionPoint 336 insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change)); 337 } 338 NewInfo->Exit = NewInfo->Change; 339 BlockInfo[MBB.getNumber()] = std::move(NewInfo); 340 } 341 342 // In Phase 2 we revisit each block and calculate the common Mode register 343 // value provided by all predecessor blocks. If the Exit value for the block 344 // is changed, then we add the successor blocks to the worklist so that the 345 // exit value is propagated. 346 void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB, 347 const SIInstrInfo *TII) { 348 bool RevisitRequired = false; 349 bool ExitSet = false; 350 unsigned ThisBlock = MBB.getNumber(); 351 if (MBB.pred_empty()) { 352 // There are no predecessors, so use the default starting status. 353 BlockInfo[ThisBlock]->Pred = DefaultStatus; 354 ExitSet = true; 355 } else { 356 // Build a status that is common to all the predecessors by intersecting 357 // all the predecessor exit status values. 358 // Mask bits (which represent the Mode bits with a known value) can only be 359 // added by explicit SETREG instructions or the initial default value - 360 // the intersection process may remove Mask bits. 361 // If we find a predecessor that has not yet had an exit value determined 362 // (this can happen for example if a block is its own predecessor) we defer 363 // use of that value as the Mask will be all zero, and we will revisit this 364 // block again later (unless the only predecessor without an exit value is 365 // this block). 366 MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end(); 367 MachineBasicBlock &PB = *(*P); 368 unsigned PredBlock = PB.getNumber(); 369 if ((ThisBlock == PredBlock) && (std::next(P) == E)) { 370 BlockInfo[ThisBlock]->Pred = DefaultStatus; 371 ExitSet = true; 372 } else if (BlockInfo[PredBlock]->ExitSet) { 373 BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit; 374 ExitSet = true; 375 } else if (PredBlock != ThisBlock) 376 RevisitRequired = true; 377 378 for (P = std::next(P); P != E; P = std::next(P)) { 379 MachineBasicBlock *Pred = *P; 380 unsigned PredBlock = Pred->getNumber(); 381 if (BlockInfo[PredBlock]->ExitSet) { 382 if (BlockInfo[ThisBlock]->ExitSet) { 383 BlockInfo[ThisBlock]->Pred = 384 BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[PredBlock]->Exit); 385 } else { 386 BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit; 387 } 388 ExitSet = true; 389 } else if (PredBlock != ThisBlock) 390 RevisitRequired = true; 391 } 392 } 393 Status TmpStatus = 394 BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change); 395 if (BlockInfo[ThisBlock]->Exit != TmpStatus) { 396 BlockInfo[ThisBlock]->Exit = TmpStatus; 397 // Add the successors to the work list so we can propagate the changed exit 398 // status. 399 for (MachineBasicBlock *Succ : MBB.successors()) 400 Phase2List.push(Succ); 401 } 402 BlockInfo[ThisBlock]->ExitSet = ExitSet; 403 if (RevisitRequired) 404 Phase2List.push(&MBB); 405 } 406 407 // In Phase 3 we revisit each block and if it has an insertion point defined we 408 // check whether the predecessor mode meets the block's entry requirements. If 409 // not we insert an appropriate setreg instruction to modify the Mode register. 410 void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB, 411 const SIInstrInfo *TII) { 412 unsigned ThisBlock = MBB.getNumber(); 413 if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) { 414 Status Delta = 415 BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require); 416 if (BlockInfo[ThisBlock]->FirstInsertionPoint) 417 insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta); 418 else 419 insertSetreg(MBB, &MBB.instr_front(), TII, Delta); 420 } 421 } 422 423 bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) { 424 // Constrained FP intrinsics are used to support non-default rounding modes. 425 // strictfp attribute is required to mark functions with strict FP semantics 426 // having constrained FP intrinsics. This pass fixes up operations that uses 427 // a non-default rounding mode for non-strictfp functions. But it should not 428 // assume or modify any default rounding modes in case of strictfp functions. 429 const Function &F = MF.getFunction(); 430 if (F.hasFnAttribute(llvm::Attribute::StrictFP)) 431 return Changed; 432 BlockInfo.resize(MF.getNumBlockIDs()); 433 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 434 const SIInstrInfo *TII = ST.getInstrInfo(); 435 436 // Processing is performed in a number of phases 437 438 // Phase 1 - determine the initial mode required by each block, and add setreg 439 // instructions for intra block requirements. 440 for (MachineBasicBlock &BB : MF) 441 processBlockPhase1(BB, TII); 442 443 // Phase 2 - determine the exit mode from each block. We add all blocks to the 444 // list here, but will also add any that need to be revisited during Phase 2 445 // processing. 446 for (MachineBasicBlock &BB : MF) 447 Phase2List.push(&BB); 448 while (!Phase2List.empty()) { 449 processBlockPhase2(*Phase2List.front(), TII); 450 Phase2List.pop(); 451 } 452 453 // Phase 3 - add an initial setreg to each block where the required entry mode 454 // is not satisfied by the exit mode of all its predecessors. 455 for (MachineBasicBlock &BB : MF) 456 processBlockPhase3(BB, TII); 457 458 BlockInfo.clear(); 459 460 return Changed; 461 } 462