xref: /llvm-project/llvm/lib/Target/AMDGPU/SIModeRegister.cpp (revision 7f230feeeac8a67b335f52bd2e900a05c6098f20)
1 //===-- SIModeRegister.cpp - Mode Register --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass inserts changes to the Mode register settings as required.
10 /// Note that currently it only deals with the Double Precision Floating Point
11 /// rounding mode setting, but is intended to be generic enough to be easily
12 /// expanded.
13 ///
14 //===----------------------------------------------------------------------===//
15 //
16 #include "AMDGPU.h"
17 #include "GCNSubtarget.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include <queue>
22 
23 #define DEBUG_TYPE "si-mode-register"
24 
25 STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");
26 
27 using namespace llvm;
28 
29 struct Status {
30   // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
31   // known value
32   unsigned Mask;
33   unsigned Mode;
34 
35   Status() : Mask(0), Mode(0){};
36 
37   Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
38     Mode &= Mask;
39   };
40 
41   // merge two status values such that only values that don't conflict are
42   // preserved
43   Status merge(const Status &S) const {
44     return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
45   }
46 
47   // merge an unknown value by using the unknown value's mask to remove bits
48   // from the result
49   Status mergeUnknown(unsigned newMask) {
50     return Status(Mask & ~newMask, Mode & ~newMask);
51   }
52 
53   // intersect two Status values to produce a mode and mask that is a subset
54   // of both values
55   Status intersect(const Status &S) const {
56     unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
57     unsigned NewMode = (Mode & NewMask);
58     return Status(NewMask, NewMode);
59   }
60 
61   // produce the delta required to change the Mode to the required Mode
62   Status delta(const Status &S) const {
63     return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
64   }
65 
66   bool operator==(const Status &S) const {
67     return (Mask == S.Mask) && (Mode == S.Mode);
68   }
69 
70   bool operator!=(const Status &S) const { return !(*this == S); }
71 
72   bool isCompatible(Status &S) {
73     return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
74   }
75 
76   bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); }
77 };
78 
79 class BlockData {
80 public:
81   // The Status that represents the mode register settings required by the
82   // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
83   Status Require;
84 
85   // The Status that represents the net changes to the Mode register made by
86   // this block, Calculated in Phase 1.
87   Status Change;
88 
89   // The Status that represents the mode register settings on exit from this
90   // block. Calculated in Phase 2.
91   Status Exit;
92 
93   // The Status that represents the intersection of exit Mode register settings
94   // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
95   Status Pred;
96 
97   // In Phase 1 we record the first instruction that has a mode requirement,
98   // which is used in Phase 3 if we need to insert a mode change.
99   MachineInstr *FirstInsertionPoint;
100 
101   // A flag to indicate whether an Exit value has been set (we can't tell by
102   // examining the Exit value itself as all values may be valid results).
103   bool ExitSet;
104 
105   BlockData() : FirstInsertionPoint(nullptr), ExitSet(false){};
106 };
107 
108 namespace {
109 
110 class SIModeRegister : public MachineFunctionPass {
111 public:
112   static char ID;
113 
114   std::vector<std::unique_ptr<BlockData>> BlockInfo;
115   std::queue<MachineBasicBlock *> Phase2List;
116 
117   // The default mode register setting currently only caters for the floating
118   // point double precision rounding mode.
119   // We currently assume the default rounding mode is Round to Nearest
120   // NOTE: this should come from a per function rounding mode setting once such
121   // a setting exists.
122   unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
123   Status DefaultStatus =
124       Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));
125 
126   bool Changed = false;
127 
128 public:
129   SIModeRegister() : MachineFunctionPass(ID) {}
130 
131   bool runOnMachineFunction(MachineFunction &MF) override;
132 
133   void getAnalysisUsage(AnalysisUsage &AU) const override {
134     AU.setPreservesCFG();
135     MachineFunctionPass::getAnalysisUsage(AU);
136   }
137 
138   void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);
139 
140   void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);
141 
142   void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);
143 
144   Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);
145 
146   void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
147                     const SIInstrInfo *TII, Status InstrMode);
148 };
149 } // End anonymous namespace.
150 
151 INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
152                 "Insert required mode register values", false, false)
153 
154 char SIModeRegister::ID = 0;
155 
156 char &llvm::SIModeRegisterID = SIModeRegister::ID;
157 
158 FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }
159 
160 // Determine the Mode register setting required for this instruction.
161 // Instructions which don't use the Mode register return a null Status.
162 // Note this currently only deals with instructions that use the floating point
163 // double precision setting.
164 Status SIModeRegister::getInstructionMode(MachineInstr &MI,
165                                           const SIInstrInfo *TII) {
166   if (TII->usesFPDPRounding(MI) ||
167       MI.getOpcode() == AMDGPU::FPTRUNC_UPWARD_PSEUDO ||
168       MI.getOpcode() == AMDGPU::FPTRUNC_DOWNWARD_PSEUDO) {
169     switch (MI.getOpcode()) {
170     case AMDGPU::V_INTERP_P1LL_F16:
171     case AMDGPU::V_INTERP_P1LV_F16:
172     case AMDGPU::V_INTERP_P2_F16:
173       // f16 interpolation instructions need double precision round to zero
174       return Status(FP_ROUND_MODE_DP(3),
175                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
176     case AMDGPU::FPTRUNC_UPWARD_PSEUDO: {
177       // Replacing the pseudo by a real instruction
178       MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32));
179       return Status(FP_ROUND_MODE_DP(3),
180                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_INF));
181     }
182     case AMDGPU::FPTRUNC_DOWNWARD_PSEUDO: {
183       // Replacing the pseudo by a real instruction
184       MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32));
185       return Status(FP_ROUND_MODE_DP(3),
186                     FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEGINF));
187     }
188     default:
189       return DefaultStatus;
190     }
191   }
192   return Status();
193 }
194 
195 // Insert a setreg instruction to update the Mode register.
196 // It is possible (though unlikely) for an instruction to require a change to
197 // the value of disjoint parts of the Mode register when we don't know the
198 // value of the intervening bits. In that case we need to use more than one
199 // setreg instruction.
200 void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
201                                   const SIInstrInfo *TII, Status InstrMode) {
202   while (InstrMode.Mask) {
203     unsigned Offset = countTrailingZeros<unsigned>(InstrMode.Mask);
204     unsigned Width = countTrailingOnes<unsigned>(InstrMode.Mask >> Offset);
205     unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
206     BuildMI(MBB, MI, nullptr, TII->get(AMDGPU::S_SETREG_IMM32_B32))
207         .addImm(Value)
208         .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) |
209                 (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) |
210                 (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_));
211     ++NumSetregInserted;
212     Changed = true;
213     InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
214   }
215 }
216 
217 // In Phase 1 we iterate through the instructions of the block and for each
218 // instruction we get its mode usage. If the instruction uses the Mode register
219 // we:
220 // - update the Change status, which tracks the changes to the Mode register
221 //   made by this block
222 // - if this instruction's requirements are compatible with the current setting
223 //   of the Mode register we merge the modes
224 // - if it isn't compatible and an InsertionPoint isn't set, then we set the
225 //   InsertionPoint to the current instruction, and we remember the current
226 //   mode
227 // - if it isn't compatible and InsertionPoint is set we insert a seteg before
228 //   that instruction (unless this instruction forms part of the block's
229 //   entry requirements in which case the insertion is deferred until Phase 3
230 //   when predecessor exit values are known), and move the insertion point to
231 //   this instruction
232 // - if this is a setreg instruction we treat it as an incompatible instruction.
233 //   This is sub-optimal but avoids some nasty corner cases, and is expected to
234 //   occur very rarely.
235 // - on exit we have set the Require, Change, and initial Exit modes.
236 void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
237                                         const SIInstrInfo *TII) {
238   auto NewInfo = std::make_unique<BlockData>();
239   MachineInstr *InsertionPoint = nullptr;
240   // RequirePending is used to indicate whether we are collecting the initial
241   // requirements for the block, and need to defer the first InsertionPoint to
242   // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
243   // we discover an explicit setreg that means this block doesn't have any
244   // initial requirements.
245   bool RequirePending = true;
246   Status IPChange;
247   for (MachineInstr &MI : MBB) {
248     Status InstrMode = getInstructionMode(MI, TII);
249     if (MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
250         MI.getOpcode() == AMDGPU::S_SETREG_B32_mode ||
251         MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
252         MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
253       // We preserve any explicit mode register setreg instruction we encounter,
254       // as we assume it has been inserted by a higher authority (this is
255       // likely to be a very rare occurrence).
256       unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm();
257       if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) !=
258           AMDGPU::Hwreg::ID_MODE)
259         continue;
260 
261       unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >>
262                         AMDGPU::Hwreg::WIDTH_M1_SHIFT_) +
263                        1;
264       unsigned Offset =
265           (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_;
266       unsigned Mask = ((1 << Width) - 1) << Offset;
267 
268       // If an InsertionPoint is set we will insert a setreg there.
269       if (InsertionPoint) {
270         insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
271         InsertionPoint = nullptr;
272       }
273       // If this is an immediate then we know the value being set, but if it is
274       // not an immediate then we treat the modified bits of the mode register
275       // as unknown.
276       if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
277           MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
278         unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm();
279         unsigned Mode = (Val << Offset) & Mask;
280         Status Setreg = Status(Mask, Mode);
281         // If we haven't already set the initial requirements for the block we
282         // don't need to as the requirements start from this explicit setreg.
283         RequirePending = false;
284         NewInfo->Change = NewInfo->Change.merge(Setreg);
285       } else {
286         NewInfo->Change = NewInfo->Change.mergeUnknown(Mask);
287       }
288     } else if (!NewInfo->Change.isCompatible(InstrMode)) {
289       // This instruction uses the Mode register and its requirements aren't
290       // compatible with the current mode.
291       if (InsertionPoint) {
292         // If the required mode change cannot be included in the current
293         // InsertionPoint changes, we need a setreg and start a new
294         // InsertionPoint.
295         if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) {
296           if (RequirePending) {
297             // This is the first insertionPoint in the block so we will defer
298             // the insertion of the setreg to Phase 3 where we know whether or
299             // not it is actually needed.
300             NewInfo->FirstInsertionPoint = InsertionPoint;
301             NewInfo->Require = NewInfo->Change;
302             RequirePending = false;
303           } else {
304             insertSetreg(MBB, InsertionPoint, TII,
305                          IPChange.delta(NewInfo->Change));
306             IPChange = NewInfo->Change;
307           }
308           // Set the new InsertionPoint
309           InsertionPoint = &MI;
310         }
311         NewInfo->Change = NewInfo->Change.merge(InstrMode);
312       } else {
313         // No InsertionPoint is currently set - this is either the first in
314         // the block or we have previously seen an explicit setreg.
315         InsertionPoint = &MI;
316         IPChange = NewInfo->Change;
317         NewInfo->Change = NewInfo->Change.merge(InstrMode);
318       }
319     }
320   }
321   if (RequirePending) {
322     // If we haven't yet set the initial requirements for the block we set them
323     // now.
324     NewInfo->FirstInsertionPoint = InsertionPoint;
325     NewInfo->Require = NewInfo->Change;
326   } else if (InsertionPoint) {
327     // We need to insert a setreg at the InsertionPoint
328     insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change));
329   }
330   NewInfo->Exit = NewInfo->Change;
331   BlockInfo[MBB.getNumber()] = std::move(NewInfo);
332 }
333 
334 // In Phase 2 we revisit each block and calculate the common Mode register
335 // value provided by all predecessor blocks. If the Exit value for the block
336 // is changed, then we add the successor blocks to the worklist so that the
337 // exit value is propagated.
338 void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
339                                         const SIInstrInfo *TII) {
340   bool RevisitRequired = false;
341   bool ExitSet = false;
342   unsigned ThisBlock = MBB.getNumber();
343   if (MBB.pred_empty()) {
344     // There are no predecessors, so use the default starting status.
345     BlockInfo[ThisBlock]->Pred = DefaultStatus;
346     ExitSet = true;
347   } else {
348     // Build a status that is common to all the predecessors by intersecting
349     // all the predecessor exit status values.
350     // Mask bits (which represent the Mode bits with a known value) can only be
351     // added by explicit SETREG instructions or the initial default value -
352     // the intersection process may remove Mask bits.
353     // If we find a predecessor that has not yet had an exit value determined
354     // (this can happen for example if a block is its own predecessor) we defer
355     // use of that value as the Mask will be all zero, and we will revisit this
356     // block again later (unless the only predecessor without an exit value is
357     // this block).
358     MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
359     MachineBasicBlock &PB = *(*P);
360     unsigned PredBlock = PB.getNumber();
361     if ((ThisBlock == PredBlock) && (std::next(P) == E)) {
362       BlockInfo[ThisBlock]->Pred = DefaultStatus;
363       ExitSet = true;
364     } else if (BlockInfo[PredBlock]->ExitSet) {
365       BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
366       ExitSet = true;
367     } else if (PredBlock != ThisBlock)
368       RevisitRequired = true;
369 
370     for (P = std::next(P); P != E; P = std::next(P)) {
371       MachineBasicBlock *Pred = *P;
372       unsigned PredBlock = Pred->getNumber();
373       if (BlockInfo[PredBlock]->ExitSet) {
374         if (BlockInfo[ThisBlock]->ExitSet) {
375           BlockInfo[ThisBlock]->Pred =
376               BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[PredBlock]->Exit);
377         } else {
378           BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
379         }
380         ExitSet = true;
381       } else if (PredBlock != ThisBlock)
382         RevisitRequired = true;
383     }
384   }
385   Status TmpStatus =
386       BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change);
387   if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
388     BlockInfo[ThisBlock]->Exit = TmpStatus;
389     // Add the successors to the work list so we can propagate the changed exit
390     // status.
391     for (MachineBasicBlock *Succ : MBB.successors())
392       Phase2List.push(Succ);
393   }
394   BlockInfo[ThisBlock]->ExitSet = ExitSet;
395   if (RevisitRequired)
396     Phase2List.push(&MBB);
397 }
398 
399 // In Phase 3 we revisit each block and if it has an insertion point defined we
400 // check whether the predecessor mode meets the block's entry requirements. If
401 // not we insert an appropriate setreg instruction to modify the Mode register.
402 void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
403                                         const SIInstrInfo *TII) {
404   unsigned ThisBlock = MBB.getNumber();
405   if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) {
406     Status Delta =
407         BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require);
408     if (BlockInfo[ThisBlock]->FirstInsertionPoint)
409       insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta);
410     else
411       insertSetreg(MBB, &MBB.instr_front(), TII, Delta);
412   }
413 }
414 
415 bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
416   BlockInfo.resize(MF.getNumBlockIDs());
417   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
418   const SIInstrInfo *TII = ST.getInstrInfo();
419 
420   // Processing is performed in a number of phases
421 
422   // Phase 1 - determine the initial mode required by each block, and add setreg
423   // instructions for intra block requirements.
424   for (MachineBasicBlock &BB : MF)
425     processBlockPhase1(BB, TII);
426 
427   // Phase 2 - determine the exit mode from each block. We add all blocks to the
428   // list here, but will also add any that need to be revisited during Phase 2
429   // processing.
430   for (MachineBasicBlock &BB : MF)
431     Phase2List.push(&BB);
432   while (!Phase2List.empty()) {
433     processBlockPhase2(*Phase2List.front(), TII);
434     Phase2List.pop();
435   }
436 
437   // Phase 3 - add an initial setreg to each block where the required entry mode
438   // is not satisfied by the exit mode of all its predecessors.
439   for (MachineBasicBlock &BB : MF)
440     processBlockPhase3(BB, TII);
441 
442   BlockInfo.clear();
443 
444   return Changed;
445 }
446