xref: /llvm-project/llvm/lib/Target/AMDGPU/SIInstructions.td (revision 9adc99bcc5645b7446262e89f59c9ff797c8d09b)
1//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file was originally auto-generated from a GPU register header file and
9// all the instruction definitions were originally commented out.  Instructions
10// that are not yet supported remain commented out.
11//===----------------------------------------------------------------------===//
12
13class GCNPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl;
14
15class UniformSextInreg<ValueType VT> : PatFrag<
16  (ops node:$src),
17  (sext_inreg $src, VT),
18  [{ return !N->isDivergent(); }]>;
19
20class DivergentSextInreg<ValueType VT> : PatFrag<
21  (ops node:$src),
22  (sext_inreg $src, VT),
23  [{ return N->isDivergent(); }]>;
24
25include "SOPInstructions.td"
26include "VOPInstructions.td"
27include "SMInstructions.td"
28include "FLATInstructions.td"
29include "BUFInstructions.td"
30include "EXPInstructions.td"
31include "DSDIRInstructions.td"
32include "VINTERPInstructions.td"
33
34//===----------------------------------------------------------------------===//
35// VINTRP Instructions
36//===----------------------------------------------------------------------===//
37
38// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
39def VINTRPDst : VINTRPDstOperand <VGPR_32>;
40
41let Uses = [MODE, M0, EXEC] in {
42
43// FIXME: Specify SchedRW for VINTRP instructions.
44
45multiclass V_INTERP_P1_F32_m : VINTRP_m <
46  0x00000000,
47  (outs VINTRPDst:$vdst),
48  (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
49  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
50  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
51                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
52>;
53
54let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in {
55
56defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;
57
58} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus]
59
60let OtherPredicates = [has16BankLDS, isNotGFX90APlus],
61    Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {
62
63defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;
64
65} // End OtherPredicates = [has32BankLDS, isNotGFX90APlus],
66  //     Constraints = "@earlyclobber $vdst", isAsmParserOnly=1
67
68let OtherPredicates = [isNotGFX90APlus] in {
69let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {
70
71defm V_INTERP_P2_F32 : VINTRP_m <
72  0x00000001,
73  (outs VINTRPDst:$vdst),
74  (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr,
75       InterpAttrChan:$attrchan),
76  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
77  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
78                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
79
80} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"
81
82defm V_INTERP_MOV_F32 : VINTRP_m <
83  0x00000002,
84  (outs VINTRPDst:$vdst),
85  (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan),
86  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
87  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
88                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;
89
90} // End OtherPredicates = [isNotGFX90APlus]
91
92} // End Uses = [MODE, M0, EXEC]
93
94//===----------------------------------------------------------------------===//
95// Pseudo Instructions
96//===----------------------------------------------------------------------===//
97
98// Insert a branch to an endpgm block to use as a fallback trap.
99def ENDPGM_TRAP : SPseudoInstSI<
100  (outs), (ins),
101  [(AMDGPUendpgm_trap)],
102  "ENDPGM_TRAP"> {
103  let hasSideEffects = 1;
104  let usesCustomInserter = 1;
105}
106
107def SIMULATED_TRAP : SPseudoInstSI<(outs), (ins), [(AMDGPUsimulated_trap)],
108                                   "SIMULATED_TRAP"> {
109  let hasSideEffects = 1;
110  let usesCustomInserter = 1;
111}
112
113def ATOMIC_FENCE : SPseudoInstSI<
114  (outs), (ins i32imm:$ordering, i32imm:$scope),
115  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
116  "ATOMIC_FENCE $ordering, $scope"> {
117  let hasSideEffects = 1;
118}
119
120let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
121
122// For use in patterns
123def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
124  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
125  let isPseudo = 1;
126  let isCodeGenOnly = 1;
127  let usesCustomInserter = 1;
128}
129
130// 64-bit vector move instruction. This is mainly used by the
131// SIFoldOperands pass to enable folding of inline immediates.
132def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
133                                      (ins VSrc_b64:$src0)> {
134  let isReMaterializable = 1;
135  let isAsCheapAsAMove = 1;
136  let isMoveImm = 1;
137  let SchedRW = [Write64Bit];
138  let Size = 4;
139  let UseNamedOperandTable = 1;
140}
141
142// 64-bit vector move with dpp. Expanded post-RA.
143def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> {
144  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
145}
146
147// 64-bit scalar move immediate instruction. This is used to avoid subregs
148// initialization and allow rematerialization.
149def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst),
150                                          (ins i64imm:$src0)> {
151  let isReMaterializable = 1;
152  let isAsCheapAsAMove = 1;
153  let isMoveImm = 1;
154  let SchedRW = [WriteSALU, Write64Bit];
155  let Size = 4;
156  let Uses = [];
157  let UseNamedOperandTable = 1;
158}
159
160// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
161// WQM pass processes it.
162def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
163
164// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
165// turned into a copy by WQM pass, but does not seed WQM requirements.
166def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
167
168// Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so
169// that the @earlyclobber is respected. The @earlyclobber is to make sure that
170// the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't
171// accidentally clobber inactive channels of $vdst.
172let Constraints = "@earlyclobber $vdst" in {
173def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
174def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
175}
176
177} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]
178
179def WWM_COPY : SPseudoInstSI <
180  (outs unknown:$dst), (ins unknown:$src)> {
181  let hasSideEffects = 0;
182  let isAsCheapAsAMove = 1;
183  let isConvergent = 1;
184}
185
186def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
187  let Uses = [EXEC];
188  let Defs = [EXEC, SCC];
189  let hasSideEffects = 0;
190  let mayLoad = 0;
191  let mayStore = 0;
192}
193
194def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
195  let hasSideEffects = 0;
196  let mayLoad = 0;
197  let mayStore = 0;
198}
199
200def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
201  let Uses = [EXEC];
202  let Defs = [EXEC, SCC];
203  let hasSideEffects = 0;
204  let mayLoad = 0;
205  let mayStore = 0;
206}
207
208def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
209  let hasSideEffects = 0;
210  let mayLoad = 0;
211  let mayStore = 0;
212}
213
214let usesCustomInserter = 1 in {
215let WaveSizePredicate = isWave32 in
216def S_INVERSE_BALLOT_U32 : SPseudoInstSI<
217  (outs SReg_32:$sdst), (ins SSrc_b32:$mask),
218  [(set i1:$sdst, (int_amdgcn_inverse_ballot i32:$mask))]
219>;
220
221let WaveSizePredicate = isWave64 in
222def S_INVERSE_BALLOT_U64 : SPseudoInstSI<
223  (outs SReg_64:$sdst), (ins SSrc_b64:$mask),
224  [(set i1:$sdst, (int_amdgcn_inverse_ballot i64:$mask))]
225>;
226} // End usesCustomInserter = 1
227
228// Pseudo instructions used for @llvm.fptrunc.round. The final codegen is done
229// in the ModeRegister pass.
230let Uses = [MODE, EXEC] in {
231def FPTRUNC_ROUND_F16_F32_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
232  (ins VGPR_32:$src0, i32imm:$round)>;
233
234def FPTRUNC_ROUND_F32_F64_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst),
235  (ins VReg_64:$src0, i32imm:$round)>;
236} // End Uses = [MODE, EXEC]
237
238def : GCNPat <(f16 (fptrunc_round f32:$src0, (i32 SupportedRoundMode:$round))),
239     (FPTRUNC_ROUND_F16_F32_PSEUDO $src0, (as_hw_round_mode $round))>;
240
241def : GCNPat <(f32 (fptrunc_round f64:$src0, (i32 SupportedRoundMode:$round))),
242     (FPTRUNC_ROUND_F32_F64_PSEUDO $src0, (as_hw_round_mode $round))>;
243
244// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
245// restoring it after we're done.
246let isConvergent = 1 in
247def V_SET_INACTIVE_B32 : VOP3_Pseudo<"v_set_inactive_b32", VOP2e_I32_I32_I32_I1>;
248
249foreach vt = Reg32Types.types in {
250def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)),
251     (V_SET_INACTIVE_B32 0, VSrc_b32:$src, 0, VSrc_b32:$inactive, (IMPLICIT_DEF))>;
252}
253
254def : GCNPat<(i32 (int_amdgcn_set_inactive_chain_arg i32:$src, i32:$inactive)),
255    (V_SET_INACTIVE_B32 0, VGPR_32:$src, 0, VGPR_32:$inactive, (IMPLICIT_DEF))>;
256
257let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {
258  def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
259    (ins VSrc_b32: $src, VSrc_b32:$strategy),
260    [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> {
261  }
262
263  def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst),
264    (ins VSrc_b32: $src, VSrc_b32:$strategy),
265    [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> {
266  }
267}
268
269let usesCustomInserter = 1, Defs = [VCC] in {
270def V_ADD_U64_PSEUDO : VPseudoInstSI <
271  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
272  [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))]
273>;
274
275def V_SUB_U64_PSEUDO : VPseudoInstSI <
276  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
277  [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))]
278>;
279} // End usesCustomInserter = 1, Defs = [VCC]
280
281let usesCustomInserter = 1, Defs = [SCC] in {
282def S_ADD_U64_PSEUDO : SPseudoInstSI <
283  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
284  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
285>;
286
287def S_SUB_U64_PSEUDO : SPseudoInstSI <
288  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
289  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
290>;
291
292def S_ADD_CO_PSEUDO : SPseudoInstSI <
293  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
294>;
295
296def S_SUB_CO_PSEUDO : SPseudoInstSI <
297  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
298>;
299
300def S_UADDO_PSEUDO : SPseudoInstSI <
301  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
302>;
303
304def S_USUBO_PSEUDO : SPseudoInstSI <
305  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
306>;
307
308let OtherPredicates = [HasShaderCyclesHiLoRegisters] in
309def GET_SHADERCYCLESHILO : SPseudoInstSI<
310  (outs SReg_64:$sdst), (ins),
311  [(set SReg_64:$sdst, (i64 (readcyclecounter)))]
312>;
313
314} // End usesCustomInserter = 1, Defs = [SCC]
315
316let usesCustomInserter = 1 in {
317def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
318  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
319} // End let usesCustomInserter = 1, SALU = 1
320
321// Wrap an instruction by duplicating it, except for setting isTerminator.
322class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
323      base_inst.OutOperandList,
324      base_inst.InOperandList> {
325  let Uses = base_inst.Uses;
326  let Defs = base_inst.Defs;
327  let isTerminator = 1;
328  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
329  let hasSideEffects = base_inst.hasSideEffects;
330  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
331  let CodeSize = base_inst.CodeSize;
332  let SchedRW = base_inst.SchedRW;
333}
334
335let WaveSizePredicate = isWave64 in {
336def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
337def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
338def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>;
339def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
340def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>;
341def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>;
342}
343
344let WaveSizePredicate = isWave32 in {
345def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
346def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
347def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
348def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
349def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>;
350def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>;
351}
352
353
354def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
355  [(int_amdgcn_wave_barrier)]> {
356  let SchedRW = [];
357  let hasNoSchedulingInfo = 1;
358  let hasSideEffects = 1;
359  let mayLoad = 0;
360  let mayStore = 0;
361  let isConvergent = 1;
362  let FixedSize = 1;
363  let Size = 0;
364  let isMeta = 1;
365}
366
367def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask),
368  [(int_amdgcn_sched_barrier (i32 timm:$mask))]> {
369  let SchedRW = [];
370  let hasNoSchedulingInfo = 1;
371  let hasSideEffects = 1;
372  let mayLoad = 0;
373  let mayStore = 0;
374  let isConvergent = 1;
375  let FixedSize = 1;
376  let Size = 0;
377  let isMeta = 1;
378}
379
380def SCHED_GROUP_BARRIER : SPseudoInstSI<
381  (outs),
382  (ins i32imm:$mask, i32imm:$size, i32imm:$syncid),
383  [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> {
384  let SchedRW = [];
385  let hasNoSchedulingInfo = 1;
386  let hasSideEffects = 1;
387  let mayLoad = 0;
388  let mayStore = 0;
389  let isConvergent = 1;
390  let FixedSize = 1;
391  let Size = 0;
392  let isMeta = 1;
393}
394
395def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask),
396  [(int_amdgcn_iglp_opt (i32 timm:$mask))]> {
397  let SchedRW = [];
398  let hasNoSchedulingInfo = 1;
399  let hasSideEffects = 1;
400  let mayLoad = 0;
401  let mayStore = 0;
402  let isConvergent = 1;
403  let FixedSize = 1;
404  let Size = 0;
405  let isMeta = 1;
406}
407
408// SI pseudo instructions. These are used by the CFG structurizer pass
409// and should be lowered to ISA instructions prior to codegen.
410
411// As we have enhanced control flow intrinsics to work under unstructured CFG,
412// duplicating such intrinsics can be actually treated as legal. On the contrary,
413// by making them non-duplicable, we are observing better code generation result.
414// So we choose to mark them non-duplicable in hope of getting better code
415// generation as well as simplied CFG during Machine IR optimization stage.
416
417let isTerminator = 1, isNotDuplicable = 1 in {
418
419def SI_IF: CFPseudoInstSI <
420  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
421  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
422  let Constraints = "";
423  let Size = 12;
424  let hasSideEffects = 1;
425  let IsNeverUniform = 1;
426}
427
428def SI_ELSE : CFPseudoInstSI <
429  (outs SReg_1:$dst),
430  (ins SReg_1:$src, brtarget:$target), [], 1, 1> {
431  let Size = 12;
432  let hasSideEffects = 1;
433  let IsNeverUniform = 1;
434}
435
436def SI_WATERFALL_LOOP : CFPseudoInstSI <
437  (outs),
438  (ins brtarget:$target), [], 1> {
439  let Size = 8;
440  let isBranch = 1;
441  let Defs = [];
442}
443
444def SI_LOOP : CFPseudoInstSI <
445  (outs), (ins SReg_1:$saved, brtarget:$target),
446  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
447  let Size = 8;
448  let isBranch = 1;
449  let hasSideEffects = 1;
450  let IsNeverUniform = 1;
451}
452
453} // End isTerminator = 1
454
455def SI_END_CF : CFPseudoInstSI <
456  (outs), (ins SReg_1:$saved), [], 1, 1> {
457  let Size = 4;
458  let isAsCheapAsAMove = 1;
459  let isReMaterializable = 1;
460  let hasSideEffects = 1;
461  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
462  let mayLoad = 1; // FIXME: Should not need memory flags
463  let mayStore = 1;
464}
465
466def SI_IF_BREAK : CFPseudoInstSI <
467  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
468  let Size = 4;
469  let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details.
470  let isAsCheapAsAMove = 1;
471  let isReMaterializable = 1;
472}
473
474// Branch to the early termination block of the shader if SCC is 0.
475// This uses SCC from a previous SALU operation, i.e. the update of
476// a mask of live lanes after a kill/demote operation.
477// Only valid in pixel shaders.
478def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> {
479  let Uses = [EXEC,SCC];
480}
481
482let Uses = [EXEC] in {
483
484multiclass PseudoInstKill <dag ins> {
485  // Even though this pseudo can usually be expanded without an SCC def, we
486  // conservatively assume that it has an SCC def, both because it is sometimes
487  // required in degenerate cases (when V_CMPX cannot be used due to constant
488  // bus limitations) and because it allows us to avoid having to track SCC
489  // liveness across basic blocks.
490  let Defs = [EXEC,SCC] in
491  def _PSEUDO : PseudoInstSI <(outs), ins> {
492    let isConvergent = 1;
493    let usesCustomInserter = 1;
494  }
495
496  let Defs = [EXEC,SCC] in
497  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
498    let isTerminator = 1;
499  }
500}
501
502defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
503let Defs = [VCC] in
504defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;
505
506let Defs = [EXEC,VCC] in
507def SI_ILLEGAL_COPY : SPseudoInstSI <
508  (outs unknown:$dst), (ins unknown:$src),
509  [], " ; illegal copy $src to $dst">;
510
511} // End Uses = [EXEC], Defs = [EXEC,VCC]
512
513// Branch on undef scc. Used to avoid intermediate copy from
514// IMPLICIT_DEF to SCC.
515def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> {
516  let isTerminator = 1;
517  let usesCustomInserter = 1;
518  let isBranch = 1;
519}
520
521def SI_PS_LIVE : PseudoInstSI <
522  (outs SReg_1:$dst), (ins),
523  [(set i1:$dst, (int_amdgcn_ps_live))]> {
524  let SALU = 1;
525}
526
527let Uses = [EXEC] in {
528def SI_LIVE_MASK : PseudoInstSI <
529  (outs SReg_1:$dst), (ins),
530  [(set i1:$dst, (int_amdgcn_live_mask))]> {
531  let SALU = 1;
532}
533let Defs = [EXEC,SCC] in {
534// Demote: Turn a pixel shader thread into a helper lane.
535def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>;
536} // End Defs = [EXEC,SCC]
537} // End Uses = [EXEC]
538
539def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
540  [(int_amdgcn_unreachable)],
541  "; divergent unreachable"> {
542  let Size = 0;
543  let hasNoSchedulingInfo = 1;
544  let FixedSize = 1;
545  let isMeta = 1;
546  let maybeAtomic = 0;
547}
548
549// Used as an isel pseudo to directly emit initialization with an
550// s_mov_b32 rather than a copy of another initialized
551// register. MachineCSE skips copies, and we don't want to have to
552// fold operands before it runs.
553def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
554  let Defs = [M0];
555  let usesCustomInserter = 1;
556  let isAsCheapAsAMove = 1;
557  let isReMaterializable = 1;
558}
559
560def SI_INIT_EXEC : SPseudoInstSI <
561  (outs), (ins i64imm:$src),
562  [(int_amdgcn_init_exec (i64 timm:$src))]> {
563  let Defs = [EXEC];
564  let isAsCheapAsAMove = 1;
565}
566
567def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
568  (outs), (ins SSrc_b32:$input, i32imm:$shift),
569  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
570  let Defs = [EXEC];
571}
572
573// Sets EXEC to all lanes and returns the previous EXEC.
574def SI_INIT_WHOLE_WAVE : SPseudoInstSI <
575  (outs SReg_1:$dst), (ins),
576  [(set i1:$dst, (int_amdgcn_init_whole_wave))]> {
577  let Defs = [EXEC];
578  let Uses = [EXEC];
579
580  let isConvergent = 1;
581}
582
583// Return for returning shaders to a shader variant epilog.
584def SI_RETURN_TO_EPILOG : SPseudoInstSI <
585  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
586  let isTerminator = 1;
587  let isBarrier = 1;
588  let isReturn = 1;
589  let hasNoSchedulingInfo = 1;
590  let DisableWQM = 1;
591  let FixedSize = 1;
592
593  // TODO: Should this be true?
594  let isMeta = 0;
595}
596
597// Return for returning function calls.
598def SI_RETURN : SPseudoInstSI <
599  (outs), (ins), [(AMDGPUret_glue)],
600  "; return"> {
601  let isTerminator = 1;
602  let isBarrier = 1;
603  let isReturn = 1;
604  let SchedRW = [WriteBranch];
605}
606
607// Return for returning function calls without output register.
608//
609// This version is only needed so we can fill in the output register
610// in the custom inserter.
611def SI_CALL_ISEL : SPseudoInstSI <
612  (outs), (ins SSrc_b64:$src0, unknown:$callee),
613  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
614  let Size = 4;
615  let isCall = 1;
616  let SchedRW = [WriteBranch];
617  let usesCustomInserter = 1;
618  // TODO: Should really base this on the call target
619  let isConvergent = 1;
620}
621
622def : GCNPat<
623  (AMDGPUcall i64:$src0, (i64 0)),
624  (SI_CALL_ISEL $src0, (i64 0))
625>;
626
627// Wrapper around s_swappc_b64 with extra $callee parameter to track
628// the called function after regalloc.
629def SI_CALL : SPseudoInstSI <
630  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
631  let Size = 4;
632  let FixedSize = 1;
633  let isCall = 1;
634  let UseNamedOperandTable = 1;
635  let SchedRW = [WriteBranch];
636  // TODO: Should really base this on the call target
637  let isConvergent = 1;
638}
639
640class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs),
641  (ins rc:$src0, unknown:$callee, i32imm:$fpdiff),
642  [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
643  let Size = 4;
644  let FixedSize = 1;
645  let isCall = 1;
646  let isTerminator = 1;
647  let isReturn = 1;
648  let isBarrier = 1;
649  let UseNamedOperandTable = 1;
650  let SchedRW = [WriteBranch];
651  // TODO: Should really base this on the call target
652  let isConvergent = 1;
653}
654
655// Tail call handling pseudo
656def SI_TCRETURN :     SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>;
657def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>;
658
659// Handle selecting indirect tail calls
660def : GCNPat<
661  (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)),
662  (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
663>;
664
665// Handle selecting indirect tail calls for AMDGPU_gfx
666def : GCNPat<
667  (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)),
668  (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff)
669>;
670
671// Pseudo for the llvm.amdgcn.cs.chain intrinsic.
672// This is essentially a tail call, but it also takes a mask to put in EXEC
673// right before jumping to the callee.
674class SI_CS_CHAIN_TC<
675    ValueType execvt, Predicate wavesizepred,
676    RegisterOperand execrc = getSOPSrcForVT<execvt>.ret>
677    : SPseudoInstSI <(outs),
678      (ins CCR_SGPR_64:$src0, unknown:$callee, i32imm:$fpdiff, execrc:$exec)> {
679  let FixedSize = 0;
680  let isCall = 1;
681  let isTerminator = 1;
682  let isBarrier = 1;
683  let isReturn = 1;
684  let UseNamedOperandTable = 1;
685  let SchedRW = [WriteBranch];
686  let isConvergent = 1;
687
688  let WaveSizePredicate = wavesizepred;
689}
690
691def SI_CS_CHAIN_TC_W32 : SI_CS_CHAIN_TC<i32, isWave32>;
692def SI_CS_CHAIN_TC_W64 : SI_CS_CHAIN_TC<i64, isWave64>;
693
694// Handle selecting direct & indirect calls via SI_CS_CHAIN_TC_W32/64
695multiclass si_cs_chain_tc_pattern<
696  dag callee, ValueType execvt, RegisterOperand execrc, Instruction tc> {
697def : GCNPat<
698  (AMDGPUtc_return_chain i64:$src0, callee, (i32 timm:$fpdiff), execvt:$exec),
699  (tc CCR_SGPR_64:$src0, callee, i32imm:$fpdiff, execrc:$exec)
700>;
701}
702
703multiclass si_cs_chain_tc_patterns<
704  ValueType execvt,
705  RegisterOperand execrc = getSOPSrcForVT<execvt>.ret,
706  Instruction tc = !if(!eq(execvt, i32), SI_CS_CHAIN_TC_W32, SI_CS_CHAIN_TC_W64)
707  > {
708  defm direct: si_cs_chain_tc_pattern<(tglobaladdr:$callee), execvt, execrc, tc>;
709  defm indirect: si_cs_chain_tc_pattern<(i64 0), execvt, execrc, tc>;
710}
711
712defm : si_cs_chain_tc_patterns<i32>;
713defm : si_cs_chain_tc_patterns<i64>;
714
715def ADJCALLSTACKUP : SPseudoInstSI<
716  (outs), (ins i32imm:$amt0, i32imm:$amt1),
717  [(callseq_start timm:$amt0, timm:$amt1)],
718  "; adjcallstackup $amt0 $amt1"> {
719  let Size = 8; // Worst case. (s_add_u32 + constant)
720  let FixedSize = 1;
721  let hasSideEffects = 1;
722  let usesCustomInserter = 1;
723  let SchedRW = [WriteSALU];
724  let Defs = [SCC];
725}
726
727def ADJCALLSTACKDOWN : SPseudoInstSI<
728  (outs), (ins i32imm:$amt1, i32imm:$amt2),
729  [(callseq_end timm:$amt1, timm:$amt2)],
730  "; adjcallstackdown $amt1"> {
731  let Size = 8; // Worst case. (s_add_u32 + constant)
732  let hasSideEffects = 1;
733  let usesCustomInserter = 1;
734  let SchedRW = [WriteSALU];
735  let Defs = [SCC];
736}
737
738let Defs = [M0, EXEC, SCC],
739  UseNamedOperandTable = 1 in {
740
741// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
742// addressing implementation.
743class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
744  (outs VGPR_32:$vdst),
745  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
746  let usesCustomInserter = 1;
747}
748
749class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
750  (outs rc:$vdst),
751  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
752  let Constraints = "$src = $vdst";
753  let usesCustomInserter = 1;
754}
755
756def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
757def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
758def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
759def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
760def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>;
761def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>;
762def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>;
763def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>;
764def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
765def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;
766
767def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
768def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
769def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
770def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
771def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>;
772def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>;
773def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>;
774def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>;
775def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
776def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;
777
778} // End Uses = [EXEC], Defs = [M0, EXEC]
779
780// This is a pseudo variant of the v_movreld_b32 instruction in which the
781// vector operand appears only twice, once as def and once as use. Using this
782// pseudo avoids problems with the Two Address instructions pass.
783class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
784                                RegisterOperand val_ty> : PseudoInstSI <
785  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
786  let Constraints = "$vsrc = $vdst";
787  let Uses = [M0];
788}
789
790class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
791  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> {
792  let VALU = 1;
793  let VOP1 = 1;
794  let Uses = [M0, EXEC];
795}
796
797class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc,
798                                  RegisterOperand val_ty> :
799  INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> {
800  let SALU = 1;
801  let SOP1 = 1;
802  let Uses = [M0];
803}
804
805class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> :
806  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>;
807class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> :
808  S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>;
809
810def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>;
811def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>;
812def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>;
813def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>;
814def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>;
815def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>;
816def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>;
817def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>;
818def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>;
819def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>;
820def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>;
821def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>;
822
823def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>;
824def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>;
825def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>;
826def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>;
827def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>;
828def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>;
829def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>;
830def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>;
831def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>;
832def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>;
833def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>;
834def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>;
835
836def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>;
837def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>;
838def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>;
839def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>;
840def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>;
841
842// These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these
843// pseudos we avoid spills or copies being inserted within indirect sequences
844// that switch the VGPR indexing mode. Spills to accvgprs could be effected by
845// this mode switching.
846
847class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
848  (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> {
849  let Constraints = "$vsrc = $vdst";
850  let VALU = 1;
851  let Uses = [M0, EXEC];
852  let Defs = [M0];
853}
854
855def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>;
856def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>;
857def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>;
858def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>;
859def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>;
860def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>;
861def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>;
862def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>;
863def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>;
864def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>;
865def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>;
866def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>;
867
868class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI <
869  (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> {
870  let VALU = 1;
871  let Uses = [M0, EXEC];
872  let Defs = [M0];
873}
874
875def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>;
876def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>;
877def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>;
878def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>;
879def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>;
880def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>;
881def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>;
882def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>;
883def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>;
884def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>;
885def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>;
886def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>;
887
888multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
889  let UseNamedOperandTable = 1, Spill = 1, SALU = 1, Uses = [EXEC] in {
890    def _SAVE : PseudoInstSI <
891      (outs),
892      (ins sgpr_class:$data, i32imm:$addr)> {
893      let mayStore = 1;
894      let mayLoad = 0;
895    }
896
897    def _RESTORE : PseudoInstSI <
898      (outs sgpr_class:$data),
899      (ins i32imm:$addr)> {
900      let mayStore = 0;
901      let mayLoad = 1;
902    }
903  } // End UseNamedOperandTable = 1
904}
905
906// You cannot use M0 as the output of v_readlane_b32 instructions or
907// use it in the sdata operand of SMEM instructions. We still need to
908// be able to spill the physical register m0, so allow it for
909// SI_SPILL_32_* instructions.
910defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
911defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
912defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
913defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
914defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
915defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
916defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>;
917defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
918defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>;
919defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>;
920defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>;
921defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>;
922defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
923defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;
924
925let Spill = 1, VALU = 1, isConvergent = 1 in {
926def SI_SPILL_S32_TO_VGPR : PseudoInstSI <(outs VGPR_32:$vdst),
927  (ins SReg_32:$src0, i32imm:$src1, VGPR_32:$vdst_in)> {
928  let Size = 4;
929  let FixedSize = 1;
930  let IsNeverUniform = 1;
931  let hasSideEffects = 0;
932  let mayLoad = 0;
933  let mayStore = 0;
934  let hasExtraDefRegAllocReq = 1;
935  let Constraints = "$vdst = $vdst_in";
936}
937
938def SI_RESTORE_S32_FROM_VGPR : PseudoInstSI <(outs SReg_32:$sdst),
939  (ins VGPR_32:$src0, i32imm:$src1)> {
940  let Size = 4;
941  let FixedSize = 1;
942  let hasSideEffects = 0;
943  let mayLoad = 0;
944  let mayStore = 0;
945  let hasExtraSrcRegAllocReq = 1;
946}
947} // End Spill = 1, VALU = 1, isConvergent = 1
948
949// VGPR or AGPR spill instructions. In case of AGPR spilling a temp register
950// needs to be used and an extra instruction to move between VGPR and AGPR.
951// UsesTmp adds to the total size of an expanded spill in this case.
952multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> {
953  let UseNamedOperandTable = 1, Spill = 1, VALU = 1,
954       SchedRW = [WriteVMEM] in {
955    def _SAVE : VPseudoInstSI <
956      (outs),
957      (ins vgpr_class:$vdata, i32imm:$vaddr,
958           SReg_32:$soffset, i32imm:$offset)> {
959      let mayStore = 1;
960      let mayLoad = 0;
961      // (2 * 4) + (8 * num_subregs) bytes maximum
962      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
963      // Size field is unsigned char and cannot fit more.
964      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
965    }
966
967    def _RESTORE : VPseudoInstSI <
968      (outs vgpr_class:$vdata),
969      (ins i32imm:$vaddr,
970           SReg_32:$soffset, i32imm:$offset)> {
971      let mayStore = 0;
972      let mayLoad = 1;
973
974      // (2 * 4) + (8 * num_subregs) bytes maximum
975      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8);
976      // Size field is unsigned char and cannot fit more.
977      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
978    }
979  } // End UseNamedOperandTable = 1, Spill = 1, VALU = 1, SchedRW = [WriteVMEM]
980}
981
982defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
983defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
984defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
985defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
986defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
987defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
988defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>;
989defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
990defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>;
991defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>;
992defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>;
993defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>;
994defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
995defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;
996
997defm SI_SPILL_A32  : SI_SPILL_VGPR <AGPR_32, 1>;
998defm SI_SPILL_A64  : SI_SPILL_VGPR <AReg_64, 1>;
999defm SI_SPILL_A96  : SI_SPILL_VGPR <AReg_96, 1>;
1000defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>;
1001defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>;
1002defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>;
1003defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>;
1004defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>;
1005defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>;
1006defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>;
1007defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>;
1008defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>;
1009defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>;
1010defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>;
1011
1012defm SI_SPILL_AV32  : SI_SPILL_VGPR <AV_32, 1>;
1013defm SI_SPILL_AV64  : SI_SPILL_VGPR <AV_64, 1>;
1014defm SI_SPILL_AV96  : SI_SPILL_VGPR <AV_96, 1>;
1015defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>;
1016defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>;
1017defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>;
1018defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>;
1019defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>;
1020defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>;
1021defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>;
1022defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>;
1023defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>;
1024defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>;
1025defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>;
1026
1027let isConvergent = 1 in {
1028  defm SI_SPILL_WWM_V32  : SI_SPILL_VGPR <VGPR_32>;
1029  defm SI_SPILL_WWM_AV32 : SI_SPILL_VGPR <AV_32, 1>;
1030}
1031
1032let isReMaterializable = 1, isAsCheapAsAMove = 1 in
1033def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
1034  (outs SReg_64:$dst),
1035  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
1036  [(set SReg_64:$dst,
1037      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
1038  let Defs = [SCC];
1039}
1040
1041def : GCNPat <
1042  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
1043  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
1044>;
1045
1046def : GCNPat<
1047  (AMDGPUtrap timm:$trapid),
1048  (S_TRAP $trapid)
1049>;
1050
1051def : GCNPat<
1052  (AMDGPUelse i1:$src, bb:$target),
1053  (SI_ELSE $src, $target)
1054>;
1055
1056def : GCNPat <
1057  (int_amdgcn_kill i1:$src),
1058  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
1059>;
1060
1061def : GCNPat <
1062  (int_amdgcn_kill (i1 (not i1:$src))),
1063  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
1064>;
1065
1066let SubtargetPredicate = NotHasSALUFloatInsts in
1067def : GCNPat <
1068  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
1069  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
1070>;
1071
1072def : GCNPat <
1073  (int_amdgcn_wqm_demote i1:$src),
1074  (SI_DEMOTE_I1 SCSrc_i1:$src, 0)
1075>;
1076
1077def : GCNPat <
1078  (int_amdgcn_wqm_demote (i1 (not i1:$src))),
1079  (SI_DEMOTE_I1 SCSrc_i1:$src, -1)
1080>;
1081
1082  // TODO: we could add more variants for other types of conditionals
1083
1084def : GCNPat <
1085  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1086  (COPY $src) // Return the SGPRs representing i1 src
1087>;
1088
1089def : GCNPat <
1090  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
1091  (COPY $src) // Return the SGPRs representing i1 src
1092>;
1093
1094//===----------------------------------------------------------------------===//
1095// VOP1 Patterns
1096//===----------------------------------------------------------------------===//
1097
1098multiclass f16_to_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> {
1099  // f16_to_fp patterns
1100  def : GCNPat <
1101    (f32 (any_f16_to_fp i32:$src0)),
1102    (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0)
1103  >;
1104
1105  def : GCNPat <
1106    (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
1107    (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0)
1108  >;
1109
1110  def : GCNPat <
1111    (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
1112    (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
1113  >;
1114
1115  def : GCNPat <
1116    (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
1117    (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0)
1118  >;
1119
1120  def : GCNPat <
1121    (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
1122    (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0)
1123  >;
1124
1125  // fp_to_fp16 patterns
1126  def : GCNPat <
1127    (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1128    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1129  >;
1130
1131  // This is only used on targets without half support
1132  // TODO: Introduce strict variant of AMDGPUfp_to_f16 and share custom lowering
1133  def : GCNPat <
1134    (i32 (strict_fp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
1135    (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0)
1136  >;
1137}
1138
1139let True16Predicate = NotHasTrue16BitInsts in
1140defm : f16_to_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>;
1141
1142let True16Predicate = UseFakeTrue16Insts in
1143defm : f16_to_fp_Pats<V_CVT_F16_F32_fake16_e64, V_CVT_F32_F16_fake16_e64>;
1144
1145multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64,
1146                       Instruction cvt_f32_f16_inst_e64,
1147                       RegOrImmOperand VSrc> {
1148  def : GCNPat <
1149    (f64 (any_fpextend f16:$src)),
1150    (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src))
1151  >;
1152
1153  def : GCNPat <
1154    (i32 (fp_to_sint f16:$src)),
1155    (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc:$src))
1156  >;
1157
1158  def : GCNPat <
1159    (i32 (fp_to_uint f16:$src)),
1160    (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc:$src))
1161  >;
1162
1163  def : GCNPat <
1164    (f16 (sint_to_fp i32:$src)),
1165    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src))
1166  >;
1167
1168  def : GCNPat <
1169    (f16 (uint_to_fp i32:$src)),
1170    (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src))
1171  >;
1172}
1173
1174let True16Predicate = NotHasTrue16BitInsts in
1175defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64, VSrc_b32>;
1176
1177let True16Predicate = UseRealTrue16Insts in
1178defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64, VSrcT_b16>;
1179
1180let True16Predicate = UseFakeTrue16Insts in
1181defm : f16_fp_Pats<V_CVT_F16_F32_fake16_e64, V_CVT_F32_F16_fake16_e64, VSrc_b16>;
1182
1183//===----------------------------------------------------------------------===//
1184// VOP2 Patterns
1185//===----------------------------------------------------------------------===//
1186
1187// NoMods pattern used for mac. If there are any source modifiers then it's
1188// better to select mad instead of mac.
1189class FMADPat <ValueType vt, Instruction inst>
1190  : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)),
1191                          (vt (VOP3NoMods vt:$src1)),
1192                          (vt (VOP3NoMods vt:$src2)))),
1193    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1194          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1195>;
1196
1197// Prefer mac form when there are no modifiers.
1198let AddedComplexity = 9 in {
1199let OtherPredicates = [HasMadMacF32Insts] in
1200def : FMADPat <f32, V_MAC_F32_e64>;
1201
1202// Don't allow source modifiers. If there are any source modifiers then it's
1203// better to select mad instead of mac.
1204let SubtargetPredicate = isGFX6GFX7GFX10,
1205    OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1206def : GCNPat <
1207      (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0),
1208                                    (VOP3NoMods f32:$src1)),
1209                 (VOP3NoMods f32:$src2))),
1210      (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1211                            SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1212>;
1213
1214// Don't allow source modifiers. If there are any source modifiers then it's
1215// better to select fma instead of fmac.
1216let SubtargetPredicate = HasFmaLegacy32 in
1217def : GCNPat <
1218      (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0),
1219                                  (VOP3NoMods f32:$src1),
1220                                  (VOP3NoMods f32:$src2))),
1221      (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
1222                             SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1223>;
1224
1225let SubtargetPredicate = Has16BitInsts in
1226def : FMADPat <f16, V_MAC_F16_e64>;
1227} // AddedComplexity = 9
1228
1229let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in
1230def : GCNPat <
1231      (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod),
1232                                    (VOP3Mods f32:$src1, i32:$src1_mod)),
1233                 (VOP3Mods f32:$src2, i32:$src2_mod))),
1234      (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1,
1235                        $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
1236>;
1237
1238class VOPSelectModsPat <ValueType vt> : GCNPat <
1239  (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods),
1240                        (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))),
1241  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
1242                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
1243>;
1244
1245class VOPSelectPat <ValueType vt> : GCNPat <
1246  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1247  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
1248>;
1249class VOPSelectPat_t16 <ValueType vt> : GCNPat <
1250  (vt (select i1:$src0, vt:$src1, vt:$src2)),
1251  (V_CNDMASK_B16_t16_e64 0, VSrcT_b16:$src2, 0, VSrcT_b16:$src1, SSrc_i1:$src0)
1252>;
1253
1254def : VOPSelectModsPat <i32>;
1255def : VOPSelectModsPat <f32>;
1256foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in
1257let True16Predicate = p in {
1258  def : VOPSelectPat <f16>;
1259  def : VOPSelectPat <i16>;
1260} // End True16Predicate = p
1261let True16Predicate = UseRealTrue16Insts in {
1262  def : VOPSelectPat_t16 <f16>;
1263  def : VOPSelectPat_t16 <i16>;
1264} // End True16Predicate = UseRealTrue16Insts
1265
1266let AddedComplexity = 1 in {
1267def : GCNPat <
1268  (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)),
1269  (V_BCNT_U32_B32_e64 $popcnt, $val)
1270>;
1271}
1272
1273def : GCNPat <
1274  (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)),
1275  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
1276>;
1277
1278def : GCNPat <
1279  (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)),
1280  (V_BCNT_U32_B32_e64 $popcnt, $val)
1281>;
1282
1283def : GCNPat <
1284  (i64 (DivergentUnaryFrag<ctpop> i64:$src)),
1285  (REG_SEQUENCE VReg_64,
1286    (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)),
1287      (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0,
1288      (i32 (V_MOV_B32_e32 (i32 0))), sub1)
1289>;
1290
1291/********** ============================================ **********/
1292/********** Extraction, Insertion, Building and Casting  **********/
1293/********** ============================================ **********/
1294
1295// Special case for 2 element vectors. REQ_SEQUENCE produces better code
1296// than an INSERT_SUBREG.
1297multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> {
1298  def : GCNPat <
1299    (insertelt vec_type:$vec, elem_type:$elem, 0),
1300    (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1)
1301  >;
1302
1303  def : GCNPat <
1304    (insertelt vec_type:$vec, elem_type:$elem, 1),
1305    (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1)
1306  >;
1307}
1308
1309foreach Index = 0-1 in {
1310  def Extract_Element_v2i32_#Index : Extract_Element <
1311    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
1312  >;
1313
1314  def Extract_Element_v2f32_#Index : Extract_Element <
1315    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
1316  >;
1317}
1318
1319defm : Insert_Element_V2 <SReg_64, i32, v2i32>;
1320defm : Insert_Element_V2 <SReg_64, f32, v2f32>;
1321
1322foreach Index = 0-2 in {
1323  def Extract_Element_v3i32_#Index : Extract_Element <
1324    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1325  >;
1326  def Insert_Element_v3i32_#Index : Insert_Element <
1327    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
1328  >;
1329
1330  def Extract_Element_v3f32_#Index : Extract_Element <
1331    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1332  >;
1333  def Insert_Element_v3f32_#Index : Insert_Element <
1334    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
1335  >;
1336}
1337
1338foreach Index = 0-3 in {
1339  def Extract_Element_v4i32_#Index : Extract_Element <
1340    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1341  >;
1342  def Insert_Element_v4i32_#Index : Insert_Element <
1343    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
1344  >;
1345
1346  def Extract_Element_v4f32_#Index : Extract_Element <
1347    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1348  >;
1349  def Insert_Element_v4f32_#Index : Insert_Element <
1350    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
1351  >;
1352}
1353
1354foreach Index = 0-4 in {
1355  def Extract_Element_v5i32_#Index : Extract_Element <
1356    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1357  >;
1358  def Insert_Element_v5i32_#Index : Insert_Element <
1359    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
1360  >;
1361
1362  def Extract_Element_v5f32_#Index : Extract_Element <
1363    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1364  >;
1365  def Insert_Element_v5f32_#Index : Insert_Element <
1366    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
1367  >;
1368}
1369
1370foreach Index = 0-5 in {
1371  def Extract_Element_v6i32_#Index : Extract_Element <
1372    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1373  >;
1374  def Insert_Element_v6i32_#Index : Insert_Element <
1375    i32, v6i32, Index, !cast<SubRegIndex>(sub#Index)
1376  >;
1377
1378  def Extract_Element_v6f32_#Index : Extract_Element <
1379    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1380  >;
1381  def Insert_Element_v6f32_#Index : Insert_Element <
1382    f32, v6f32, Index, !cast<SubRegIndex>(sub#Index)
1383  >;
1384}
1385
1386foreach Index = 0-6 in {
1387  def Extract_Element_v7i32_#Index : Extract_Element <
1388    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1389  >;
1390  def Insert_Element_v7i32_#Index : Insert_Element <
1391    i32, v7i32, Index, !cast<SubRegIndex>(sub#Index)
1392  >;
1393
1394  def Extract_Element_v7f32_#Index : Extract_Element <
1395    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1396  >;
1397  def Insert_Element_v7f32_#Index : Insert_Element <
1398    f32, v7f32, Index, !cast<SubRegIndex>(sub#Index)
1399  >;
1400}
1401
1402foreach Index = 0-7 in {
1403  def Extract_Element_v8i32_#Index : Extract_Element <
1404    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1405  >;
1406  def Insert_Element_v8i32_#Index : Insert_Element <
1407    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
1408  >;
1409
1410  def Extract_Element_v8f32_#Index : Extract_Element <
1411    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1412  >;
1413  def Insert_Element_v8f32_#Index : Insert_Element <
1414    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
1415  >;
1416}
1417
1418foreach Index = 0-8 in {
1419  def Extract_Element_v9i32_#Index : Extract_Element <
1420    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1421  >;
1422  def Insert_Element_v9i32_#Index : Insert_Element <
1423    i32, v9i32, Index, !cast<SubRegIndex>(sub#Index)
1424  >;
1425
1426  def Extract_Element_v9f32_#Index : Extract_Element <
1427    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1428  >;
1429  def Insert_Element_v9f32_#Index : Insert_Element <
1430    f32, v9f32, Index, !cast<SubRegIndex>(sub#Index)
1431  >;
1432}
1433
1434foreach Index = 0-9 in {
1435  def Extract_Element_v10i32_#Index : Extract_Element <
1436    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1437  >;
1438  def Insert_Element_v10i32_#Index : Insert_Element <
1439    i32, v10i32, Index, !cast<SubRegIndex>(sub#Index)
1440  >;
1441
1442  def Extract_Element_v10f32_#Index : Extract_Element <
1443    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1444  >;
1445  def Insert_Element_v10f32_#Index : Insert_Element <
1446    f32, v10f32, Index, !cast<SubRegIndex>(sub#Index)
1447  >;
1448}
1449
1450foreach Index = 0-10 in {
1451  def Extract_Element_v11i32_#Index : Extract_Element <
1452    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1453  >;
1454  def Insert_Element_v11i32_#Index : Insert_Element <
1455    i32, v11i32, Index, !cast<SubRegIndex>(sub#Index)
1456  >;
1457
1458  def Extract_Element_v11f32_#Index : Extract_Element <
1459    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1460  >;
1461  def Insert_Element_v11f32_#Index : Insert_Element <
1462    f32, v11f32, Index, !cast<SubRegIndex>(sub#Index)
1463  >;
1464}
1465
1466foreach Index = 0-11 in {
1467  def Extract_Element_v12i32_#Index : Extract_Element <
1468    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1469  >;
1470  def Insert_Element_v12i32_#Index : Insert_Element <
1471    i32, v12i32, Index, !cast<SubRegIndex>(sub#Index)
1472  >;
1473
1474  def Extract_Element_v12f32_#Index : Extract_Element <
1475    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1476  >;
1477  def Insert_Element_v12f32_#Index : Insert_Element <
1478    f32, v12f32, Index, !cast<SubRegIndex>(sub#Index)
1479  >;
1480}
1481
1482foreach Index = 0-15 in {
1483  def Extract_Element_v16i32_#Index : Extract_Element <
1484    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1485  >;
1486  def Insert_Element_v16i32_#Index : Insert_Element <
1487    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
1488  >;
1489
1490  def Extract_Element_v16f32_#Index : Extract_Element <
1491    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1492  >;
1493  def Insert_Element_v16f32_#Index : Insert_Element <
1494    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
1495  >;
1496}
1497
1498
1499foreach Index = 0-31 in {
1500  def Extract_Element_v32i32_#Index : Extract_Element <
1501    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1502  >;
1503
1504  def Insert_Element_v32i32_#Index : Insert_Element <
1505    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
1506  >;
1507
1508  def Extract_Element_v32f32_#Index : Extract_Element <
1509    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1510  >;
1511
1512  def Insert_Element_v32f32_#Index : Insert_Element <
1513    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
1514  >;
1515}
1516
1517// FIXME: Why do only some of these type combinations for SReg and
1518// VReg?
1519// 16-bit bitcast
1520def : BitConvert <i16, f16, VGPR_32>;
1521def : BitConvert <f16, i16, VGPR_32>;
1522def : BitConvert <f16, bf16, VGPR_32>;
1523def : BitConvert <bf16, f16, VGPR_32>;
1524
1525def : BitConvert <i16, f16, SReg_32>;
1526def : BitConvert <f16, i16, SReg_32>;
1527def : BitConvert <f16, bf16, SReg_32>;
1528def : BitConvert <bf16, f16, SReg_32>;
1529
1530def : BitConvert <i16, bf16, VGPR_32>;
1531def : BitConvert <bf16, i16, VGPR_32>;
1532def : BitConvert <i16, bf16, SReg_32>;
1533def : BitConvert <bf16, i16, SReg_32>;
1534
1535// 32-bit bitcast
1536def : BitConvert <i32, f32, VGPR_32>;
1537def : BitConvert <f32, i32, VGPR_32>;
1538def : BitConvert <i32, f32, SReg_32>;
1539def : BitConvert <f32, i32, SReg_32>;
1540def : BitConvert <v2i16, i32, SReg_32>;
1541def : BitConvert <i32, v2i16, SReg_32>;
1542def : BitConvert <v2f16, i32, SReg_32>;
1543def : BitConvert <i32, v2f16, SReg_32>;
1544def : BitConvert <v2i16, v2f16, SReg_32>;
1545def : BitConvert <v2f16, v2i16, SReg_32>;
1546def : BitConvert <v2f16, f32, SReg_32>;
1547def : BitConvert <f32, v2f16, SReg_32>;
1548def : BitConvert <v2i16, f32, SReg_32>;
1549def : BitConvert <f32, v2i16, SReg_32>;
1550def : BitConvert <v2bf16, i32, SReg_32>;
1551def : BitConvert <i32, v2bf16, SReg_32>;
1552def : BitConvert <v2bf16, i32, VGPR_32>;
1553def : BitConvert <i32, v2bf16, VGPR_32>;
1554def : BitConvert <v2bf16, v2i16, SReg_32>;
1555def : BitConvert <v2i16, v2bf16, SReg_32>;
1556def : BitConvert <v2bf16, v2i16, VGPR_32>;
1557def : BitConvert <v2i16, v2bf16, VGPR_32>;
1558def : BitConvert <v2bf16, v2f16, SReg_32>;
1559def : BitConvert <v2f16, v2bf16, SReg_32>;
1560def : BitConvert <v2bf16, v2f16, VGPR_32>;
1561def : BitConvert <v2f16, v2bf16, VGPR_32>;
1562def : BitConvert <f32, v2bf16, VGPR_32>;
1563def : BitConvert <v2bf16, f32, VGPR_32>;
1564def : BitConvert <f32, v2bf16, SReg_32>;
1565def : BitConvert <v2bf16, f32, SReg_32>;
1566
1567
1568// 64-bit bitcast
1569def : BitConvert <i64, f64, VReg_64>;
1570def : BitConvert <f64, i64, VReg_64>;
1571def : BitConvert <v2i32, v2f32, VReg_64>;
1572def : BitConvert <v2f32, v2i32, VReg_64>;
1573def : BitConvert <i64, v2i32, VReg_64>;
1574def : BitConvert <v2i32, i64, VReg_64>;
1575def : BitConvert <i64, v2f32, VReg_64>;
1576def : BitConvert <v2f32, i64, VReg_64>;
1577def : BitConvert <f64, v2f32, VReg_64>;
1578def : BitConvert <v2f32, f64, VReg_64>;
1579def : BitConvert <f64, v2i32, VReg_64>;
1580def : BitConvert <v2i32, f64, VReg_64>;
1581def : BitConvert <v4i16, v4f16, VReg_64>;
1582def : BitConvert <v4f16, v4i16, VReg_64>;
1583def : BitConvert <v4bf16, v2i32, VReg_64>;
1584def : BitConvert <v2i32, v4bf16, VReg_64>;
1585def : BitConvert <v4bf16, i64, VReg_64>;
1586def : BitConvert <i64, v4bf16, VReg_64>;
1587def : BitConvert <v4bf16, v4i16, VReg_64>;
1588def : BitConvert <v4i16, v4bf16, VReg_64>;
1589def : BitConvert <v4bf16, v4f16, VReg_64>;
1590def : BitConvert <v4f16, v4bf16, VReg_64>;
1591def : BitConvert <v4bf16, v2f32, VReg_64>;
1592def : BitConvert <v2f32, v4bf16, VReg_64>;
1593def : BitConvert <v4bf16, f64, VReg_64>;
1594def : BitConvert <f64, v4bf16, VReg_64>;
1595
1596
1597// FIXME: Make SGPR
1598def : BitConvert <v2i32, v4f16, VReg_64>;
1599def : BitConvert <v4f16, v2i32, VReg_64>;
1600def : BitConvert <v2i32, v4f16, VReg_64>;
1601def : BitConvert <v2i32, v4i16, VReg_64>;
1602def : BitConvert <v4i16, v2i32, VReg_64>;
1603def : BitConvert <v2f32, v4f16, VReg_64>;
1604def : BitConvert <v4f16, v2f32, VReg_64>;
1605def : BitConvert <v2f32, v4i16, VReg_64>;
1606def : BitConvert <v4i16, v2f32, VReg_64>;
1607def : BitConvert <v4i16, f64, VReg_64>;
1608def : BitConvert <v4f16, f64, VReg_64>;
1609def : BitConvert <f64, v4i16, VReg_64>;
1610def : BitConvert <f64, v4f16, VReg_64>;
1611def : BitConvert <v4i16, i64, VReg_64>;
1612def : BitConvert <v4f16, i64, VReg_64>;
1613def : BitConvert <i64, v4i16, VReg_64>;
1614def : BitConvert <i64, v4f16, VReg_64>;
1615
1616def : BitConvert <v4i32, v4f32, VReg_128>;
1617def : BitConvert <v4f32, v4i32, VReg_128>;
1618
1619// 96-bit bitcast
1620def : BitConvert <v3i32, v3f32, SGPR_96>;
1621def : BitConvert <v3f32, v3i32, SGPR_96>;
1622
1623// 128-bit bitcast
1624def : BitConvert <v2i64, v4i32, SReg_128>;
1625def : BitConvert <v4i32, v2i64, SReg_128>;
1626def : BitConvert <v2f64, v4f32, VReg_128>;
1627def : BitConvert <v2f64, v4i32, VReg_128>;
1628def : BitConvert <v4f32, v2f64, VReg_128>;
1629def : BitConvert <v4i32, v2f64, VReg_128>;
1630def : BitConvert <v2i64, v2f64, VReg_128>;
1631def : BitConvert <v2f64, v2i64, VReg_128>;
1632def : BitConvert <v4f32, v2i64, VReg_128>;
1633def : BitConvert <v2i64, v4f32, VReg_128>;
1634def : BitConvert <v8i16, v4i32, SReg_128>;
1635def : BitConvert <v4i32, v8i16, SReg_128>;
1636def : BitConvert <v8f16, v4f32, VReg_128>;
1637def : BitConvert <v8f16, v4i32, VReg_128>;
1638def : BitConvert <v4f32, v8f16, VReg_128>;
1639def : BitConvert <v4i32, v8f16, VReg_128>;
1640def : BitConvert <v8i16, v8f16, VReg_128>;
1641def : BitConvert <v8f16, v8i16, VReg_128>;
1642def : BitConvert <v4f32, v8i16, VReg_128>;
1643def : BitConvert <v8i16, v4f32, VReg_128>;
1644def : BitConvert <v8i16, v8f16, SReg_128>;
1645def : BitConvert <v8i16, v2i64, SReg_128>;
1646def : BitConvert <v8i16, v2f64, SReg_128>;
1647def : BitConvert <v8f16, v2i64, SReg_128>;
1648def : BitConvert <v8f16, v2f64, SReg_128>;
1649def : BitConvert <v8f16, v8i16, SReg_128>;
1650def : BitConvert <v2i64, v8i16, SReg_128>;
1651def : BitConvert <v2f64, v8i16, SReg_128>;
1652def : BitConvert <v2i64, v8f16, SReg_128>;
1653def : BitConvert <v2f64, v8f16, SReg_128>;
1654
1655def : BitConvert <v4i32, v8bf16, SReg_128>;
1656def : BitConvert <v8bf16, v4i32, SReg_128>;
1657def : BitConvert <v4i32, v8bf16, VReg_128>;
1658def : BitConvert <v8bf16, v4i32, VReg_128>;
1659
1660def : BitConvert <v4f32, v8bf16, SReg_128>;
1661def : BitConvert <v8bf16, v4f32, SReg_128>;
1662def : BitConvert <v4f32, v8bf16, VReg_128>;
1663def : BitConvert <v8bf16, v4f32, VReg_128>;
1664
1665def : BitConvert <v8i16, v8bf16, SReg_128>;
1666def : BitConvert <v8bf16, v8i16, SReg_128>;
1667def : BitConvert <v8i16, v8bf16, VReg_128>;
1668def : BitConvert <v8bf16, v8i16, VReg_128>;
1669
1670def : BitConvert <v8f16, v8bf16, SReg_128>;
1671def : BitConvert <v8bf16, v8f16, SReg_128>;
1672def : BitConvert <v8f16, v8bf16, VReg_128>;
1673def : BitConvert <v8bf16, v8f16, VReg_128>;
1674
1675def : BitConvert <v2f64, v8bf16, SReg_128>;
1676def : BitConvert <v8bf16, v2f64, SReg_128>;
1677def : BitConvert <v2f64, v8bf16, VReg_128>;
1678def : BitConvert <v8bf16, v2f64, VReg_128>;
1679
1680def : BitConvert <v2i64, v8bf16, SReg_128>;
1681def : BitConvert <v8bf16, v2i64, SReg_128>;
1682def : BitConvert <v2i64, v8bf16, VReg_128>;
1683def : BitConvert <v8bf16, v2i64, VReg_128>;
1684
1685
1686// 160-bit bitcast
1687def : BitConvert <v5i32, v5f32, SReg_160>;
1688def : BitConvert <v5f32, v5i32, SReg_160>;
1689def : BitConvert <v5i32, v5f32, VReg_160>;
1690def : BitConvert <v5f32, v5i32, VReg_160>;
1691
1692// 192-bit bitcast
1693def : BitConvert <v6i32, v6f32, SReg_192>;
1694def : BitConvert <v6f32, v6i32, SReg_192>;
1695def : BitConvert <v6i32, v6f32, VReg_192>;
1696def : BitConvert <v6f32, v6i32, VReg_192>;
1697def : BitConvert <v3i64, v3f64, VReg_192>;
1698def : BitConvert <v3f64, v3i64, VReg_192>;
1699def : BitConvert <v3i64, v6i32, VReg_192>;
1700def : BitConvert <v3i64, v6f32, VReg_192>;
1701def : BitConvert <v3f64, v6i32, VReg_192>;
1702def : BitConvert <v3f64, v6f32, VReg_192>;
1703def : BitConvert <v6i32, v3i64, VReg_192>;
1704def : BitConvert <v6f32, v3i64, VReg_192>;
1705def : BitConvert <v6i32, v3f64, VReg_192>;
1706def : BitConvert <v6f32, v3f64, VReg_192>;
1707
1708// 224-bit bitcast
1709def : BitConvert <v7i32, v7f32, SReg_224>;
1710def : BitConvert <v7f32, v7i32, SReg_224>;
1711def : BitConvert <v7i32, v7f32, VReg_224>;
1712def : BitConvert <v7f32, v7i32, VReg_224>;
1713
1714// 256-bit bitcast
1715def : BitConvert <v8i32, v8f32, SReg_256>;
1716def : BitConvert <v8f32, v8i32, SReg_256>;
1717def : BitConvert <v8i32, v8f32, VReg_256>;
1718def : BitConvert <v8f32, v8i32, VReg_256>;
1719def : BitConvert <v4i64, v4f64, VReg_256>;
1720def : BitConvert <v4f64, v4i64, VReg_256>;
1721def : BitConvert <v4i64, v8i32, VReg_256>;
1722def : BitConvert <v4i64, v8f32, VReg_256>;
1723def : BitConvert <v4f64, v8i32, VReg_256>;
1724def : BitConvert <v4f64, v8f32, VReg_256>;
1725def : BitConvert <v8i32, v4i64, VReg_256>;
1726def : BitConvert <v8f32, v4i64, VReg_256>;
1727def : BitConvert <v8i32, v4f64, VReg_256>;
1728def : BitConvert <v8f32, v4f64, VReg_256>;
1729def : BitConvert <v16i16, v16f16, SReg_256>;
1730def : BitConvert <v16f16, v16i16, SReg_256>;
1731def : BitConvert <v16i16, v16f16, VReg_256>;
1732def : BitConvert <v16f16, v16i16, VReg_256>;
1733def : BitConvert <v16f16, v8i32, VReg_256>;
1734def : BitConvert <v16i16, v8i32, VReg_256>;
1735def : BitConvert <v16f16, v8f32, VReg_256>;
1736def : BitConvert <v16i16, v8f32, VReg_256>;
1737def : BitConvert <v8i32, v16f16, VReg_256>;
1738def : BitConvert <v8i32, v16i16, VReg_256>;
1739def : BitConvert <v8f32, v16f16, VReg_256>;
1740def : BitConvert <v8f32, v16i16, VReg_256>;
1741def : BitConvert <v16f16, v4i64, VReg_256>;
1742def : BitConvert <v16i16, v4i64, VReg_256>;
1743def : BitConvert <v16f16, v4f64, VReg_256>;
1744def : BitConvert <v16i16, v4f64, VReg_256>;
1745def : BitConvert <v4i64, v16f16, VReg_256>;
1746def : BitConvert <v4i64, v16i16, VReg_256>;
1747def : BitConvert <v4f64, v16f16, VReg_256>;
1748def : BitConvert <v4f64, v16i16, VReg_256>;
1749
1750
1751def : BitConvert <v8i32, v16bf16, VReg_256>;
1752def : BitConvert <v16bf16, v8i32, VReg_256>;
1753def : BitConvert <v8f32, v16bf16, VReg_256>;
1754def : BitConvert <v16bf16, v8f32, VReg_256>;
1755def : BitConvert <v4i64, v16bf16, VReg_256>;
1756def : BitConvert <v16bf16, v4i64, VReg_256>;
1757def : BitConvert <v4f64, v16bf16, VReg_256>;
1758def : BitConvert <v16bf16, v4f64, VReg_256>;
1759
1760
1761
1762def : BitConvert <v16i16, v16bf16, SReg_256>;
1763def : BitConvert <v16bf16, v16i16, SReg_256>;
1764def : BitConvert <v16i16, v16bf16, VReg_256>;
1765def : BitConvert <v16bf16, v16i16, VReg_256>;
1766
1767def : BitConvert <v16f16, v16bf16, SReg_256>;
1768def : BitConvert <v16bf16, v16f16, SReg_256>;
1769def : BitConvert <v16f16, v16bf16, VReg_256>;
1770def : BitConvert <v16bf16, v16f16, VReg_256>;
1771
1772
1773
1774
1775// 288-bit bitcast
1776def : BitConvert <v9i32, v9f32, SReg_288>;
1777def : BitConvert <v9f32, v9i32, SReg_288>;
1778def : BitConvert <v9i32, v9f32, VReg_288>;
1779def : BitConvert <v9f32, v9i32, VReg_288>;
1780
1781// 320-bit bitcast
1782def : BitConvert <v10i32, v10f32, SReg_320>;
1783def : BitConvert <v10f32, v10i32, SReg_320>;
1784def : BitConvert <v10i32, v10f32, VReg_320>;
1785def : BitConvert <v10f32, v10i32, VReg_320>;
1786
1787// 320-bit bitcast
1788def : BitConvert <v11i32, v11f32, SReg_352>;
1789def : BitConvert <v11f32, v11i32, SReg_352>;
1790def : BitConvert <v11i32, v11f32, VReg_352>;
1791def : BitConvert <v11f32, v11i32, VReg_352>;
1792
1793// 384-bit bitcast
1794def : BitConvert <v12i32, v12f32, SReg_384>;
1795def : BitConvert <v12f32, v12i32, SReg_384>;
1796def : BitConvert <v12i32, v12f32, VReg_384>;
1797def : BitConvert <v12f32, v12i32, VReg_384>;
1798
1799// 512-bit bitcast
1800def : BitConvert <v32f16, v32i16, VReg_512>;
1801def : BitConvert <v32i16, v32f16, VReg_512>;
1802def : BitConvert <v32f16, v16i32, VReg_512>;
1803def : BitConvert <v32f16, v16f32, VReg_512>;
1804def : BitConvert <v16f32, v32f16, VReg_512>;
1805def : BitConvert <v16i32, v32f16, VReg_512>;
1806def : BitConvert <v32i16, v16i32, VReg_512>;
1807def : BitConvert <v32i16, v16f32, VReg_512>;
1808def : BitConvert <v16f32, v32i16, VReg_512>;
1809def : BitConvert <v16i32, v32i16, VReg_512>;
1810def : BitConvert <v16i32, v16f32, VReg_512>;
1811def : BitConvert <v16f32, v16i32, VReg_512>;
1812def : BitConvert <v8i64,  v8f64,  VReg_512>;
1813def : BitConvert <v8f64,  v8i64,  VReg_512>;
1814def : BitConvert <v8i64,  v16i32, VReg_512>;
1815def : BitConvert <v8f64,  v16i32, VReg_512>;
1816def : BitConvert <v16i32, v8i64,  VReg_512>;
1817def : BitConvert <v16i32, v8f64,  VReg_512>;
1818def : BitConvert <v8i64,  v16f32, VReg_512>;
1819def : BitConvert <v8f64,  v16f32, VReg_512>;
1820def : BitConvert <v16f32, v8i64,  VReg_512>;
1821def : BitConvert <v16f32, v8f64,  VReg_512>;
1822
1823
1824
1825def : BitConvert <v32bf16, v32i16, VReg_512>;
1826def : BitConvert <v32i16, v32bf16, VReg_512>;
1827def : BitConvert <v32bf16, v32i16, SReg_512>;
1828def : BitConvert <v32i16, v32bf16, SReg_512>;
1829
1830def : BitConvert <v32bf16, v32f16, VReg_512>;
1831def : BitConvert <v32f16, v32bf16, VReg_512>;
1832def : BitConvert <v32bf16, v32f16, SReg_512>;
1833def : BitConvert <v32f16, v32bf16, SReg_512>;
1834
1835def : BitConvert <v32bf16, v16i32, VReg_512>;
1836def : BitConvert <v16i32, v32bf16, VReg_512>;
1837def : BitConvert <v32bf16, v16i32, SReg_512>;
1838def : BitConvert <v16i32, v32bf16, SReg_512>;
1839
1840def : BitConvert <v32bf16, v16f32, VReg_512>;
1841def : BitConvert <v16f32, v32bf16, VReg_512>;
1842def : BitConvert <v32bf16, v16f32, SReg_512>;
1843def : BitConvert <v16f32, v32bf16, SReg_512>;
1844
1845def : BitConvert <v32bf16, v8f64, VReg_512>;
1846def : BitConvert <v8f64, v32bf16, VReg_512>;
1847def : BitConvert <v32bf16, v8f64, SReg_512>;
1848def : BitConvert <v8f64, v32bf16, SReg_512>;
1849
1850def : BitConvert <v32bf16, v8i64, VReg_512>;
1851def : BitConvert <v8i64, v32bf16, VReg_512>;
1852def : BitConvert <v32bf16, v8i64, SReg_512>;
1853def : BitConvert <v8i64, v32bf16, SReg_512>;
1854
1855// 1024-bit bitcast
1856def : BitConvert <v32i32, v32f32, VReg_1024>;
1857def : BitConvert <v32f32, v32i32, VReg_1024>;
1858def : BitConvert <v16i64, v16f64, VReg_1024>;
1859def : BitConvert <v16f64, v16i64, VReg_1024>;
1860def : BitConvert <v16i64, v32i32, VReg_1024>;
1861def : BitConvert <v32i32, v16i64, VReg_1024>;
1862def : BitConvert <v16f64, v32f32, VReg_1024>;
1863def : BitConvert <v32f32, v16f64, VReg_1024>;
1864def : BitConvert <v16i64, v32f32, VReg_1024>;
1865def : BitConvert <v32i32, v16f64, VReg_1024>;
1866def : BitConvert <v16f64, v32i32, VReg_1024>;
1867def : BitConvert <v32f32, v16i64, VReg_1024>;
1868
1869
1870/********** =================== **********/
1871/********** Src & Dst modifiers **********/
1872/********** =================== **********/
1873
1874
1875// If denormals are not enabled, it only impacts the compare of the
1876// inputs. The output result is not flushed.
1877class ClampPat<Instruction inst, ValueType vt> : GCNPat <
1878  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
1879  (inst i32:$src0_modifiers, vt:$src0,
1880        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
1881>;
1882
1883def : ClampPat<V_MAX_F32_e64, f32>;
1884let SubtargetPredicate = isNotGFX12Plus in
1885def : ClampPat<V_MAX_F64_e64, f64>;
1886let SubtargetPredicate = isGFX12Plus in
1887def : ClampPat<V_MAX_NUM_F64_e64, f64>;
1888let SubtargetPredicate = NotHasTrue16BitInsts in
1889def : ClampPat<V_MAX_F16_e64, f16>;
1890let SubtargetPredicate = UseRealTrue16Insts in
1891def : ClampPat<V_MAX_F16_t16_e64, f16>;
1892let SubtargetPredicate = UseFakeTrue16Insts in
1893def : ClampPat<V_MAX_F16_fake16_e64, f16>;
1894
1895let SubtargetPredicate = HasVOP3PInsts in {
1896def : GCNPat <
1897  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
1898  (V_PK_MAX_F16 $src0_modifiers, $src0,
1899                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
1900>;
1901}
1902
1903
1904/********** ================================ **********/
1905/********** Floating point absolute/negative **********/
1906/********** ================================ **********/
1907
1908def : GCNPat <
1909  (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))),
1910  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
1911>;
1912
1913def : GCNPat <
1914  (UniformUnaryFrag<fabs> (f32 SReg_32:$src)),
1915  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
1916>;
1917
1918def : GCNPat <
1919  (UniformUnaryFrag<fneg> (f32 SReg_32:$src)),
1920  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
1921>;
1922
1923foreach fp16vt = [f16, bf16] in {
1924def : GCNPat <
1925  (UniformUnaryFrag<fneg> (fp16vt SReg_32:$src)),
1926  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
1927>;
1928
1929def : GCNPat <
1930  (UniformUnaryFrag<fabs> (fp16vt SReg_32:$src)),
1931  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
1932>;
1933
1934def : GCNPat <
1935  (UniformUnaryFrag<fneg> (fabs (fp16vt SReg_32:$src))),
1936  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
1937>;
1938} // End foreach fp16vt = ...
1939
1940def : GCNPat <
1941  (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)),
1942  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
1943>;
1944
1945def : GCNPat <
1946  (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)),
1947  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
1948>;
1949
1950// This is really (fneg (fabs v2f16:$src))
1951//
1952// fabs is not reported as free because there is modifier for it in
1953// VOP3P instructions, so it is turned into the bit op.
1954def : GCNPat <
1955  (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
1956  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1957>;
1958
1959def : GCNPat <
1960  (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))),
1961  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
1962>;
1963
1964
1965// COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead
1966// of the real value.
1967def : GCNPat <
1968  (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)),
1969  (v2f32 (REG_SEQUENCE SReg_64,
1970         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1971                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1972                                 SReg_32)), sub0,
1973         (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1974                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1975                                 SReg_32)), sub1))
1976>;
1977
1978def : GCNPat <
1979  (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)),
1980  (v2f32 (REG_SEQUENCE SReg_64,
1981         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1982                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1983                                 SReg_32)), sub0,
1984         (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1985                                           (i32 (S_MOV_B32 (i32 0x7fffffff)))),
1986                                 SReg_32)), sub1))
1987>;
1988
1989def : GCNPat <
1990  (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))),
1991  (v2f32 (REG_SEQUENCE SReg_64,
1992         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)),
1993                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1994                                 SReg_32)), sub0,
1995         (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)),
1996                                           (i32 (S_MOV_B32 (i32 0x80000000)))),
1997                                 SReg_32)), sub1))
1998>;
1999
2000// FIXME: Use S_BITSET0_B32/B64?
2001def : GCNPat <
2002  (UniformUnaryFrag<fabs> (f64 SReg_64:$src)),
2003  (REG_SEQUENCE SReg_64,
2004    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
2005    sub0,
2006    (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
2007                   (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit.
2008     sub1)
2009>;
2010
2011def : GCNPat <
2012  (UniformUnaryFrag<fneg> (f64 SReg_64:$src)),
2013  (REG_SEQUENCE SReg_64,
2014    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
2015    sub0,
2016    (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
2017                   (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)),
2018    sub1)
2019>;
2020
2021def : GCNPat <
2022  (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))),
2023  (REG_SEQUENCE SReg_64,
2024    (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
2025    sub0,
2026    (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
2027                  (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit.
2028    sub1)
2029>;
2030
2031
2032def : GCNPat <
2033  (fneg (fabs (f32 VGPR_32:$src))),
2034  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit
2035>;
2036
2037def : GCNPat <
2038  (fabs (f32 VGPR_32:$src)),
2039  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
2040>;
2041
2042def : GCNPat <
2043  (fneg (f32 VGPR_32:$src)),
2044  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
2045>;
2046
2047foreach fp16vt = [f16, bf16] in {
2048foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in
2049let SubtargetPredicate = p in {
2050def : GCNPat <
2051  (fabs (fp16vt VGPR_32:$src)),
2052  (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
2053>;
2054
2055def : GCNPat <
2056  (fneg (fp16vt VGPR_32:$src)),
2057  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
2058>;
2059
2060def : GCNPat <
2061  (fneg (fabs (fp16vt VGPR_32:$src))),
2062  (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
2063>;
2064}
2065
2066let SubtargetPredicate = UseRealTrue16Insts in {
2067def : GCNPat <
2068  (fabs (fp16vt VGPR_16:$src)),
2069  (V_AND_B16_t16_e64 (i32 0), (i16 0x7fff), (i32 0), VGPR_16:$src)
2070>;
2071
2072def : GCNPat <
2073  (fneg (fp16vt VGPR_16:$src)),
2074  (V_XOR_B16_t16_e64 (i32 0), (i16 0x8000), (i32 0), VGPR_16:$src)
2075>;
2076
2077def : GCNPat <
2078  (fneg (fabs (fp16vt VGPR_16:$src))),
2079  (V_OR_B16_t16_e64 (i32 0), (i16 0x8000), (i32 0), VGPR_16:$src) // Set sign bit
2080>;
2081} // End SubtargetPredicate = UseRealTrue16Insts
2082} // End foreach fp16vt = ...
2083
2084def : GCNPat <
2085  (fneg (v2f16 VGPR_32:$src)),
2086  (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
2087>;
2088
2089def : GCNPat <
2090  (fabs (v2f16 VGPR_32:$src)),
2091  (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
2092>;
2093
2094def : GCNPat <
2095  (fneg (v2f16 (fabs VGPR_32:$src))),
2096  (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
2097>;
2098
2099def : GCNPat <
2100  (fabs (f64 VReg_64:$src)),
2101  (REG_SEQUENCE VReg_64,
2102    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2103    sub0,
2104    (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))),
2105        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2106     sub1)
2107>;
2108
2109def : GCNPat <
2110  (fneg (f64 VReg_64:$src)),
2111  (REG_SEQUENCE VReg_64,
2112    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2113    sub0,
2114    (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
2115        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2116    sub1)
2117>;
2118
2119def : GCNPat <
2120  (fneg (fabs (f64 VReg_64:$src))),
2121  (REG_SEQUENCE VReg_64,
2122    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
2123    sub0,
2124    (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))),
2125        (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))),
2126    sub1)
2127>;
2128
2129def : GCNPat <
2130  (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)),
2131  (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src,
2132                11 /* OP_SEL_1 | NEG_LO | HEG_HI */, (i64 0),
2133                0, 0, 0, 0, 0)
2134> {
2135  let SubtargetPredicate = HasPackedFP32Ops;
2136}
2137
2138foreach fp16vt = [f16, bf16] in {
2139
2140def : GCNPat <
2141  (fcopysign fp16vt:$src0, fp16vt:$src1),
2142  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
2143>;
2144
2145def : GCNPat <
2146  (fcopysign f32:$src0, fp16vt:$src1),
2147  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2148             (V_LSHLREV_B32_e64 (i32 16), $src1))
2149>;
2150
2151def : GCNPat <
2152  (fcopysign f64:$src0, fp16vt:$src1),
2153  (REG_SEQUENCE SReg_64,
2154    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2155    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
2156               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
2157>;
2158
2159def : GCNPat <
2160  (fcopysign fp16vt:$src0, f32:$src1),
2161  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
2162             (V_LSHRREV_B32_e64 (i32 16), $src1))
2163>;
2164
2165def : GCNPat <
2166  (fcopysign fp16vt:$src0, f64:$src1),
2167  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0,
2168             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
2169>;
2170} // End foreach fp16vt = [f16, bf16]
2171
2172/********** ================== **********/
2173/********** Immediate Patterns **********/
2174/********** ================== **********/
2175
2176// FIXME: Remove VGPRImm. Should be inferrable from register bank.
2177
2178foreach vt = [i32, p3, p5, p6, p2] in {
2179  def : GCNPat <
2180    (VGPRImm<(vt imm)>:$imm),
2181    (V_MOV_B32_e32 imm:$imm)
2182  >;
2183
2184  def : GCNPat <
2185    (vt imm:$imm),
2186    (S_MOV_B32 imm:$imm)
2187  >;
2188}
2189
2190// FIXME: The register bank of the frame index should depend on the
2191// users, and transitive users of the add. We may require an
2192// unnecessary copy from SGPR to VGPR.
2193def : GCNPat <
2194  (VGPRImm<(p5 frameindex)>:$fi),
2195  (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi)))
2196>;
2197
2198def : GCNPat <
2199  (p5 frameindex:$fi),
2200  (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi)))
2201>;
2202
2203def : GCNPat <
2204  (VGPRImm<(SIlds tglobaladdr:$ga)>),
2205  (V_MOV_B32_e32 $ga)
2206>;
2207
2208def : GCNPat <
2209  (SIlds tglobaladdr:$ga),
2210  (S_MOV_B32 $ga)
2211>;
2212
2213foreach pred = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in {
2214  let True16Predicate = pred in {
2215    def : GCNPat <
2216      (VGPRImm<(i16 imm)>:$imm),
2217      (V_MOV_B32_e32 imm:$imm)
2218    >;
2219  }
2220
2221  // FIXME: Workaround for ordering issue with peephole optimizer where
2222  // a register class copy interferes with immediate folding.  Should
2223  // use s_mov_b32, which can be shrunk to s_movk_i32
2224
2225  foreach vt = [f16, bf16] in {
2226    def : GCNPat <
2227      (VGPRImm<(f16 fpimm)>:$imm),
2228      (V_MOV_B32_e32 (vt (bitcast_fpimm_to_i32 $imm)))
2229    >;
2230  }
2231}
2232
2233let True16Predicate = UseRealTrue16Insts in {
2234  def : GCNPat <
2235    (VGPRImm<(i16 imm)>:$imm),
2236    (V_MOV_B16_t16_e64 0, imm:$imm, 0)
2237  >;
2238
2239  foreach vt = [f16, bf16] in {
2240    def : GCNPat <
2241      (VGPRImm<(vt fpimm)>:$imm),
2242      (V_MOV_B16_t16_e64 0, $imm, 0)
2243    >;
2244  }
2245}
2246
2247// V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit
2248// immediate and wil be expanded as needed, but we will only use these patterns
2249// for values which can be encoded.
2250def : GCNPat <
2251  (VGPRImm<(i64 imm)>:$imm),
2252  (V_MOV_B64_PSEUDO imm:$imm)
2253>;
2254
2255def : GCNPat <
2256  (VGPRImm<(f64 fpimm)>:$imm),
2257  (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm)))
2258>;
2259
2260def : GCNPat <
2261  (i64 imm:$imm),
2262  (S_MOV_B64_IMM_PSEUDO imm:$imm)
2263>;
2264
2265def : GCNPat <
2266  (f64 fpimm:$imm),
2267  (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm)))
2268>;
2269
2270def : GCNPat <
2271  (f32 fpimm:$imm),
2272  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
2273>;
2274
2275def : GCNPat <
2276  (f16 fpimm:$imm),
2277  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
2278>;
2279
2280def : GCNPat <
2281  (VGPRImm<(bf16 fpimm)>:$imm),
2282  (V_MOV_B32_e32 (bf16 (bitcast_fpimm_to_i32 $imm)))
2283>;
2284
2285def : GCNPat <
2286  (bf16 fpimm:$imm),
2287  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
2288>;
2289
2290def : GCNPat <
2291  (VGPRImm<(f32 fpimm)>:$imm),
2292  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
2293>;
2294
2295def : GCNPat <
2296  (f32 fpimm:$imm),
2297  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
2298>;
2299
2300foreach vt = [i64, p1, p0, p4] in { // FIXME: Should accept arbitrary addrspace
2301  def : GCNPat <
2302    (VGPRImm<(vt imm)>:$imm),
2303    (V_MOV_B64_PSEUDO imm:$imm)
2304  >;
2305
2306  def : GCNPat <
2307    (vt InlineImm64:$imm),
2308    (S_MOV_B64 InlineImm64:$imm)
2309  >;
2310
2311  def : GCNPat <
2312    (vt imm:$imm),
2313    (S_MOV_B64_IMM_PSEUDO imm:$imm)
2314  >;
2315}
2316
2317def : GCNPat <
2318  (VGPRImm<(f64 fpimm)>:$imm),
2319  (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm)))
2320>;
2321
2322// V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit
2323// immediate and wil be expanded as needed, but we will only use these patterns
2324// for values which can be encoded.
2325def : GCNPat <
2326  (f64 InlineImmFP64:$imm),
2327  (S_MOV_B64 (i64 (bitcast_fpimm_to_i64 $imm)))
2328>;
2329
2330def : GCNPat <
2331  (f64 fpimm:$imm),
2332  (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm)))
2333>;
2334
2335// Set to sign-extended 64-bit value (true = -1, false = 0)
2336def : GCNPat <(i1 imm:$imm),
2337              (S_MOV_B64 imm:$imm)> {
2338  let WaveSizePredicate = isWave64;
2339}
2340
2341def : GCNPat <(i1 imm:$imm),
2342              (S_MOV_B32 imm:$imm)> {
2343  let WaveSizePredicate = isWave32;
2344}
2345
2346/********** ================== **********/
2347/********** Intrinsic Patterns **********/
2348/********** ================== **********/
2349
2350def : GCNPat <
2351  (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))),
2352  (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0))
2353>;
2354
2355def : GCNPat <
2356  (i32 (sext i1:$src0)),
2357  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2358                     /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0)
2359>;
2360
2361class Ext32Pat <SDNode ext> : GCNPat <
2362  (i32 (ext i1:$src0)),
2363  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2364                     /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0)
2365>;
2366
2367def : Ext32Pat <zext>;
2368def : Ext32Pat <anyext>;
2369
2370// The multiplication scales from [0,1) to the unsigned integer range,
2371// rounding down a bit to avoid unwanted overflow.
2372def : GCNPat <
2373  (AMDGPUurecip i32:$src0),
2374  (V_CVT_U32_F32_e32
2375    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
2376                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
2377>;
2378
2379//===----------------------------------------------------------------------===//
2380// VOP3 Patterns
2381//===----------------------------------------------------------------------===//
2382
2383def : IMad24Pat<V_MAD_I32_I24_e64, 1>;
2384def : UMad24Pat<V_MAD_U32_U24_e64, 1>;
2385
2386// BFI patterns
2387
2388def BFIImm32 : PatFrag<
2389  (ops node:$x, node:$y, node:$z),
2390  (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))),
2391  [{
2392    auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1));
2393    auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1));
2394    return X && NotX &&
2395      ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue();
2396  }]
2397>;
2398
2399
2400// Definition from ISA doc:
2401// (y & x) | (z & ~x)
2402def : AMDGPUPatIgnoreCopies <
2403  (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
2404  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2405                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2406                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2407>;
2408
2409// (y & C) | (z & ~C)
2410def : AMDGPUPatIgnoreCopies <
2411  (BFIImm32 i32:$x, i32:$y, i32:$z),
2412  (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z)
2413>;
2414
2415// 64-bit version
2416def : AMDGPUPatIgnoreCopies <
2417  (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
2418  (REG_SEQUENCE VReg_64,
2419    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2420              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2421              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2422    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2423              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2424              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2425>;
2426
2427// SHA-256 Ch function
2428// z ^ (x & (y ^ z))
2429def : AMDGPUPatIgnoreCopies <
2430  (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
2431  (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
2432                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32),
2433                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32))
2434>;
2435
2436// 64-bit version
2437def : AMDGPUPatIgnoreCopies <
2438  (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
2439  (REG_SEQUENCE VReg_64,
2440    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
2441              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)),
2442              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0,
2443    (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
2444              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)),
2445              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1)
2446>;
2447
2448def : AMDGPUPat <
2449  (fcopysign f32:$src0, f32:$src1),
2450  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1)
2451>;
2452
2453def : AMDGPUPat <
2454  (fcopysign f32:$src0, f64:$src1),
2455  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0,
2456             (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1)))
2457>;
2458
2459def : AMDGPUPat <
2460  (fcopysign f64:$src0, f64:$src1),
2461  (REG_SEQUENCE SReg_64,
2462    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2463    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2464               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2465               (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1)
2466>;
2467
2468def : AMDGPUPat <
2469  (fcopysign f64:$src0, f32:$src1),
2470  (REG_SEQUENCE SReg_64,
2471    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
2472    (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)),
2473               (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)),
2474               $src1), sub1)
2475>;
2476
2477def : ROTRPattern <V_ALIGNBIT_B32_e64>;
2478
2479def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
2480          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2481                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2482
2483def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
2484          (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
2485                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;
2486
2487/********** ====================== **********/
2488/**********   Indirect addressing  **********/
2489/********** ====================== **********/
2490
2491multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
2492  // Extract with offset
2493  def : GCNPat<
2494    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
2495    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
2496  >;
2497
2498  // Insert with offset
2499  def : GCNPat<
2500    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
2501    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
2502  >;
2503}
2504
2505defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
2506defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
2507defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
2508defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">;
2509defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">;
2510defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">;
2511defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">;
2512defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
2513defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;
2514
2515defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
2516defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
2517defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
2518defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">;
2519defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">;
2520defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">;
2521defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">;
2522defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
2523defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;
2524
2525//===----------------------------------------------------------------------===//
2526// SAD Patterns
2527//===----------------------------------------------------------------------===//
2528
2529def : GCNPat <
2530  (add (sub_oneuse (umax i32:$src0, i32:$src1),
2531                   (umin i32:$src0, i32:$src1)),
2532       i32:$src2),
2533  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2534>;
2535
2536def : GCNPat <
2537  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
2538                      (sub i32:$src0, i32:$src1),
2539                      (sub i32:$src1, i32:$src0)),
2540       i32:$src2),
2541  (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0))
2542>;
2543
2544//===----------------------------------------------------------------------===//
2545// Conversion Patterns
2546//===----------------------------------------------------------------------===//
2547def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)),
2548  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16
2549
2550// Handle sext_inreg in i64
2551def : GCNPat <
2552  (i64 (UniformSextInreg<i1> i64:$src)),
2553  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
2554>;
2555
2556def : GCNPat <
2557  (i16 (UniformSextInreg<i1> i16:$src)),
2558  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
2559>;
2560
2561def : GCNPat <
2562  (i16 (UniformSextInreg<i8> i16:$src)),
2563  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
2564>;
2565
2566def : GCNPat <
2567  (i64 (UniformSextInreg<i8> i64:$src)),
2568  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
2569>;
2570
2571def : GCNPat <
2572  (i64 (UniformSextInreg<i16> i64:$src)),
2573  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
2574>;
2575
2576def : GCNPat <
2577  (i64 (UniformSextInreg<i32> i64:$src)),
2578  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
2579>;
2580
2581def : GCNPat<
2582  (i32 (DivergentSextInreg<i1> i32:$src)),
2583  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>;
2584
2585def : GCNPat <
2586  (i16 (DivergentSextInreg<i1> i16:$src)),
2587  (V_BFE_I32_e64 $src, (i32 0), (i32 1))
2588>;
2589
2590def : GCNPat <
2591  (i16 (DivergentSextInreg<i8> i16:$src)),
2592  (V_BFE_I32_e64 $src, (i32 0), (i32 8))
2593>;
2594
2595def : GCNPat<
2596  (i32 (DivergentSextInreg<i8> i32:$src)),
2597  (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8))
2598>;
2599
2600def : GCNPat <
2601  (i32 (DivergentSextInreg<i16> i32:$src)),
2602  (V_BFE_I32_e64 $src, (i32 0), (i32 16))
2603>;
2604
2605def : GCNPat <
2606  (i64 (DivergentSextInreg<i1> i64:$src)),
2607  (REG_SEQUENCE VReg_64,
2608    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0,
2609    (V_ASHRREV_I32_e32  (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1)
2610>;
2611
2612def : GCNPat <
2613  (i64 (DivergentSextInreg<i8> i64:$src)),
2614  (REG_SEQUENCE VReg_64,
2615    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0,
2616    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1)
2617>;
2618
2619def : GCNPat <
2620  (i64 (DivergentSextInreg<i16> i64:$src)),
2621  (REG_SEQUENCE VReg_64,
2622    (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0,
2623    (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1)
2624>;
2625
2626def : GCNPat <
2627  (i64 (DivergentSextInreg<i32> i64:$src)),
2628  (REG_SEQUENCE VReg_64,
2629    (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0,
2630    (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1)
2631>;
2632
2633def : GCNPat <
2634  (i64 (zext i32:$src)),
2635  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
2636>;
2637
2638def : GCNPat <
2639  (i64 (anyext i32:$src)),
2640  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
2641>;
2642
2643class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
2644  (i64 (ext i1:$src)),
2645    (REG_SEQUENCE VReg_64,
2646      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2647                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
2648      sub0, (S_MOV_B32 (i32 0)), sub1)
2649>;
2650
2651
2652def : ZExt_i64_i1_Pat<zext>;
2653def : ZExt_i64_i1_Pat<anyext>;
2654
2655// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
2656// REG_SEQUENCE patterns don't support instructions with multiple outputs.
2657def : GCNPat <
2658  (i64 (UniformUnaryFrag<sext> i32:$src)),
2659    (REG_SEQUENCE SReg_64, $src, sub0,
2660    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
2661>;
2662
2663def : GCNPat <
2664  (i64 (DivergentUnaryFrag<sext> i32:$src)),
2665    (REG_SEQUENCE VReg_64, $src, sub0,
2666    (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1)
2667>;
2668
2669def : GCNPat <
2670  (i64 (sext i1:$src)),
2671  (REG_SEQUENCE VReg_64,
2672    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2673                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
2674    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2675                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
2676>;
2677
2678class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
2679  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
2680  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
2681>;
2682
2683let OtherPredicates = [NotHasTrue16BitInsts] in {
2684  def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2685  def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2686} // end OtherPredicates = [NotHasTrue16BitInsts]
2687
2688let OtherPredicates = [HasTrue16BitInsts] in {
2689  def : FPToI1Pat<V_CMP_EQ_F16_fake16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>;
2690  def : FPToI1Pat<V_CMP_EQ_F16_fake16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>;
2691} // end OtherPredicates = [HasTrue16BitInsts]
2692
2693def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
2694def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
2695def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
2696def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;
2697
2698// If we need to perform a logical operation on i1 values, we need to
2699// use vector comparisons since there is only one SCC register. Vector
2700// comparisons may write to a pair of SGPRs or a single SGPR, so treat
2701// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
2702// instructions resulting in the copies from SCC to these instructions
2703// will be moved to the VALU.
2704
2705let WaveSizePredicate = isWave64 in {
2706def : GCNPat <
2707  (i1 (and i1:$src0, i1:$src1)),
2708  (S_AND_B64 $src0, $src1)
2709>;
2710
2711def : GCNPat <
2712  (i1 (or i1:$src0, i1:$src1)),
2713  (S_OR_B64 $src0, $src1)
2714>;
2715
2716def : GCNPat <
2717  (i1 (xor i1:$src0, i1:$src1)),
2718  (S_XOR_B64 $src0, $src1)
2719>;
2720
2721def : GCNPat <
2722  (i1 (add i1:$src0, i1:$src1)),
2723  (S_XOR_B64 $src0, $src1)
2724>;
2725
2726def : GCNPat <
2727  (i1 (sub i1:$src0, i1:$src1)),
2728  (S_XOR_B64 $src0, $src1)
2729>;
2730
2731let AddedComplexity = 1 in {
2732def : GCNPat <
2733  (i1 (add i1:$src0, (i1 -1))),
2734  (S_NOT_B64 $src0)
2735>;
2736
2737def : GCNPat <
2738  (i1 (sub i1:$src0, (i1 -1))),
2739  (S_NOT_B64 $src0)
2740>;
2741}
2742} // end isWave64
2743
2744let WaveSizePredicate = isWave32 in {
2745def : GCNPat <
2746  (i1 (and i1:$src0, i1:$src1)),
2747  (S_AND_B32 $src0, $src1)
2748>;
2749
2750def : GCNPat <
2751  (i1 (or i1:$src0, i1:$src1)),
2752  (S_OR_B32 $src0, $src1)
2753>;
2754
2755def : GCNPat <
2756  (i1 (xor i1:$src0, i1:$src1)),
2757  (S_XOR_B32 $src0, $src1)
2758>;
2759
2760def : GCNPat <
2761  (i1 (add i1:$src0, i1:$src1)),
2762  (S_XOR_B32 $src0, $src1)
2763>;
2764
2765def : GCNPat <
2766  (i1 (sub i1:$src0, i1:$src1)),
2767  (S_XOR_B32 $src0, $src1)
2768>;
2769
2770let AddedComplexity = 1 in {
2771def : GCNPat <
2772  (i1 (add i1:$src0, (i1 -1))),
2773  (S_NOT_B32 $src0)
2774>;
2775
2776def : GCNPat <
2777  (i1 (sub i1:$src0, (i1 -1))),
2778  (S_NOT_B32 $src0)
2779>;
2780}
2781} // end isWave32
2782
2783def : GCNPat <
2784  (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))),
2785  (V_NOT_B32_e32 $src0)
2786>;
2787
2788def : GCNPat <
2789  (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))),
2790    (REG_SEQUENCE VReg_64,
2791      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0,
2792      (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1
2793    )
2794>;
2795
2796let SubtargetPredicate = NotHasTrue16BitInsts in
2797def : GCNPat <
2798  (f16 (sint_to_fp i1:$src)),
2799  (V_CVT_F16_F32_e32 (
2800      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2801                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2802                        SSrc_i1:$src))
2803>;
2804
2805let True16Predicate = UseRealTrue16Insts in
2806def : GCNPat <
2807  (f16 (sint_to_fp i1:$src)),
2808  (V_CVT_F16_F32_t16_e64 /*src0_modifiers*/ 0,
2809      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2810                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2811                        SSrc_i1:$src),
2812      /*clamp*/ 0, /*omod*/ 0, /*op_sel*/ 0)
2813>;
2814
2815let True16Predicate = UseFakeTrue16Insts in
2816def : GCNPat <
2817  (f16 (sint_to_fp i1:$src)),
2818  (V_CVT_F16_F32_fake16_e64 /*src0_modifiers*/ 0,
2819      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2820                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2821                        SSrc_i1:$src),
2822      /*clamp*/ 0, /*omod*/ 0)
2823>;
2824
2825let True16Predicate = NotHasTrue16BitInsts in
2826def : GCNPat <
2827  (f16 (uint_to_fp i1:$src)),
2828  (V_CVT_F16_F32_e32 (
2829      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2830                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2831                        SSrc_i1:$src))
2832>;
2833
2834let True16Predicate = UseRealTrue16Insts in
2835def : GCNPat <
2836  (f16 (uint_to_fp i1:$src)),
2837  (V_CVT_F16_F32_t16_e64 /*src0_modifiers*/ 0,
2838      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2839                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2840                        SSrc_i1:$src),
2841      /*clamp*/ 0, /*omod*/ 0, /*op_sel*/ 0)
2842>;
2843
2844let True16Predicate = UseFakeTrue16Insts in
2845def : GCNPat <
2846  (f16 (uint_to_fp i1:$src)),
2847  (V_CVT_F16_F32_fake16_e64 /*src0_modifiers*/ 0,
2848      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2849                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2850                        SSrc_i1:$src),
2851      /*clamp*/ 0, /*omod*/ 0)
2852>;
2853
2854def : GCNPat <
2855  (f32 (sint_to_fp i1:$src)),
2856  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2857                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
2858                        SSrc_i1:$src)
2859>;
2860
2861def : GCNPat <
2862  (f32 (uint_to_fp i1:$src)),
2863  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2864                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
2865                        SSrc_i1:$src)
2866>;
2867
2868def : GCNPat <
2869  (f64 (sint_to_fp i1:$src)),
2870  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2871                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
2872                                        SSrc_i1:$src))
2873>;
2874
2875def : GCNPat <
2876  (f64 (uint_to_fp i1:$src)),
2877  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
2878                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
2879                                        SSrc_i1:$src))
2880>;
2881
2882//===----------------------------------------------------------------------===//
2883// Miscellaneous Patterns
2884//===----------------------------------------------------------------------===//
2885
2886// Eliminate a zero extension from an fp16 operation if it already
2887// zeros the high bits of the 32-bit register.
2888//
2889// This is complicated on gfx9+. Some instructions maintain the legacy
2890// zeroing behavior, but others preserve the high bits. Some have a
2891// control bit to change the behavior. We can't simply say with
2892// certainty what the source behavior is without more context on how
2893// the src is lowered. e.g. fptrunc + fma may be lowered to a
2894// v_fma_mix* instruction which does not zero, or may not.
2895def : GCNPat<
2896  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2897  (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>;
2898
2899let AddedComplexity = 1 in {
2900def : GCNPat<
2901  (i32 (DivergentUnaryFrag<abs> i32:$src)),
2902  (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{
2903  let SubtargetPredicate = HasAddNoCarryInsts;
2904}
2905}  // AddedComplexity = 1
2906
2907def : GCNPat<
2908  (i32 (DivergentUnaryFrag<zext> i16:$src)),
2909  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src)
2910>;
2911
2912def : GCNPat<
2913  (i64 (DivergentUnaryFrag<zext> i16:$src)),
2914  (REG_SEQUENCE VReg_64,
2915    (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0,
2916    (S_MOV_B32 (i32 0)), sub1)
2917>;
2918
2919def : GCNPat<
2920  (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))),
2921  (COPY VSrc_b16:$src)>;
2922
2923def : GCNPat <
2924  (i32 (trunc i64:$a)),
2925  (EXTRACT_SUBREG $a, sub0)
2926>;
2927
2928def : GCNPat <
2929  (i1 (UniformUnaryFrag<trunc> i32:$a)),
2930  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2931>;
2932
2933def : GCNPat <
2934  (i1 (UniformUnaryFrag<trunc> i16:$a)),
2935  (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1))
2936>;
2937
2938def : GCNPat <
2939  (i1 (UniformUnaryFrag<trunc> i64:$a)),
2940  (S_CMP_EQ_U32 (S_AND_B32 (i32 1),
2941                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2942>;
2943
2944def : GCNPat <
2945  (i1 (DivergentUnaryFrag<trunc> i32:$a)),
2946  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2947>;
2948
2949def : GCNPat <
2950  (i1 (DivergentUnaryFrag<trunc> i16:$a)),
2951  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1))
2952>;
2953
2954def IMMBitSelConst : SDNodeXForm<imm, [{
2955  return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N),
2956                                   MVT::i32);
2957}]>;
2958
2959// Matching separate SRL and TRUNC instructions
2960// with dependent operands (SRL dest is source of TRUNC)
2961// generates three instructions. However, by using bit shifts,
2962// the V_LSHRREV_B32_e64 result can be directly used in the
2963// operand of the V_AND_B32_e64 instruction:
2964// (trunc i32 (srl i32 $a, i32 $b)) ->
2965// v_and_b32_e64 $a, (1 << $b), $a
2966// v_cmp_ne_u32_e64 $a, 0, $a
2967
2968// Handle the VALU case.
2969def : GCNPat <
2970  (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2971  (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a),
2972    (i32 0))
2973>;
2974
2975// Handle the scalar case.
2976def : GCNPat <
2977  (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))),
2978  (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a),
2979    (i32 0))
2980>;
2981
2982def : GCNPat <
2983  (i1 (DivergentUnaryFrag<trunc> i64:$a)),
2984  (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1),
2985                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
2986>;
2987
2988def : GCNPat <
2989  (i32 (bswap i32:$a)),
2990  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
2991             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
2992             (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
2993>;
2994
2995// FIXME: This should have been narrowed to i32 during legalization.
2996// This pattern should also be skipped for GlobalISel
2997def : GCNPat <
2998  (i64 (bswap i64:$a)),
2999  (REG_SEQUENCE VReg_64,
3000  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
3001             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
3002                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
3003                             (i32 24)),
3004             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
3005                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
3006                             (i32 8))),
3007  sub0,
3008  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)),
3009             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
3010                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
3011                             (i32 24)),
3012             (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
3013                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
3014                             (i32 8))),
3015  sub1)
3016>;
3017
3018// FIXME: The AddedComplexity should not be needed, but in GlobalISel
3019// the BFI pattern ends up taking precedence without it.
3020let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
3021// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
3022//
3023// My reading of the manual suggests we should be using src0 for the
3024// register value, but this is what seems to work.
3025def : GCNPat <
3026  (i32 (bswap i32:$a)),
3027  (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
3028>;
3029
3030// FIXME: This should have been narrowed to i32 during legalization.
3031// This pattern should also be skipped for GlobalISel
3032def : GCNPat <
3033  (i64 (bswap i64:$a)),
3034  (REG_SEQUENCE VReg_64,
3035  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
3036              (S_MOV_B32 (i32 0x00010203))),
3037  sub0,
3038  (V_PERM_B32_e64  (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
3039              (S_MOV_B32 (i32 0x00010203))),
3040  sub1)
3041>;
3042
3043// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
3044// The 12s emit 0s.
3045foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in
3046let True16Predicate = p in {
3047def : GCNPat <
3048  (i16 (bswap i16:$a)),
3049  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
3050>;
3051
3052def : GCNPat <
3053  (i32 (zext (bswap i16:$a))),
3054  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
3055>;
3056}
3057
3058let True16Predicate = UseRealTrue16Insts in {
3059def : GCNPat <
3060  (i16 (bswap i16:$a)),
3061  (EXTRACT_SUBREG (V_PERM_B32_e64  (i32 0), (COPY VGPR_16:$a), (S_MOV_B32 (i32 0x0c0c0001))), lo16)
3062>;
3063
3064def : GCNPat <
3065  (i32 (zext (bswap i16:$a))),
3066  (V_PERM_B32_e64  (i32 0), (COPY VGPR_16:$a), (S_MOV_B32 (i32 0x0c0c0001)))
3067>;
3068}
3069
3070// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
3071def : GCNPat <
3072  (v2i16 (bswap v2i16:$a)),
3073  (V_PERM_B32_e64  (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
3074>;
3075
3076}
3077
3078def : GCNPat<
3079  (i64 (DivergentUnaryFrag<bitreverse> i64:$a)),
3080  (REG_SEQUENCE VReg_64,
3081   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0,
3082   (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>;
3083
3084// If fcanonicalize's operand is implicitly canonicalized, we only need a copy.
3085let AddedComplexity = 8 in {
3086foreach vt = [f16, v2f16, f32, v2f32, f64] in {
3087  def : GCNPat<
3088    (fcanonicalize (vt is_canonicalized:$src)),
3089    (COPY vt:$src)
3090  >;
3091}
3092}
3093
3094// Prefer selecting to max when legal, but using mul is always valid.
3095let AddedComplexity = -5 in {
3096
3097let True16Predicate = NotHasTrue16BitInsts in {
3098def : GCNPat<
3099  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3100  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
3101>;
3102
3103def : GCNPat<
3104  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
3105  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
3106>;
3107} // End True16Predicate
3108
3109let True16Predicate = UseRealTrue16Insts in {
3110def : GCNPat<
3111  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3112  (V_MUL_F16_t16_e64 0, (i16 CONST.FP16_ONE), $src_mods, $src, 0/*Clamp*/, /*omod*/0, /*opsel*/0)
3113>;
3114
3115def : GCNPat<
3116  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
3117  (V_MUL_F16_t16_e64 0, (i16 CONST.FP16_NEG_ONE), $src_mods, $src, 0/*Clamp*/, /*omod*/0, /*opsel*/0)
3118>;
3119} // End True16Predicate
3120
3121let True16Predicate = UseFakeTrue16Insts in {
3122def : GCNPat<
3123  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3124  (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
3125>;
3126
3127def : GCNPat<
3128  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
3129  (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
3130>;
3131} // End True16Predicate
3132
3133def : GCNPat<
3134  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
3135  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
3136>;
3137
3138def : GCNPat<
3139  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
3140  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
3141>;
3142
3143def : GCNPat<
3144  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
3145  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
3146>;
3147
3148let SubtargetPredicate = HasPackedFP32Ops in {
3149def : GCNPat<
3150  (fcanonicalize (v2f32 (VOP3PMods v2f32:$src, i32:$src_mods))),
3151  (V_PK_MUL_F32 0, (i64 CONST.FP32_ONE), $src_mods, $src)
3152>;
3153}
3154
3155// TODO: Handle fneg like other types.
3156let SubtargetPredicate = isNotGFX12Plus in {
3157def : GCNPat<
3158  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3159  (V_MUL_F64_e64  0, (i64 CONST.FP64_ONE), $src_mods, $src)
3160>;
3161}
3162} // End AddedComplexity = -5
3163
3164multiclass SelectCanonicalizeAsMax<
3165  list<Predicate> f32_preds = [],
3166  list<Predicate> f64_preds = [],
3167  list<Predicate> f16_preds = []> {
3168  def : GCNPat<
3169    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
3170    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
3171    let OtherPredicates = f32_preds;
3172  }
3173
3174  def : GCNPat<
3175    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3176    (V_MAX_F64_e64  $src_mods, $src, $src_mods, $src)> {
3177    let OtherPredicates = !listconcat(f64_preds, [isNotGFX12Plus]);
3178  }
3179
3180  def : GCNPat<
3181    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
3182    (V_MAX_NUM_F64_e64  $src_mods, $src, $src_mods, $src)> {
3183    let OtherPredicates = !listconcat(f64_preds, [isGFX12Plus]);
3184  }
3185
3186  def : GCNPat<
3187    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3188    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3189    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts]);
3190    let True16Predicate = NotHasTrue16BitInsts;
3191  }
3192
3193  def : GCNPat<
3194    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3195    (V_MAX_F16_t16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3196    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts]);
3197    let True16Predicate = UseRealTrue16Insts;
3198  }
3199
3200  def : GCNPat<
3201    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
3202    (V_MAX_F16_fake16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
3203    let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts]);
3204    let True16Predicate = UseFakeTrue16Insts;
3205  }
3206
3207  def : GCNPat<
3208    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
3209    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
3210    // FIXME: Should have VOP3P subtarget predicate
3211    let OtherPredicates = f16_preds;
3212  }
3213}
3214
3215// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
3216// mode, and would never flush. For f64, it's faster to do implement
3217// this with a max. For f16/f32 it's a wash, but prefer max when
3218// valid.
3219//
3220// FIXME: Lowering f32/f16 with max is worse since we can use a
3221// smaller encoding if the input is fneg'd. It also adds an extra
3222// register use.
3223let SubtargetPredicate = HasMinMaxDenormModes in {
3224  defm : SelectCanonicalizeAsMax<[], [], []>;
3225} // End SubtargetPredicate = HasMinMaxDenormModes
3226
3227let SubtargetPredicate = NotHasMinMaxDenormModes in {
3228  // Use the max lowering if we don't need to flush.
3229
3230  // FIXME: We don't do use this for f32 as a workaround for the
3231  // library being compiled with the default ieee mode, but
3232  // potentially being called from flushing kernels. Really we should
3233  // not be mixing code expecting different default FP modes, but mul
3234  // works in any FP environment.
3235  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
3236} // End SubtargetPredicate = NotHasMinMaxDenormModes
3237
3238
3239let OtherPredicates = [HasDLInsts] in {
3240// Don't allow source modifiers. If there are any source modifiers then it's
3241// better to select fma instead of fmac.
3242def : GCNPat <
3243  (fma (f32 (VOP3NoMods f32:$src0)),
3244       (f32 (VOP3NoMods f32:$src1)),
3245       (f32 (VOP3NoMods f32:$src2))),
3246  (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3247                  SRCMODS.NONE, $src2)
3248>;
3249} // End OtherPredicates = [HasDLInsts]
3250
3251let SubtargetPredicate = isGFX10Plus in {
3252// Don't allow source modifiers. If there are any source modifiers then it's
3253// better to select fma instead of fmac.
3254let True16Predicate = NotHasTrue16BitInsts in
3255def : GCNPat <
3256  (fma (f16 (VOP3NoMods f32:$src0)),
3257       (f16 (VOP3NoMods f32:$src1)),
3258       (f16 (VOP3NoMods f32:$src2))),
3259  (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3260                  SRCMODS.NONE, $src2)
3261>;
3262let True16Predicate = UseFakeTrue16Insts in
3263def : GCNPat <
3264  (fma (f16 (VOP3NoMods f16:$src0)),
3265       (f16 (VOP3NoMods f16:$src1)),
3266       (f16 (VOP3NoMods f16:$src2))),
3267  (V_FMAC_F16_fake16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3268                  SRCMODS.NONE, $src2)
3269>;
3270}
3271
3272let OtherPredicates = [HasFmacF64Inst] in
3273// Don't allow source modifiers. If there are any source modifiers then it's
3274// better to select fma instead of fmac.
3275def : GCNPat <
3276  (fma (f64 (VOP3NoMods f64:$src0)),
3277       (f64 (VOP3NoMods f64:$src1)),
3278       (f64 (VOP3NoMods f64:$src2))),
3279  (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
3280                  SRCMODS.NONE, $src2)
3281>;
3282
3283// COPY is workaround tablegen bug from multiple outputs
3284// from S_LSHL_B32's multiple outputs from implicit scc def.
3285let AddedComplexity = 1 in {
3286def : GCNPat <
3287  (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))),
3288  (S_LSHL_B32 SReg_32:$src1, (i16 16))
3289>;
3290
3291def : GCNPat <
3292  (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))),
3293  (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1))
3294>;
3295
3296
3297def : GCNPat <
3298  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))),
3299  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
3300>;
3301
3302def : GCNPat <
3303  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))),
3304  (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
3305>;
3306
3307def : GCNPat <
3308  (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))),
3309  (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1)
3310>;
3311
3312def : GCNPat <
3313  (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))),
3314  (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1))
3315>;
3316
3317foreach vecTy = [v2i16, v2f16, v2bf16] in {
3318
3319defvar Ty = vecTy.ElementType;
3320
3321def : GCNPat <
3322  (vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty undef))),
3323  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
3324>;
3325
3326def : GCNPat <
3327  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$src0), (Ty undef))),
3328  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
3329>;
3330
3331def : GCNPat <
3332  (vecTy (UniformBinFrag<build_vector> (Ty undef), (Ty SReg_32:$src1))),
3333  (S_LSHL_B32 SReg_32:$src1, (i32 16))
3334>;
3335
3336def : GCNPat <
3337  (vecTy (DivergentBinFrag<build_vector> (Ty undef), (Ty VGPR_32:$src1))),
3338  (vecTy (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1))
3339>;
3340} // End foreach Ty = ...
3341}
3342
3343let SubtargetPredicate = HasVOP3PInsts in {
3344def : GCNPat <
3345  (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))),
3346  (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0))))
3347>;
3348
3349// With multiple uses of the shift, this will duplicate the shift and
3350// increase register pressure.
3351def : GCNPat <
3352  (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
3353  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
3354>;
3355
3356def : GCNPat <
3357  (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
3358                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
3359  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
3360>;
3361
3362
3363foreach vecTy = [v2i16, v2f16, v2bf16] in {
3364
3365defvar Ty = vecTy.ElementType;
3366defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero);
3367
3368def : GCNPat <
3369  (vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty SReg_32:$src1))),
3370  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
3371>;
3372
3373// Take the lower 16 bits from each VGPR_32 and concat them
3374def : GCNPat <
3375  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))),
3376  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100)))
3377>;
3378
3379
3380// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
3381// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
3382def : GCNPat <
3383  (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)),
3384    (Ty !if(!eq(Ty, i16),
3385      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3386      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3387  (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b)
3388>;
3389
3390
3391// Take the lower 16 bits from V[0] and the upper 16 bits from V[1]
3392// Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000)
3393def : GCNPat <
3394  (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a),
3395    (Ty !if(!eq(Ty, i16),
3396      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3397      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3398  (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)),  VGPR_32:$a, VGPR_32:$b)
3399>;
3400
3401
3402// Take the upper 16 bits from V[0] and the lower 16 bits from V[1]
3403// Special case, can use V_ALIGNBIT (always uses encoded literal)
3404def : GCNPat <
3405  (vecTy (DivergentBinFrag<build_vector>
3406    (Ty !if(!eq(Ty, i16),
3407      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
3408      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
3409    (Ty VGPR_32:$b))),
3410    (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16))
3411>;
3412
3413// Take the upper 16 bits from each VGPR_32 and concat them
3414def : GCNPat <
3415  (vecTy (DivergentBinFrag<build_vector>
3416    (Ty !if(!eq(Ty, i16),
3417      (Ty (trunc (srl VGPR_32:$a, (i32 16)))),
3418      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))),
3419    (Ty !if(!eq(Ty, i16),
3420      (Ty (trunc (srl VGPR_32:$b, (i32 16)))),
3421      (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))),
3422  (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302)))
3423>;
3424
3425
3426} // end foreach Ty
3427
3428} // End SubtargetPredicate = HasVOP3PInsts
3429
3430let AddedComplexity = 5 in {
3431class PackB32Pat<Instruction inst> : GCNPat <
3432  (v2f16 (is_canonicalized_2<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)),
3433                                           (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))),
3434  (inst $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1)
3435>;
3436}
3437let SubtargetPredicate = isGFX9Plus in {
3438let True16Predicate = NotHasTrue16BitInsts in
3439  def : PackB32Pat<V_PACK_B32_F16_e64>;
3440
3441let True16Predicate = UseRealTrue16Insts in
3442  def : PackB32Pat<V_PACK_B32_F16_t16_e64>;
3443
3444let True16Predicate = UseFakeTrue16Insts in
3445  def : PackB32Pat<V_PACK_B32_F16_fake16_e64>;
3446} // End SubtargetPredicate = isGFX9Plus
3447
3448// With multiple uses of the shift, this will duplicate the shift and
3449// increase register pressure.
3450let SubtargetPredicate = isGFX11Plus in
3451def : GCNPat <
3452  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))),
3453  (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1))
3454>;
3455
3456
3457def : GCNPat <
3458  (v2f16 (scalar_to_vector f16:$src0)),
3459  (COPY $src0)
3460>;
3461
3462def : GCNPat <
3463  (v2i16 (scalar_to_vector i16:$src0)),
3464  (COPY $src0)
3465>;
3466
3467def : GCNPat <
3468  (v4i16 (scalar_to_vector i16:$src0)),
3469  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3470>;
3471
3472def : GCNPat <
3473  (v4f16 (scalar_to_vector f16:$src0)),
3474  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
3475>;
3476
3477def : GCNPat <
3478  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
3479                           timm:$bank_mask, timm:$bound_ctrl)),
3480  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src,
3481                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
3482                        (as_i32timm $bank_mask),
3483                        (as_i1timm $bound_ctrl))
3484>;
3485
3486foreach vt = Reg64Types.types in {
3487def : GCNPat <
3488  (vt (int_amdgcn_update_dpp vt:$old, vt:$src, timm:$dpp_ctrl, timm:$row_mask,
3489                              timm:$bank_mask, timm:$bound_ctrl)),
3490  (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl),
3491                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
3492                        (as_i1timm $bound_ctrl))
3493>;
3494}
3495
3496//===----------------------------------------------------------------------===//
3497// Fract Patterns
3498//===----------------------------------------------------------------------===//
3499
3500let SubtargetPredicate = isGFX6 in {
3501
3502// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
3503// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
3504// way to implement it is using V_FRACT_F64.
3505// The workaround for the V_FRACT bug is:
3506//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
3507
3508// Convert floor(x) to (x - fract(x))
3509
3510// Don't bother handling this for GlobalISel, it's handled during
3511// lowering.
3512//
3513// FIXME: DAG should also custom lower this.
3514def : GCNPat <
3515  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
3516  (V_ADD_F64_e64
3517      $mods,
3518      $x,
3519      SRCMODS.NEG,
3520      (V_CNDMASK_B64_PSEUDO
3521         (V_MIN_F64_e64
3522             SRCMODS.NONE,
3523             (V_FRACT_F64_e64 $mods, $x),
3524             SRCMODS.NONE,
3525             (V_MOV_B64_PSEUDO (i64 0x3fefffffffffffff))),
3526         $x,
3527         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
3528>;
3529
3530} // End SubtargetPredicates = isGFX6
3531
3532//============================================================================//
3533// Miscellaneous Optimization Patterns
3534//============================================================================//
3535
3536// Undo sub x, c -> add x, -c canonicalization since c is more likely
3537// an inline immediate than -c.
3538// TODO: Also do for 64-bit.
3539def : GCNPat<
3540  (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3541  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
3542>;
3543
3544def : GCNPat<
3545  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3546  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3547  let SubtargetPredicate = HasAddNoCarryInsts;
3548}
3549
3550def : GCNPat<
3551  (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)),
3552  (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
3553  let SubtargetPredicate = NotHasAddNoCarryInsts;
3554}
3555
3556
3557// Avoid pointlessly materializing a constant in VGPR.
3558// FIXME: Should also do this for readlane, but tablegen crashes on
3559// the ignored src1.
3560def : GCNPat<
3561  (i32 (int_amdgcn_readfirstlane (i32 imm:$src))),
3562  (S_MOV_B32 SReg_32:$src)
3563>;
3564
3565multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> {
3566  def : GCNPat <
3567    (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
3568    (BFM $a, $b)
3569  >;
3570
3571  def : GCNPat <
3572    (vt (ADD (vt (shl 1, vt:$a)), -1)),
3573    (BFM $a, (i32 0))
3574  >;
3575}
3576
3577defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>;
3578// FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>;
3579defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>;
3580
3581// Bitfield extract patterns
3582
3583def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
3584  return isMask_32(Imm);
3585}]>;
3586
3587def IMMPopCount : SDNodeXForm<imm, [{
3588  return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N),
3589                                   MVT::i32);
3590}]>;
3591
3592def : AMDGPUPat <
3593  (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)),
3594                         IMMZeroBasedBitfieldMask:$mask),
3595  (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask)))
3596>;
3597
3598// x & ((1 << y) - 1)
3599def : AMDGPUPat <
3600  (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
3601  (V_BFE_U32_e64 $src, (i32 0), $width)
3602>;
3603
3604// x & ~(-1 << y)
3605def : AMDGPUPat <
3606  (DivergentBinFrag<and> i32:$src,
3607                         (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
3608  (V_BFE_U32_e64 $src, (i32 0), $width)
3609>;
3610
3611def uint5Bits : PatLeaf<(i32 VGPR_32:$width), [{
3612  return CurDAG->computeKnownBits(SDValue(N, 0)).countMaxActiveBits() <= 5;
3613}]>;
3614
3615// x & (-1 >> (bitwidth - y))
3616def : AMDGPUPat <
3617  (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, uint5Bits:$width))),
3618  (V_BFE_U32_e64 $src, (i32 0), $width)
3619>;
3620
3621// SHA-256 Ma patterns
3622
3623// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
3624def : AMDGPUPatIgnoreCopies <
3625  (DivergentBinFrag<or> (and i32:$x, i32:$z),
3626                        (and i32:$y, (or i32:$x, i32:$z))),
3627  (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32),
3628                                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)),
3629                (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32),
3630                (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32))
3631>;
3632
3633def : AMDGPUPatIgnoreCopies <
3634  (DivergentBinFrag<or> (and i64:$x, i64:$z),
3635                        (and i64:$y, (or i64:$x, i64:$z))),
3636  (REG_SEQUENCE VReg_64,
3637    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)),
3638                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))),
3639              (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)),
3640              (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0,
3641    (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)),
3642                    (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))),
3643              (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)),
3644              (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1)
3645>;
3646
3647multiclass IntMed3Pat<Instruction med3Inst,
3648                 SDPatternOperator min,
3649                 SDPatternOperator max> {
3650
3651  // This matches 16 permutations of
3652  // min(max(a, b), max(min(a, b), c))
3653  def : AMDGPUPat <
3654  (min (max i32:$src0, i32:$src1),
3655       (max (min i32:$src0, i32:$src1), i32:$src2)),
3656  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3657>;
3658
3659  // This matches 16 permutations of
3660  // max(min(x, y), min(max(x, y), z))
3661  def : AMDGPUPat <
3662  (max (min i32:$src0, i32:$src1),
3663       (min (max i32:$src0, i32:$src1), i32:$src2)),
3664  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3665>;
3666}
3667
3668defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>;
3669defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>;
3670
3671multiclass FPMed3Pat<ValueType vt,
3672                Instruction med3Inst> {
3673  // This matches 16 permutations of max(min(x, y), min(max(x, y), z))
3674  def : GCNPat<
3675    (fmaxnum_like_nnan
3676      (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3677                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3678      (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3679                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3680                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3681    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3682              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3683
3684
3685  // This matches 16 permutations of min(max(x, y), max(min(x, y), z))
3686  def : GCNPat<
3687    (fminnum_like_nnan
3688      (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3689                    (VOP3Mods vt:$src1, i32:$src1_mods)),
3690      (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods),
3691                                  (VOP3Mods vt:$src1, i32:$src1_mods)),
3692                    (vt (VOP3Mods vt:$src2, i32:$src2_mods)))),
3693    (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3694              DSTCLAMP.NONE, DSTOMOD.NONE)>;
3695}
3696
3697multiclass Int16Med3Pat<Instruction med3Inst,
3698                        SDPatternOperator min,
3699                        SDPatternOperator max,
3700                        RegisterOperand outputSrcType> {
3701  // This matches 16 permutations of
3702  // max(min(x, y), min(max(x, y), z))
3703  def : GCNPat <
3704  (max (min i16:$src0, i16:$src1),
3705       (min (max i16:$src0, i16:$src1), i16:$src2)),
3706  (med3Inst SRCMODS.NONE, outputSrcType:$src0, SRCMODS.NONE, outputSrcType:$src1,
3707            SRCMODS.NONE, outputSrcType:$src2, DSTCLAMP.NONE)
3708>;
3709
3710  // This matches 16 permutations of
3711  // min(max(a, b), max(min(a, b), c))
3712  def : GCNPat <
3713  (min (max i16:$src0, i16:$src1),
3714       (max (min i16:$src0, i16:$src1), i16:$src2)),
3715  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
3716>;
3717}
3718
3719defm : FPMed3Pat<f32, V_MED3_F32_e64>;
3720
3721let SubtargetPredicate = HasMed3_16 in {
3722let True16Predicate = NotHasTrue16BitInsts in
3723defm : FPMed3Pat<f16, V_MED3_F16_e64>;
3724let True16Predicate = UseRealTrue16Insts in
3725defm : FPMed3Pat<f16, V_MED3_F16_t16_e64>;
3726let True16Predicate = UseFakeTrue16Insts in
3727defm : FPMed3Pat<f16, V_MED3_F16_fake16_e64>;
3728}
3729
3730class
3731IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max,
3732             SDPatternOperator max_or_min_oneuse> : AMDGPUPat <
3733  (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1),
3734                                i32:$src2),
3735  (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
3736>;
3737
3738class
3739FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3740            SDPatternOperator max_or_min_oneuse> : GCNPat <
3741  (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3742                                 (VOP3Mods vt:$src1, i32:$src1_mods)),
3743               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3744  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3745              DSTCLAMP.NONE, DSTOMOD.NONE)
3746>;
3747
3748class
3749FPMinCanonMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max,
3750                 SDPatternOperator max_or_min_oneuse> : GCNPat <
3751  (min_or_max (is_canonicalized_1<fcanonicalize>
3752                  (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods),
3753                                     (VOP3Mods vt:$src1, i32:$src1_mods))),
3754               (vt (VOP3Mods vt:$src2, i32:$src2_mods))),
3755  (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2,
3756              DSTCLAMP.NONE, DSTOMOD.NONE)
3757>;
3758
3759let OtherPredicates = [isGFX11Plus] in {
3760def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>;
3761def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>;
3762def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>;
3763def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>;
3764def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3765def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3766def : FPMinCanonMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>;
3767def : FPMinCanonMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>;
3768}
3769
3770let True16Predicate = UseFakeTrue16Insts in {
3771def : FPMinMaxPat<V_MINMAX_F16_fake16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3772def : FPMinMaxPat<V_MAXMIN_F16_fake16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3773def : FPMinCanonMaxPat<V_MINMAX_F16_fake16_e64, f16, fmaxnum_like, fminnum_like_oneuse>;
3774def : FPMinCanonMaxPat<V_MAXMIN_F16_fake16_e64, f16, fminnum_like, fmaxnum_like_oneuse>;
3775}
3776
3777let SubtargetPredicate = isGFX9Plus in {
3778let True16Predicate = NotHasTrue16BitInsts in {
3779  defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax, VSrc_b16>;
3780  defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax, VSrc_b16>;
3781}
3782let True16Predicate = UseRealTrue16Insts in {
3783  defm : Int16Med3Pat<V_MED3_I16_t16_e64, smin, smax, VSrcT_b16>;
3784  defm : Int16Med3Pat<V_MED3_U16_t16_e64, umin, umax, VSrcT_b16>;
3785}
3786let True16Predicate = UseFakeTrue16Insts in {
3787  defm : Int16Med3Pat<V_MED3_I16_fake16_e64, smin, smax, VSrc_b16>;
3788  defm : Int16Med3Pat<V_MED3_U16_fake16_e64, umin, umax, VSrc_b16>;
3789}
3790} // End SubtargetPredicate = [isGFX9Plus]
3791
3792let SubtargetPredicate = isGFX12Plus in {
3793def : FPMinMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3794def : FPMinMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3795def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3796def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3797}
3798
3799let True16Predicate = UseFakeTrue16Insts, SubtargetPredicate = isGFX12Plus in {
3800def : FPMinMaxPat<V_MINIMUMMAXIMUM_F16_fake16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3801def : FPMinMaxPat<V_MAXIMUMMINIMUM_F16_fake16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3802def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F16_fake16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>;
3803def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F16_fake16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>;
3804}
3805
3806// Convert a floating-point power of 2 to the integer exponent.
3807def FPPow2ToExponentXForm : SDNodeXForm<fpimm, [{
3808  const auto &APF = N->getValueAPF();
3809  int Log2 = APF.getExactLog2Abs();
3810  assert(Log2 != INT_MIN);
3811  return CurDAG->getSignedTargetConstant(Log2, SDLoc(N), MVT::i32);
3812}]>;
3813
3814// Check if a floating point value is a power of 2 floating-point
3815// immediate where it's preferable to emit a multiply by as an
3816// ldexp. We skip over 0.5 to 4.0 as those are inline immediates
3817// anyway.
3818def fpimm_pos_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
3819    if (Imm.isNegative())
3820      return false;
3821
3822    int Exp = Imm.getExactLog2Abs();
3823    // Prefer leaving the FP inline immediates as they are.
3824    // 0.5, 1.0, 2.0, 4.0
3825
3826    // For f64 ldexp is always better than materializing a 64-bit
3827    // constant.
3828    return Exp != INT_MIN && (Exp < -1 || Exp > 2);
3829  }], FPPow2ToExponentXForm
3830>;
3831
3832def fpimm_neg_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{
3833    if (!Imm.isNegative())
3834      return false;
3835    int Exp = Imm.getExactLog2Abs();
3836    // Prefer leaving the FP inline immediates as they are.
3837    // 0.5, 1.0, 2.0, 4.0
3838
3839    // For f64 ldexp is always better than materializing a 64-bit
3840    // constant.
3841    return Exp != INT_MIN && (Exp < -1 || Exp > 2);
3842  }], FPPow2ToExponentXForm
3843>;
3844
3845// f64 is different because we also want to handle cases that may
3846// require materialization of the exponent.
3847// TODO: If we know f64 ops are fast, prefer add (ldexp x, N), y over fma
3848// TODO: For f32/f16, it's not a clear win on code size to use ldexp
3849// in place of mul since we have to use the vop3 form. Are there power
3850// savings or some other reason to prefer ldexp over mul?
3851def : GCNPat<
3852  (any_fmul (f64 (VOP3Mods f64:$src0, i32:$src0_mods)),
3853            fpimm_pos_pow2_prefer_ldexp_f64:$src1),
3854  (V_LDEXP_F64_e64 i32:$src0_mods, VSrc_b64:$src0,
3855                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3856>;
3857
3858def : GCNPat<
3859  (any_fmul f64:$src0, fpimm_neg_pow2_prefer_ldexp_f64:$src1),
3860  (V_LDEXP_F64_e64 SRCMODS.NEG, VSrc_b64:$src0,
3861                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3862>;
3863
3864// We want to avoid using VOP3Mods which could pull in another fneg
3865// which we would need to be re-negated (which should never happen in
3866// practice). I don't see a way to apply an SDNodeXForm that accounts
3867// for a second operand.
3868def : GCNPat<
3869  (any_fmul (fabs f64:$src0), fpimm_neg_pow2_prefer_ldexp_f64:$src1),
3870  (V_LDEXP_F64_e64 SRCMODS.NEG_ABS, VSrc_b64:$src0,
3871                   0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1))))
3872>;
3873
3874class AMDGPUGenericInstruction : GenericInstruction {
3875  let Namespace = "AMDGPU";
3876}
3877
3878// Convert a wave address to a swizzled vector address (i.e. this is
3879// for copying the stack pointer to a vector address appropriate to
3880// use in the offset field of mubuf instructions).
3881def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction {
3882  let OutOperandList = (outs type0:$dst);
3883  let InOperandList = (ins type0:$src);
3884  let hasSideEffects = 0;
3885}
3886
3887// Returns -1 if the input is zero.
3888def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
3889  let OutOperandList = (outs type0:$dst);
3890  let InOperandList = (ins type1:$src);
3891  let hasSideEffects = 0;
3892}
3893
3894// Returns -1 if the input is zero.
3895def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction {
3896  let OutOperandList = (outs type0:$dst);
3897  let InOperandList = (ins type1:$src);
3898  let hasSideEffects = 0;
3899}
3900
3901def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
3902  let OutOperandList = (outs type0:$dst);
3903  let InOperandList = (ins type1:$src);
3904  let hasSideEffects = 0;
3905}
3906
3907class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
3908  let OutOperandList = (outs type0:$dst);
3909  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3910                           type2:$soffset, untyped_imm_0:$offset,
3911                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3912  let hasSideEffects = 0;
3913  let mayLoad = 1;
3914}
3915
3916class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
3917  let OutOperandList = (outs type0:$dst);
3918  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
3919                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
3920                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3921  let hasSideEffects = 0;
3922  let mayLoad = 1;
3923}
3924
3925def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
3926def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
3927def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
3928def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
3929def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
3930def G_AMDGPU_BUFFER_LOAD_UBYTE_TFE : BufferLoadGenericInstruction;
3931def G_AMDGPU_BUFFER_LOAD_SBYTE_TFE : BufferLoadGenericInstruction;
3932def G_AMDGPU_BUFFER_LOAD_USHORT_TFE : BufferLoadGenericInstruction;
3933def G_AMDGPU_BUFFER_LOAD_SSHORT_TFE : BufferLoadGenericInstruction;
3934def G_AMDGPU_BUFFER_LOAD_TFE : BufferLoadGenericInstruction;
3935def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
3936def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction;
3937def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
3938def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
3939def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;
3940
3941class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
3942  let OutOperandList = (outs);
3943  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3944                           type2:$soffset, untyped_imm_0:$offset,
3945                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3946  let hasSideEffects = 0;
3947  let mayStore = 1;
3948}
3949
3950class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
3951  let OutOperandList = (outs);
3952  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
3953                           type2:$soffset, untyped_imm_0:$offset,
3954                           untyped_imm_0:$format,
3955                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
3956  let hasSideEffects = 0;
3957  let mayStore = 1;
3958}
3959
3960def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
3961def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
3962def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
3963def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
3964def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
3965def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
3966def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;
3967
3968def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
3969  let OutOperandList = (outs type0:$dst);
3970  let InOperandList = (ins type0:$src0, type0:$src1);
3971  let hasSideEffects = 0;
3972}
3973
3974def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
3975  let OutOperandList = (outs type0:$dst);
3976  let InOperandList = (ins type0:$src0, type0:$src1);
3977  let hasSideEffects = 0;
3978}
3979
3980foreach N = 0-3 in {
3981def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
3982  let OutOperandList = (outs type0:$dst);
3983  let InOperandList = (ins type0:$src0);
3984  let hasSideEffects = 0;
3985}
3986}
3987
3988def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction {
3989  let OutOperandList = (outs type0:$dst);
3990  let InOperandList = (ins type0:$src0, type0:$src1);
3991  let hasSideEffects = 0;
3992}
3993
3994def G_AMDGPU_SMED3 : AMDGPUGenericInstruction {
3995  let OutOperandList = (outs type0:$dst);
3996  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
3997  let hasSideEffects = 0;
3998}
3999
4000def G_AMDGPU_UMED3 : AMDGPUGenericInstruction {
4001  let OutOperandList = (outs type0:$dst);
4002  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
4003  let hasSideEffects = 0;
4004}
4005
4006def G_AMDGPU_FMED3 : AMDGPUGenericInstruction {
4007  let OutOperandList = (outs type0:$dst);
4008  let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2);
4009  let hasSideEffects = 0;
4010}
4011
4012def G_AMDGPU_CLAMP : AMDGPUGenericInstruction {
4013  let OutOperandList = (outs type0:$dst);
4014  let InOperandList = (ins type0:$src);
4015  let hasSideEffects = 0;
4016}
4017
4018// Integer multiply-add: arg0 * arg1 + arg2.
4019//
4020// arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned),
4021// arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out.
4022class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction {
4023  let OutOperandList = (outs type0:$dst, type1:$carry_out);
4024  let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2);
4025  let hasSideEffects = 0;
4026}
4027
4028def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32;
4029def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32;
4030
4031// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
4032// operand Expects a MachineMemOperand in addition to explicit
4033// operands.
4034def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
4035  let OutOperandList = (outs type0:$oldval);
4036  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
4037  let hasSideEffects = 0;
4038  let mayLoad = 1;
4039  let mayStore = 1;
4040}
4041
4042class BufferAtomicGenericInstruction : AMDGPUGenericInstruction {
4043  let OutOperandList = (outs type0:$dst);
4044  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
4045                           type2:$soffset, untyped_imm_0:$offset,
4046                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
4047  let hasSideEffects = 0;
4048  let mayLoad = 1;
4049  let mayStore = 1;
4050}
4051
4052def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
4053def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
4054def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
4055def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
4056def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
4057def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
4058def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
4059def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
4060def G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 : BufferAtomicGenericInstruction;
4061def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
4062def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
4063def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
4064def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;
4065def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction;
4066def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction;
4067def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction;
4068
4069def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
4070  let OutOperandList = (outs type0:$dst);
4071  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
4072                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
4073                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
4074  let hasSideEffects = 0;
4075  let mayLoad = 1;
4076  let mayStore = 1;
4077}
4078
4079// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
4080// a workaround for the intrinsic being defined as readnone, but
4081// really needs a memory operand.
4082
4083class SBufferLoadInstruction : AMDGPUGenericInstruction {
4084  let OutOperandList = (outs type0:$dst);
4085  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
4086  let hasSideEffects = 0;
4087  let mayLoad = 1;
4088  let mayStore = 0;
4089}
4090
4091def G_AMDGPU_S_BUFFER_LOAD : SBufferLoadInstruction;
4092def G_AMDGPU_S_BUFFER_LOAD_SBYTE : SBufferLoadInstruction;
4093def G_AMDGPU_S_BUFFER_LOAD_UBYTE : SBufferLoadInstruction;
4094def G_AMDGPU_S_BUFFER_LOAD_SSHORT : SBufferLoadInstruction;
4095def G_AMDGPU_S_BUFFER_LOAD_USHORT : SBufferLoadInstruction;
4096
4097class SBufferPrefetchInstruction : AMDGPUGenericInstruction {
4098  let OutOperandList = (outs);
4099  let InOperandList = (ins type0:$rsrc, untyped_imm_0:$offset, type1:$len);
4100  let hasSideEffects = 0;
4101  let mayLoad = 1;
4102  let mayStore = 1;
4103}
4104
4105def G_AMDGPU_S_BUFFER_PREFETCH : SBufferPrefetchInstruction;
4106
4107def G_AMDGPU_S_MUL_U64_U32 : AMDGPUGenericInstruction {
4108  let OutOperandList = (outs type0:$dst);
4109  let InOperandList = (ins type0:$src0, type0:$src1);
4110  let hasSideEffects = 0;
4111}
4112
4113def G_AMDGPU_S_MUL_I64_I32 : AMDGPUGenericInstruction {
4114  let OutOperandList = (outs type0:$dst);
4115  let InOperandList = (ins type0:$src0, type0:$src1);
4116  let hasSideEffects = 0;
4117}
4118
4119// This is equivalent to the G_INTRINSIC*, but the operands may have
4120// been legalized depending on the subtarget requirements.
4121def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
4122  let OutOperandList = (outs type0:$dst);
4123  let InOperandList = (ins unknown:$intrin, variable_ops);
4124  let hasSideEffects = 0;
4125  let mayLoad = 1;
4126
4127  // FIXME: Use separate opcode for atomics.
4128  let mayStore = 1;
4129}
4130
4131def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction {
4132  let OutOperandList = (outs type0:$dst);
4133  let InOperandList = (ins unknown:$intrin, variable_ops);
4134  let hasSideEffects = 0;
4135  let mayLoad = 1;
4136
4137  // FIXME: Use separate opcode for atomics.
4138  let mayStore = 1;
4139}
4140
4141def G_AMDGPU_INTRIN_IMAGE_LOAD_NORET : AMDGPUGenericInstruction {
4142  let OutOperandList = (outs);
4143  let InOperandList = (ins unknown:$intrin, variable_ops);
4144  let hasSideEffects = 0;
4145  let mayLoad = 1;
4146  let mayStore = 1;
4147}
4148
4149// This is equivalent to the G_INTRINSIC*, but the operands may have
4150// been legalized depending on the subtarget requirements.
4151def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
4152  let OutOperandList = (outs);
4153  let InOperandList = (ins unknown:$intrin, variable_ops);
4154  let hasSideEffects = 0;
4155  let mayStore = 1;
4156}
4157
4158def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction {
4159  let OutOperandList = (outs);
4160  let InOperandList = (ins unknown:$intrin, variable_ops);
4161  let hasSideEffects = 0;
4162  let mayStore = 1;
4163}
4164
4165def G_AMDGPU_INTRIN_BVH_INTERSECT_RAY : AMDGPUGenericInstruction {
4166  let OutOperandList = (outs type0:$dst);
4167  let InOperandList = (ins unknown:$intrin, variable_ops);
4168  let hasSideEffects = 0;
4169  let mayLoad = 1;
4170  let mayStore = 0;
4171}
4172
4173// Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop
4174// if necessary.
4175def G_SI_CALL : AMDGPUGenericInstruction {
4176  let OutOperandList = (outs SReg_64:$dst);
4177  let InOperandList = (ins type0:$src0, unknown:$callee);
4178  let Size = 4;
4179  let isCall = 1;
4180  let UseNamedOperandTable = 1;
4181  let SchedRW = [WriteBranch];
4182  // TODO: Should really base this on the call target
4183  let isConvergent = 1;
4184}
4185
4186// Uniform in vgpr - vgpr with same value in all active lanes.
4187
4188// $dst = $src0 != 0, selected as:
4189// $dst(SCC) = s_cmp_lg $src0, 0
4190// src0 is either exec or 0 (same value for all active lanes),
4191// for example result of comparison of two uniform in vgpr.
4192def G_AMDGPU_COPY_SCC_VCC : AMDGPUGenericInstruction {
4193  let OutOperandList = (outs type0:$dst);
4194  let InOperandList = (ins type1:$src0);
4195  let hasSideEffects = 0;
4196}
4197
4198// $dst = $src0 ? exec : 0, selected as:
4199// SCC = COPY $src0
4200// $dst(SReg_32/64) = s_cselect exec, 0
4201def G_AMDGPU_COPY_VCC_SCC : AMDGPUGenericInstruction {
4202  let OutOperandList = (outs type0:$dst);
4203  let InOperandList = (ins type1:$src0);
4204  let hasSideEffects = 0;
4205}
4206
4207// Move uniform in vgpr to sgpr. Selected as v_readfirstlane_b32.
4208// Semantic difference in READ ANY instead of FIRST(active) LANE allows for
4209// vgpr to sgpr back-to vgpr combine, vgpr has same value in all active lanes
4210// vgprDst = COPY (G_AMDGPU_READANYLANE vgprSrc) -> vgprDst = sgprSrc
4211def G_AMDGPU_READANYLANE : AMDGPUGenericInstruction {
4212  let OutOperandList = (outs type0:$dst);
4213  let InOperandList = (ins type0:$src0);
4214  let hasSideEffects = 0;
4215}
4216
4217//============================================================================//
4218// Dummy Instructions
4219//============================================================================//
4220
4221def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> {
4222  let Inst{31-0} = 0x00000000;
4223  let FixedSize = 1;
4224  let Size = 4;
4225  let Uses = [EXEC];
4226  let hasSideEffects = 1;
4227  let SubtargetPredicate = isGFX10Plus;
4228}
4229