1 //===- AMDGPUSplitModule.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file Implements a module splitting algorithm designed to support the 10 /// FullLTO --lto-partitions option for parallel codegen. 11 /// 12 /// The role of this module splitting pass is the same as 13 /// lib/Transforms/Utils/SplitModule.cpp: load-balance the module's functions 14 /// across a set of N partitions to allow for parallel codegen. 15 /// 16 /// The similarities mostly end here, as this pass achieves load-balancing in a 17 /// more elaborate fashion which is targeted towards AMDGPU modules. It can take 18 /// advantage of the structure of AMDGPU modules (which are mostly 19 /// self-contained) to allow for more efficient splitting without affecting 20 /// codegen negatively, or causing innaccurate resource usage analysis. 21 /// 22 /// High-level pass overview: 23 /// - SplitGraph & associated classes 24 /// - Graph representation of the module and of the dependencies that 25 /// matter for splitting. 26 /// - RecursiveSearchSplitting 27 /// - Core splitting algorithm. 28 /// - SplitProposal 29 /// - Represents a suggested solution for splitting the input module. These 30 /// solutions can be scored to determine the best one when multiple 31 /// solutions are available. 32 /// - Driver/pass "run" function glues everything together. 33 34 #include "AMDGPUSplitModule.h" 35 #include "AMDGPUTargetMachine.h" 36 #include "Utils/AMDGPUBaseInfo.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/EquivalenceClasses.h" 39 #include "llvm/ADT/GraphTraits.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/StringExtras.h" 42 #include "llvm/ADT/StringRef.h" 43 #include "llvm/Analysis/CallGraph.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstIterator.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/Support/Allocator.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/DOTGraphTraits.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/GraphWriter.h" 55 #include "llvm/Support/Path.h" 56 #include "llvm/Support/Timer.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include <cassert> 60 #include <cmath> 61 #include <memory> 62 #include <utility> 63 #include <vector> 64 65 #ifndef NDEBUG 66 #include "llvm/Support/LockFileManager.h" 67 #endif 68 69 #define DEBUG_TYPE "amdgpu-split-module" 70 71 namespace llvm { 72 namespace { 73 74 static cl::opt<unsigned> MaxDepth( 75 "amdgpu-module-splitting-max-depth", 76 cl::desc( 77 "maximum search depth. 0 forces a greedy approach. " 78 "warning: the algorithm is up to O(2^N), where N is the max depth."), 79 cl::init(8)); 80 81 static cl::opt<float> LargeFnFactor( 82 "amdgpu-module-splitting-large-threshold", cl::init(2.0f), cl::Hidden, 83 cl::desc( 84 "when max depth is reached and we can no longer branch out, this " 85 "value determines if a function is worth merging into an already " 86 "existing partition to reduce code duplication. This is a factor " 87 "of the ideal partition size, e.g. 2.0 means we consider the " 88 "function for merging if its cost (including its callees) is 2x the " 89 "size of an ideal partition.")); 90 91 static cl::opt<float> LargeFnOverlapForMerge( 92 "amdgpu-module-splitting-merge-threshold", cl::init(0.7f), cl::Hidden, 93 cl::desc("when a function is considered for merging into a partition that " 94 "already contains some of its callees, do the merge if at least " 95 "n% of the code it can reach is already present inside the " 96 "partition; e.g. 0.7 means only merge >70%")); 97 98 static cl::opt<bool> NoExternalizeGlobals( 99 "amdgpu-module-splitting-no-externalize-globals", cl::Hidden, 100 cl::desc("disables externalization of global variable with local linkage; " 101 "may cause globals to be duplicated which increases binary size")); 102 103 static cl::opt<bool> NoExternalizeOnAddrTaken( 104 "amdgpu-module-splitting-no-externalize-address-taken", cl::Hidden, 105 cl::desc( 106 "disables externalization of functions whose addresses are taken")); 107 108 static cl::opt<std::string> 109 ModuleDotCfgOutput("amdgpu-module-splitting-print-module-dotcfg", 110 cl::Hidden, 111 cl::desc("output file to write out the dotgraph " 112 "representation of the input module")); 113 114 static cl::opt<std::string> PartitionSummariesOutput( 115 "amdgpu-module-splitting-print-partition-summaries", cl::Hidden, 116 cl::desc("output file to write out a summary of " 117 "the partitions created for each module")); 118 119 #ifndef NDEBUG 120 static cl::opt<bool> 121 UseLockFile("amdgpu-module-splitting-serial-execution", cl::Hidden, 122 cl::desc("use a lock file so only one process in the system " 123 "can run this pass at once. useful to avoid mangled " 124 "debug output in multithreaded environments.")); 125 126 static cl::opt<bool> 127 DebugProposalSearch("amdgpu-module-splitting-debug-proposal-search", 128 cl::Hidden, 129 cl::desc("print all proposals received and whether " 130 "they were rejected or accepted")); 131 #endif 132 133 struct SplitModuleTimer : NamedRegionTimer { 134 SplitModuleTimer(StringRef Name, StringRef Desc) 135 : NamedRegionTimer(Name, Desc, DEBUG_TYPE, "AMDGPU Module Splitting", 136 TimePassesIsEnabled) {} 137 }; 138 139 //===----------------------------------------------------------------------===// 140 // Utils 141 //===----------------------------------------------------------------------===// 142 143 using CostType = InstructionCost::CostType; 144 using FunctionsCostMap = DenseMap<const Function *, CostType>; 145 using GetTTIFn = function_ref<const TargetTransformInfo &(Function &)>; 146 static constexpr unsigned InvalidPID = -1; 147 148 /// \param Num numerator 149 /// \param Dem denominator 150 /// \returns a printable object to print (Num/Dem) using "%0.2f". 151 static auto formatRatioOf(CostType Num, CostType Dem) { 152 CostType DemOr1 = Dem ? Dem : 1; 153 return format("%0.2f", (static_cast<double>(Num) / DemOr1) * 100); 154 } 155 156 /// Checks whether a given function is non-copyable. 157 /// 158 /// Non-copyable functions cannot be cloned into multiple partitions, and only 159 /// one copy of the function can be present across all partitions. 160 /// 161 /// Kernel functions and external functions fall into this category. If we were 162 /// to clone them, we would end up with multiple symbol definitions and a very 163 /// unhappy linker. 164 static bool isNonCopyable(const Function &F) { 165 return F.hasExternalLinkage() || !F.isDefinitionExact() || 166 AMDGPU::isEntryFunctionCC(F.getCallingConv()); 167 } 168 169 /// If \p GV has local linkage, make it external + hidden. 170 static void externalize(GlobalValue &GV) { 171 if (GV.hasLocalLinkage()) { 172 GV.setLinkage(GlobalValue::ExternalLinkage); 173 GV.setVisibility(GlobalValue::HiddenVisibility); 174 } 175 176 // Unnamed entities must be named consistently between modules. setName will 177 // give a distinct name to each such entity. 178 if (!GV.hasName()) 179 GV.setName("__llvmsplit_unnamed"); 180 } 181 182 /// Cost analysis function. Calculates the cost of each function in \p M 183 /// 184 /// \param GetTTI Abstract getter for TargetTransformInfo. 185 /// \param M Module to analyze. 186 /// \param CostMap[out] Resulting Function -> Cost map. 187 /// \return The module's total cost. 188 static CostType calculateFunctionCosts(GetTTIFn GetTTI, Module &M, 189 FunctionsCostMap &CostMap) { 190 SplitModuleTimer SMT("calculateFunctionCosts", "cost analysis"); 191 192 LLVM_DEBUG(dbgs() << "[cost analysis] calculating function costs\n"); 193 CostType ModuleCost = 0; 194 [[maybe_unused]] CostType KernelCost = 0; 195 196 for (auto &Fn : M) { 197 if (Fn.isDeclaration()) 198 continue; 199 200 CostType FnCost = 0; 201 const auto &TTI = GetTTI(Fn); 202 for (const auto &BB : Fn) { 203 for (const auto &I : BB) { 204 auto Cost = 205 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 206 assert(Cost != InstructionCost::getMax()); 207 // Assume expensive if we can't tell the cost of an instruction. 208 CostType CostVal = 209 Cost.getValue().value_or(TargetTransformInfo::TCC_Expensive); 210 assert((FnCost + CostVal) >= FnCost && "Overflow!"); 211 FnCost += CostVal; 212 } 213 } 214 215 assert(FnCost != 0); 216 217 CostMap[&Fn] = FnCost; 218 assert((ModuleCost + FnCost) >= ModuleCost && "Overflow!"); 219 ModuleCost += FnCost; 220 221 if (AMDGPU::isEntryFunctionCC(Fn.getCallingConv())) 222 KernelCost += FnCost; 223 } 224 225 if (CostMap.empty()) 226 return 0; 227 228 assert(ModuleCost); 229 LLVM_DEBUG({ 230 const CostType FnCost = ModuleCost - KernelCost; 231 dbgs() << " - total module cost is " << ModuleCost << ". kernels cost " 232 << "" << KernelCost << " (" 233 << format("%0.2f", (float(KernelCost) / ModuleCost) * 100) 234 << "% of the module), functions cost " << FnCost << " (" 235 << format("%0.2f", (float(FnCost) / ModuleCost) * 100) 236 << "% of the module)\n"; 237 }); 238 239 return ModuleCost; 240 } 241 242 /// \return true if \p F can be indirectly called 243 static bool canBeIndirectlyCalled(const Function &F) { 244 if (F.isDeclaration() || AMDGPU::isEntryFunctionCC(F.getCallingConv())) 245 return false; 246 return !F.hasLocalLinkage() || 247 F.hasAddressTaken(/*PutOffender=*/nullptr, 248 /*IgnoreCallbackUses=*/false, 249 /*IgnoreAssumeLikeCalls=*/true, 250 /*IgnoreLLVMUsed=*/true, 251 /*IgnoreARCAttachedCall=*/false, 252 /*IgnoreCastedDirectCall=*/true); 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Graph-based Module Representation 257 //===----------------------------------------------------------------------===// 258 259 /// AMDGPUSplitModule's view of the source Module, as a graph of all components 260 /// that can be split into different modules. 261 /// 262 /// The most trivial instance of this graph is just the CallGraph of the module, 263 /// but it is not guaranteed that the graph is strictly equal to the CG. It 264 /// currently always is but it's designed in a way that would eventually allow 265 /// us to create abstract nodes, or nodes for different entities such as global 266 /// variables or any other meaningful constraint we must consider. 267 /// 268 /// The graph is only mutable by this class, and is generally not modified 269 /// after \ref SplitGraph::buildGraph runs. No consumers of the graph can 270 /// mutate it. 271 class SplitGraph { 272 public: 273 class Node; 274 275 enum class EdgeKind : uint8_t { 276 /// The nodes are related through a direct call. This is a "strong" edge as 277 /// it means the Src will directly reference the Dst. 278 DirectCall, 279 /// The nodes are related through an indirect call. 280 /// This is a "weaker" edge and is only considered when traversing the graph 281 /// starting from a kernel. We need this edge for resource usage analysis. 282 /// 283 /// The reason why we have this edge in the first place is due to how 284 /// AMDGPUResourceUsageAnalysis works. In the presence of an indirect call, 285 /// the resource usage of the kernel containing the indirect call is the 286 /// max resource usage of all functions that can be indirectly called. 287 IndirectCall, 288 }; 289 290 /// An edge between two nodes. Edges are directional, and tagged with a 291 /// "kind". 292 struct Edge { 293 Edge(Node *Src, Node *Dst, EdgeKind Kind) 294 : Src(Src), Dst(Dst), Kind(Kind) {} 295 296 Node *Src; ///< Source 297 Node *Dst; ///< Destination 298 EdgeKind Kind; 299 }; 300 301 using EdgesVec = SmallVector<const Edge *, 0>; 302 using edges_iterator = EdgesVec::const_iterator; 303 using nodes_iterator = const Node *const *; 304 305 SplitGraph(const Module &M, const FunctionsCostMap &CostMap, 306 CostType ModuleCost) 307 : M(M), CostMap(CostMap), ModuleCost(ModuleCost) {} 308 309 void buildGraph(CallGraph &CG); 310 311 #ifndef NDEBUG 312 bool verifyGraph() const; 313 #endif 314 315 bool empty() const { return Nodes.empty(); } 316 const iterator_range<nodes_iterator> nodes() const { 317 return {Nodes.begin(), Nodes.end()}; 318 } 319 const Node &getNode(unsigned ID) const { return *Nodes[ID]; } 320 321 unsigned getNumNodes() const { return Nodes.size(); } 322 BitVector createNodesBitVector() const { return BitVector(Nodes.size()); } 323 324 const Module &getModule() const { return M; } 325 326 CostType getModuleCost() const { return ModuleCost; } 327 CostType getCost(const Function &F) const { return CostMap.at(&F); } 328 329 /// \returns the aggregated cost of all nodes in \p BV (bits set to 1 = node 330 /// IDs). 331 CostType calculateCost(const BitVector &BV) const; 332 333 private: 334 /// Retrieves the node for \p GV in \p Cache, or creates a new node for it and 335 /// updates \p Cache. 336 Node &getNode(DenseMap<const GlobalValue *, Node *> &Cache, 337 const GlobalValue &GV); 338 339 // Create a new edge between two nodes and add it to both nodes. 340 const Edge &createEdge(Node &Src, Node &Dst, EdgeKind EK); 341 342 const Module &M; 343 const FunctionsCostMap &CostMap; 344 CostType ModuleCost; 345 346 // Final list of nodes with stable ordering. 347 SmallVector<Node *> Nodes; 348 349 SpecificBumpPtrAllocator<Node> NodesPool; 350 351 // Edges are trivially destructible objects, so as a small optimization we 352 // use a BumpPtrAllocator which avoids destructor calls but also makes 353 // allocation faster. 354 static_assert( 355 std::is_trivially_destructible_v<Edge>, 356 "Edge must be trivially destructible to use the BumpPtrAllocator"); 357 BumpPtrAllocator EdgesPool; 358 }; 359 360 /// Nodes in the SplitGraph contain both incoming, and outgoing edges. 361 /// Incoming edges have this node as their Dst, and Outgoing ones have this node 362 /// as their Src. 363 /// 364 /// Edge objects are shared by both nodes in Src/Dst. They provide immediate 365 /// feedback on how two nodes are related, and in which direction they are 366 /// related, which is valuable information to make splitting decisions. 367 /// 368 /// Nodes are fundamentally abstract, and any consumers of the graph should 369 /// treat them as such. While a node will be a function most of the time, we 370 /// could also create nodes for any other reason. In the future, we could have 371 /// single nodes for multiple functions, or nodes for GVs, etc. 372 class SplitGraph::Node { 373 friend class SplitGraph; 374 375 public: 376 Node(unsigned ID, const GlobalValue &GV, CostType IndividualCost, 377 bool IsNonCopyable) 378 : ID(ID), GV(GV), IndividualCost(IndividualCost), 379 IsNonCopyable(IsNonCopyable), IsEntryFnCC(false), IsGraphEntry(false) { 380 if (auto *Fn = dyn_cast<Function>(&GV)) 381 IsEntryFnCC = AMDGPU::isEntryFunctionCC(Fn->getCallingConv()); 382 } 383 384 /// An 0-indexed ID for the node. The maximum ID (exclusive) is the number of 385 /// nodes in the graph. This ID can be used as an index in a BitVector. 386 unsigned getID() const { return ID; } 387 388 const Function &getFunction() const { return cast<Function>(GV); } 389 390 /// \returns the cost to import this component into a given module, not 391 /// accounting for any dependencies that may need to be imported as well. 392 CostType getIndividualCost() const { return IndividualCost; } 393 394 bool isNonCopyable() const { return IsNonCopyable; } 395 bool isEntryFunctionCC() const { return IsEntryFnCC; } 396 397 /// \returns whether this is an entry point in the graph. Entry points are 398 /// defined as follows: if you take all entry points in the graph, and iterate 399 /// their dependencies, you are guaranteed to visit all nodes in the graph at 400 /// least once. 401 bool isGraphEntryPoint() const { return IsGraphEntry; } 402 403 StringRef getName() const { return GV.getName(); } 404 405 bool hasAnyIncomingEdges() const { return IncomingEdges.size(); } 406 bool hasAnyIncomingEdgesOfKind(EdgeKind EK) const { 407 return any_of(IncomingEdges, [&](const auto *E) { return E->Kind == EK; }); 408 } 409 410 bool hasAnyOutgoingEdges() const { return OutgoingEdges.size(); } 411 bool hasAnyOutgoingEdgesOfKind(EdgeKind EK) const { 412 return any_of(OutgoingEdges, [&](const auto *E) { return E->Kind == EK; }); 413 } 414 415 iterator_range<edges_iterator> incoming_edges() const { 416 return IncomingEdges; 417 } 418 419 iterator_range<edges_iterator> outgoing_edges() const { 420 return OutgoingEdges; 421 } 422 423 bool shouldFollowIndirectCalls() const { return isEntryFunctionCC(); } 424 425 /// Visit all children of this node in a recursive fashion. Also visits Self. 426 /// If \ref shouldFollowIndirectCalls returns false, then this only follows 427 /// DirectCall edges. 428 /// 429 /// \param Visitor Visitor Function. 430 void visitAllDependencies(std::function<void(const Node &)> Visitor) const; 431 432 /// Adds the depedencies of this node in \p BV by setting the bit 433 /// corresponding to each node. 434 /// 435 /// Implemented using \ref visitAllDependencies, hence it follows the same 436 /// rules regarding dependencies traversal. 437 /// 438 /// \param[out] BV The bitvector where the bits should be set. 439 void getDependencies(BitVector &BV) const { 440 visitAllDependencies([&](const Node &N) { BV.set(N.getID()); }); 441 } 442 443 private: 444 void markAsGraphEntry() { IsGraphEntry = true; } 445 446 unsigned ID; 447 const GlobalValue &GV; 448 CostType IndividualCost; 449 bool IsNonCopyable : 1; 450 bool IsEntryFnCC : 1; 451 bool IsGraphEntry : 1; 452 453 // TODO: Use a single sorted vector (with all incoming/outgoing edges grouped 454 // together) 455 EdgesVec IncomingEdges; 456 EdgesVec OutgoingEdges; 457 }; 458 459 void SplitGraph::Node::visitAllDependencies( 460 std::function<void(const Node &)> Visitor) const { 461 const bool FollowIndirect = shouldFollowIndirectCalls(); 462 // FIXME: If this can access SplitGraph in the future, use a BitVector 463 // instead. 464 DenseSet<const Node *> Seen; 465 SmallVector<const Node *, 8> WorkList({this}); 466 while (!WorkList.empty()) { 467 const Node *CurN = WorkList.pop_back_val(); 468 if (auto [It, Inserted] = Seen.insert(CurN); !Inserted) 469 continue; 470 471 Visitor(*CurN); 472 473 for (const Edge *E : CurN->outgoing_edges()) { 474 if (!FollowIndirect && E->Kind == EdgeKind::IndirectCall) 475 continue; 476 WorkList.push_back(E->Dst); 477 } 478 } 479 } 480 481 /// Checks if \p I has MD_callees and if it does, parse it and put the function 482 /// in \p Callees. 483 /// 484 /// \returns true if there was metadata and it was parsed correctly. false if 485 /// there was no MD or if it contained unknown entries and parsing failed. 486 /// If this returns false, \p Callees will contain incomplete information 487 /// and must not be used. 488 static bool handleCalleesMD(const Instruction &I, 489 SetVector<Function *> &Callees) { 490 auto *MD = I.getMetadata(LLVMContext::MD_callees); 491 if (!MD) 492 return false; 493 494 for (const auto &Op : MD->operands()) { 495 Function *Callee = mdconst::extract_or_null<Function>(Op); 496 if (!Callee) 497 return false; 498 Callees.insert(Callee); 499 } 500 501 return true; 502 } 503 504 void SplitGraph::buildGraph(CallGraph &CG) { 505 SplitModuleTimer SMT("buildGraph", "graph construction"); 506 LLVM_DEBUG( 507 dbgs() 508 << "[build graph] constructing graph representation of the input\n"); 509 510 // FIXME(?): Is the callgraph really worth using if we have to iterate the 511 // function again whenever it fails to give us enough information? 512 513 // We build the graph by just iterating all functions in the module and 514 // working on their direct callees. At the end, all nodes should be linked 515 // together as expected. 516 DenseMap<const GlobalValue *, Node *> Cache; 517 SmallVector<const Function *> FnsWithIndirectCalls, IndirectlyCallableFns; 518 for (const Function &Fn : M) { 519 if (Fn.isDeclaration()) 520 continue; 521 522 // Look at direct callees and create the necessary edges in the graph. 523 SetVector<const Function *> DirectCallees; 524 bool CallsExternal = false; 525 for (auto &CGEntry : *CG[&Fn]) { 526 auto *CGNode = CGEntry.second; 527 if (auto *Callee = CGNode->getFunction()) { 528 if (!Callee->isDeclaration()) 529 DirectCallees.insert(Callee); 530 } else if (CGNode == CG.getCallsExternalNode()) 531 CallsExternal = true; 532 } 533 534 // Keep track of this function if it contains an indirect call and/or if it 535 // can be indirectly called. 536 if (CallsExternal) { 537 LLVM_DEBUG(dbgs() << " [!] callgraph is incomplete for "; 538 Fn.printAsOperand(dbgs()); 539 dbgs() << " - analyzing function\n"); 540 541 SetVector<Function *> KnownCallees; 542 bool HasUnknownIndirectCall = false; 543 for (const auto &Inst : instructions(Fn)) { 544 // look at all calls without a direct callee. 545 const auto *CB = dyn_cast<CallBase>(&Inst); 546 if (!CB || CB->getCalledFunction()) 547 continue; 548 549 // inline assembly can be ignored, unless InlineAsmIsIndirectCall is 550 // true. 551 if (CB->isInlineAsm()) { 552 LLVM_DEBUG(dbgs() << " found inline assembly\n"); 553 continue; 554 } 555 556 if (handleCalleesMD(Inst, KnownCallees)) 557 continue; 558 // If we failed to parse any !callees MD, or some was missing, 559 // the entire KnownCallees list is now unreliable. 560 KnownCallees.clear(); 561 562 // Everything else is handled conservatively. If we fall into the 563 // conservative case don't bother analyzing further. 564 HasUnknownIndirectCall = true; 565 break; 566 } 567 568 if (HasUnknownIndirectCall) { 569 LLVM_DEBUG(dbgs() << " indirect call found\n"); 570 FnsWithIndirectCalls.push_back(&Fn); 571 } else if (!KnownCallees.empty()) 572 DirectCallees.insert(KnownCallees.begin(), KnownCallees.end()); 573 } 574 575 Node &N = getNode(Cache, Fn); 576 for (const auto *Callee : DirectCallees) 577 createEdge(N, getNode(Cache, *Callee), EdgeKind::DirectCall); 578 579 if (canBeIndirectlyCalled(Fn)) 580 IndirectlyCallableFns.push_back(&Fn); 581 } 582 583 // Post-process functions with indirect calls. 584 for (const Function *Fn : FnsWithIndirectCalls) { 585 for (const Function *Candidate : IndirectlyCallableFns) { 586 Node &Src = getNode(Cache, *Fn); 587 Node &Dst = getNode(Cache, *Candidate); 588 createEdge(Src, Dst, EdgeKind::IndirectCall); 589 } 590 } 591 592 // Now, find all entry points. 593 SmallVector<Node *, 16> CandidateEntryPoints; 594 BitVector NodesReachableByKernels = createNodesBitVector(); 595 for (Node *N : Nodes) { 596 // Functions with an Entry CC are always graph entry points too. 597 if (N->isEntryFunctionCC()) { 598 N->markAsGraphEntry(); 599 N->getDependencies(NodesReachableByKernels); 600 } else if (!N->hasAnyIncomingEdgesOfKind(EdgeKind::DirectCall)) 601 CandidateEntryPoints.push_back(N); 602 } 603 604 for (Node *N : CandidateEntryPoints) { 605 // This can be another entry point if it's not reachable by a kernel 606 // TODO: We could sort all of the possible new entries in a stable order 607 // (e.g. by cost), then consume them one by one until 608 // NodesReachableByKernels is all 1s. It'd allow us to avoid 609 // considering some nodes as non-entries in some specific cases. 610 if (!NodesReachableByKernels.test(N->getID())) 611 N->markAsGraphEntry(); 612 } 613 614 #ifndef NDEBUG 615 assert(verifyGraph()); 616 #endif 617 } 618 619 #ifndef NDEBUG 620 bool SplitGraph::verifyGraph() const { 621 unsigned ExpectedID = 0; 622 // Exceptionally using a set here in case IDs are messed up. 623 DenseSet<const Node *> SeenNodes; 624 DenseSet<const Function *> SeenFunctionNodes; 625 for (const Node *N : Nodes) { 626 if (N->getID() != (ExpectedID++)) { 627 errs() << "Node IDs are incorrect!\n"; 628 return false; 629 } 630 631 if (!SeenNodes.insert(N).second) { 632 errs() << "Node seen more than once!\n"; 633 return false; 634 } 635 636 if (&getNode(N->getID()) != N) { 637 errs() << "getNode doesn't return the right node\n"; 638 return false; 639 } 640 641 for (const Edge *E : N->IncomingEdges) { 642 if (!E->Src || !E->Dst || (E->Dst != N) || 643 (find(E->Src->OutgoingEdges, E) == E->Src->OutgoingEdges.end())) { 644 errs() << "ill-formed incoming edges\n"; 645 return false; 646 } 647 } 648 649 for (const Edge *E : N->OutgoingEdges) { 650 if (!E->Src || !E->Dst || (E->Src != N) || 651 (find(E->Dst->IncomingEdges, E) == E->Dst->IncomingEdges.end())) { 652 errs() << "ill-formed outgoing edges\n"; 653 return false; 654 } 655 } 656 657 const Function &Fn = N->getFunction(); 658 if (AMDGPU::isEntryFunctionCC(Fn.getCallingConv())) { 659 if (N->hasAnyIncomingEdges()) { 660 errs() << "Kernels cannot have incoming edges\n"; 661 return false; 662 } 663 } 664 665 if (Fn.isDeclaration()) { 666 errs() << "declarations shouldn't have nodes!\n"; 667 return false; 668 } 669 670 auto [It, Inserted] = SeenFunctionNodes.insert(&Fn); 671 if (!Inserted) { 672 errs() << "one function has multiple nodes!\n"; 673 return false; 674 } 675 } 676 677 if (ExpectedID != Nodes.size()) { 678 errs() << "Node IDs out of sync!\n"; 679 return false; 680 } 681 682 if (createNodesBitVector().size() != getNumNodes()) { 683 errs() << "nodes bit vector doesn't have the right size!\n"; 684 return false; 685 } 686 687 // Check we respect the promise of Node::isKernel 688 BitVector BV = createNodesBitVector(); 689 for (const Node *N : nodes()) { 690 if (N->isGraphEntryPoint()) 691 N->getDependencies(BV); 692 } 693 694 // Ensure each function in the module has an associated node. 695 for (const auto &Fn : M) { 696 if (!Fn.isDeclaration()) { 697 if (!SeenFunctionNodes.contains(&Fn)) { 698 errs() << "Fn has no associated node in the graph!\n"; 699 return false; 700 } 701 } 702 } 703 704 if (!BV.all()) { 705 errs() << "not all nodes are reachable through the graph's entry points!\n"; 706 return false; 707 } 708 709 return true; 710 } 711 #endif 712 713 CostType SplitGraph::calculateCost(const BitVector &BV) const { 714 CostType Cost = 0; 715 for (unsigned NodeID : BV.set_bits()) 716 Cost += getNode(NodeID).getIndividualCost(); 717 return Cost; 718 } 719 720 SplitGraph::Node & 721 SplitGraph::getNode(DenseMap<const GlobalValue *, Node *> &Cache, 722 const GlobalValue &GV) { 723 auto &N = Cache[&GV]; 724 if (N) 725 return *N; 726 727 CostType Cost = 0; 728 bool NonCopyable = false; 729 if (const Function *Fn = dyn_cast<Function>(&GV)) { 730 NonCopyable = isNonCopyable(*Fn); 731 Cost = CostMap.at(Fn); 732 } 733 N = new (NodesPool.Allocate()) Node(Nodes.size(), GV, Cost, NonCopyable); 734 Nodes.push_back(N); 735 assert(&getNode(N->getID()) == N); 736 return *N; 737 } 738 739 const SplitGraph::Edge &SplitGraph::createEdge(Node &Src, Node &Dst, 740 EdgeKind EK) { 741 const Edge *E = new (EdgesPool.Allocate<Edge>(1)) Edge(&Src, &Dst, EK); 742 Src.OutgoingEdges.push_back(E); 743 Dst.IncomingEdges.push_back(E); 744 return *E; 745 } 746 747 //===----------------------------------------------------------------------===// 748 // Split Proposals 749 //===----------------------------------------------------------------------===// 750 751 /// Represents a module splitting proposal. 752 /// 753 /// Proposals are made of N BitVectors, one for each partition, where each bit 754 /// set indicates that the node is present and should be copied inside that 755 /// partition. 756 /// 757 /// Proposals have several metrics attached so they can be compared/sorted, 758 /// which the driver to try multiple strategies resultings in multiple proposals 759 /// and choose the best one out of them. 760 class SplitProposal { 761 public: 762 SplitProposal(const SplitGraph &SG, unsigned MaxPartitions) : SG(&SG) { 763 Partitions.resize(MaxPartitions, {0, SG.createNodesBitVector()}); 764 } 765 766 void setName(StringRef NewName) { Name = NewName; } 767 StringRef getName() const { return Name; } 768 769 const BitVector &operator[](unsigned PID) const { 770 return Partitions[PID].second; 771 } 772 773 void add(unsigned PID, const BitVector &BV) { 774 Partitions[PID].second |= BV; 775 updateScore(PID); 776 } 777 778 void print(raw_ostream &OS) const; 779 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 780 781 // Find the cheapest partition (lowest cost). In case of ties, always returns 782 // the highest partition number. 783 unsigned findCheapestPartition() const; 784 785 /// Calculate the CodeSize and Bottleneck scores. 786 void calculateScores(); 787 788 #ifndef NDEBUG 789 void verifyCompleteness() const; 790 #endif 791 792 /// Only available after \ref calculateScores is called. 793 /// 794 /// A positive number indicating the % of code duplication that this proposal 795 /// creates. e.g. 0.2 means this proposal adds roughly 20% code size by 796 /// duplicating some functions across partitions. 797 /// 798 /// Value is always rounded up to 3 decimal places. 799 /// 800 /// A perfect score would be 0.0, and anything approaching 1.0 is very bad. 801 double getCodeSizeScore() const { return CodeSizeScore; } 802 803 /// Only available after \ref calculateScores is called. 804 /// 805 /// A number between [0, 1] which indicates how big of a bottleneck is 806 /// expected from the largest partition. 807 /// 808 /// A score of 1.0 means the biggest partition is as big as the source module, 809 /// so build time will be equal to or greater than the build time of the 810 /// initial input. 811 /// 812 /// Value is always rounded up to 3 decimal places. 813 /// 814 /// This is one of the metrics used to estimate this proposal's build time. 815 double getBottleneckScore() const { return BottleneckScore; } 816 817 private: 818 void updateScore(unsigned PID) { 819 assert(SG); 820 for (auto &[PCost, Nodes] : Partitions) { 821 TotalCost -= PCost; 822 PCost = SG->calculateCost(Nodes); 823 TotalCost += PCost; 824 } 825 } 826 827 /// \see getCodeSizeScore 828 double CodeSizeScore = 0.0; 829 /// \see getBottleneckScore 830 double BottleneckScore = 0.0; 831 /// Aggregated cost of all partitions 832 CostType TotalCost = 0; 833 834 const SplitGraph *SG = nullptr; 835 std::string Name; 836 837 std::vector<std::pair<CostType, BitVector>> Partitions; 838 }; 839 840 void SplitProposal::print(raw_ostream &OS) const { 841 assert(SG); 842 843 OS << "[proposal] " << Name << ", total cost:" << TotalCost 844 << ", code size score:" << format("%0.3f", CodeSizeScore) 845 << ", bottleneck score:" << format("%0.3f", BottleneckScore) << '\n'; 846 for (const auto &[PID, Part] : enumerate(Partitions)) { 847 const auto &[Cost, NodeIDs] = Part; 848 OS << " - P" << PID << " nodes:" << NodeIDs.count() << " cost: " << Cost 849 << '|' << formatRatioOf(Cost, SG->getModuleCost()) << "%\n"; 850 } 851 } 852 853 unsigned SplitProposal::findCheapestPartition() const { 854 assert(!Partitions.empty()); 855 CostType CurCost = std::numeric_limits<CostType>::max(); 856 unsigned CurPID = InvalidPID; 857 for (const auto &[Idx, Part] : enumerate(Partitions)) { 858 if (Part.first <= CurCost) { 859 CurPID = Idx; 860 CurCost = Part.first; 861 } 862 } 863 assert(CurPID != InvalidPID); 864 return CurPID; 865 } 866 867 void SplitProposal::calculateScores() { 868 if (Partitions.empty()) 869 return; 870 871 assert(SG); 872 CostType LargestPCost = 0; 873 for (auto &[PCost, Nodes] : Partitions) { 874 if (PCost > LargestPCost) 875 LargestPCost = PCost; 876 } 877 878 CostType ModuleCost = SG->getModuleCost(); 879 CodeSizeScore = double(TotalCost) / ModuleCost; 880 assert(CodeSizeScore >= 0.0); 881 882 BottleneckScore = double(LargestPCost) / ModuleCost; 883 884 CodeSizeScore = std::ceil(CodeSizeScore * 100.0) / 100.0; 885 BottleneckScore = std::ceil(BottleneckScore * 100.0) / 100.0; 886 } 887 888 #ifndef NDEBUG 889 void SplitProposal::verifyCompleteness() const { 890 if (Partitions.empty()) 891 return; 892 893 BitVector Result = Partitions[0].second; 894 for (const auto &P : drop_begin(Partitions)) 895 Result |= P.second; 896 assert(Result.all() && "some nodes are missing from this proposal!"); 897 } 898 #endif 899 900 //===-- RecursiveSearchStrategy -------------------------------------------===// 901 902 /// Partitioning algorithm. 903 /// 904 /// This is a recursive search algorithm that can explore multiple possiblities. 905 /// 906 /// When a cluster of nodes can go into more than one partition, and we haven't 907 /// reached maximum search depth, we recurse and explore both options and their 908 /// consequences. Both branches will yield a proposal, and the driver will grade 909 /// both and choose the best one. 910 /// 911 /// If max depth is reached, we will use some heuristics to make a choice. Most 912 /// of the time we will just use the least-pressured (cheapest) partition, but 913 /// if a cluster is particularly big and there is a good amount of overlap with 914 /// an existing partition, we will choose that partition instead. 915 class RecursiveSearchSplitting { 916 public: 917 using SubmitProposalFn = function_ref<void(SplitProposal)>; 918 919 RecursiveSearchSplitting(const SplitGraph &SG, unsigned NumParts, 920 SubmitProposalFn SubmitProposal); 921 922 void run(); 923 924 private: 925 struct WorkListEntry { 926 WorkListEntry(const BitVector &BV) : Cluster(BV) {} 927 928 unsigned NumNonEntryNodes = 0; 929 CostType TotalCost = 0; 930 CostType CostExcludingGraphEntryPoints = 0; 931 BitVector Cluster; 932 }; 933 934 /// Collects all graph entry points's clusters and sort them so the most 935 /// expensive clusters are viewed first. This will merge clusters together if 936 /// they share a non-copyable dependency. 937 void setupWorkList(); 938 939 /// Recursive function that assigns the worklist item at \p Idx into a 940 /// partition of \p SP. 941 /// 942 /// \p Depth is the current search depth. When this value is equal to 943 /// \ref MaxDepth, we can no longer recurse. 944 /// 945 /// This function only recurses if there is more than one possible assignment, 946 /// otherwise it is iterative to avoid creating a call stack that is as big as 947 /// \ref WorkList. 948 void pickPartition(unsigned Depth, unsigned Idx, SplitProposal SP); 949 950 /// \return A pair: first element is the PID of the partition that has the 951 /// most similarities with \p Entry, or \ref InvalidPID if no partition was 952 /// found with at least one element in common. The second element is the 953 /// aggregated cost of all dependencies in common between \p Entry and that 954 /// partition. 955 std::pair<unsigned, CostType> 956 findMostSimilarPartition(const WorkListEntry &Entry, const SplitProposal &SP); 957 958 const SplitGraph &SG; 959 unsigned NumParts; 960 SubmitProposalFn SubmitProposal; 961 962 // A Cluster is considered large when its cost, excluding entry points, 963 // exceeds this value. 964 CostType LargeClusterThreshold = 0; 965 unsigned NumProposalsSubmitted = 0; 966 SmallVector<WorkListEntry> WorkList; 967 }; 968 969 RecursiveSearchSplitting::RecursiveSearchSplitting( 970 const SplitGraph &SG, unsigned NumParts, SubmitProposalFn SubmitProposal) 971 : SG(SG), NumParts(NumParts), SubmitProposal(SubmitProposal) { 972 // arbitrary max value as a safeguard. Anything above 10 will already be 973 // slow, this is just a max value to prevent extreme resource exhaustion or 974 // unbounded run time. 975 if (MaxDepth > 16) 976 report_fatal_error("[amdgpu-split-module] search depth of " + 977 Twine(MaxDepth) + " is too high!"); 978 LargeClusterThreshold = 979 (LargeFnFactor != 0.0) 980 ? CostType(((SG.getModuleCost() / NumParts) * LargeFnFactor)) 981 : std::numeric_limits<CostType>::max(); 982 LLVM_DEBUG(dbgs() << "[recursive search] large cluster threshold set at " 983 << LargeClusterThreshold << "\n"); 984 } 985 986 void RecursiveSearchSplitting::run() { 987 { 988 SplitModuleTimer SMT("recursive_search_prepare", "preparing worklist"); 989 setupWorkList(); 990 } 991 992 { 993 SplitModuleTimer SMT("recursive_search_pick", "partitioning"); 994 SplitProposal SP(SG, NumParts); 995 pickPartition(/*BranchDepth=*/0, /*Idx=*/0, SP); 996 } 997 } 998 999 void RecursiveSearchSplitting::setupWorkList() { 1000 // e.g. if A and B are two worklist item, and they both call a non copyable 1001 // dependency C, this does: 1002 // A=C 1003 // B=C 1004 // => NodeEC will create a single group (A, B, C) and we create a new 1005 // WorkList entry for that group. 1006 1007 EquivalenceClasses<unsigned> NodeEC; 1008 for (const SplitGraph::Node *N : SG.nodes()) { 1009 if (!N->isGraphEntryPoint()) 1010 continue; 1011 1012 NodeEC.insert(N->getID()); 1013 N->visitAllDependencies([&](const SplitGraph::Node &Dep) { 1014 if (&Dep != N && Dep.isNonCopyable()) 1015 NodeEC.unionSets(N->getID(), Dep.getID()); 1016 }); 1017 } 1018 1019 for (auto I = NodeEC.begin(), E = NodeEC.end(); I != E; ++I) { 1020 if (!I->isLeader()) 1021 continue; 1022 1023 BitVector Cluster = SG.createNodesBitVector(); 1024 for (auto MI = NodeEC.member_begin(I); MI != NodeEC.member_end(); ++MI) { 1025 const SplitGraph::Node &N = SG.getNode(*MI); 1026 if (N.isGraphEntryPoint()) 1027 N.getDependencies(Cluster); 1028 } 1029 WorkList.emplace_back(std::move(Cluster)); 1030 } 1031 1032 // Calculate costs and other useful information. 1033 for (WorkListEntry &Entry : WorkList) { 1034 for (unsigned NodeID : Entry.Cluster.set_bits()) { 1035 const SplitGraph::Node &N = SG.getNode(NodeID); 1036 const CostType Cost = N.getIndividualCost(); 1037 1038 Entry.TotalCost += Cost; 1039 if (!N.isGraphEntryPoint()) { 1040 Entry.CostExcludingGraphEntryPoints += Cost; 1041 ++Entry.NumNonEntryNodes; 1042 } 1043 } 1044 } 1045 1046 stable_sort(WorkList, [](const WorkListEntry &A, const WorkListEntry &B) { 1047 if (A.TotalCost != B.TotalCost) 1048 return A.TotalCost > B.TotalCost; 1049 1050 if (A.CostExcludingGraphEntryPoints != B.CostExcludingGraphEntryPoints) 1051 return A.CostExcludingGraphEntryPoints > B.CostExcludingGraphEntryPoints; 1052 1053 if (A.NumNonEntryNodes != B.NumNonEntryNodes) 1054 return A.NumNonEntryNodes > B.NumNonEntryNodes; 1055 1056 return A.Cluster.count() > B.Cluster.count(); 1057 }); 1058 1059 LLVM_DEBUG({ 1060 dbgs() << "[recursive search] worklist:\n"; 1061 for (const auto &[Idx, Entry] : enumerate(WorkList)) { 1062 dbgs() << " - [" << Idx << "]: "; 1063 for (unsigned NodeID : Entry.Cluster.set_bits()) 1064 dbgs() << NodeID << " "; 1065 dbgs() << "(total_cost:" << Entry.TotalCost 1066 << ", cost_excl_entries:" << Entry.CostExcludingGraphEntryPoints 1067 << ")\n"; 1068 } 1069 }); 1070 } 1071 1072 void RecursiveSearchSplitting::pickPartition(unsigned Depth, unsigned Idx, 1073 SplitProposal SP) { 1074 while (Idx < WorkList.size()) { 1075 // Step 1: Determine candidate PIDs. 1076 // 1077 const WorkListEntry &Entry = WorkList[Idx]; 1078 const BitVector &Cluster = Entry.Cluster; 1079 1080 // Default option is to do load-balancing, AKA assign to least pressured 1081 // partition. 1082 const unsigned CheapestPID = SP.findCheapestPartition(); 1083 assert(CheapestPID != InvalidPID); 1084 1085 // Explore assigning to the kernel that contains the most dependencies in 1086 // common. 1087 const auto [MostSimilarPID, SimilarDepsCost] = 1088 findMostSimilarPartition(Entry, SP); 1089 1090 // We can chose to explore only one path if we only have one valid path, or 1091 // if we reached maximum search depth and can no longer branch out. 1092 unsigned SinglePIDToTry = InvalidPID; 1093 if (MostSimilarPID == InvalidPID) // no similar PID found 1094 SinglePIDToTry = CheapestPID; 1095 else if (MostSimilarPID == CheapestPID) // both landed on the same PID 1096 SinglePIDToTry = CheapestPID; 1097 else if (Depth >= MaxDepth) { 1098 // We have to choose one path. Use a heuristic to guess which one will be 1099 // more appropriate. 1100 if (Entry.CostExcludingGraphEntryPoints > LargeClusterThreshold) { 1101 // Check if the amount of code in common makes it worth it. 1102 assert(SimilarDepsCost && Entry.CostExcludingGraphEntryPoints); 1103 const double Ratio = static_cast<double>(SimilarDepsCost) / 1104 Entry.CostExcludingGraphEntryPoints; 1105 assert(Ratio >= 0.0 && Ratio <= 1.0); 1106 if (Ratio > LargeFnOverlapForMerge) { 1107 // For debug, just print "L", so we'll see "L3=P3" for instance, which 1108 // will mean we reached max depth and chose P3 based on this 1109 // heuristic. 1110 LLVM_DEBUG(dbgs() << 'L'); 1111 SinglePIDToTry = MostSimilarPID; 1112 } 1113 } else 1114 SinglePIDToTry = CheapestPID; 1115 } 1116 1117 // Step 2: Explore candidates. 1118 1119 // When we only explore one possible path, and thus branch depth doesn't 1120 // increase, do not recurse, iterate instead. 1121 if (SinglePIDToTry != InvalidPID) { 1122 LLVM_DEBUG(dbgs() << Idx << "=P" << SinglePIDToTry << ' '); 1123 // Only one path to explore, don't clone SP, don't increase depth. 1124 SP.add(SinglePIDToTry, Cluster); 1125 ++Idx; 1126 continue; 1127 } 1128 1129 assert(MostSimilarPID != InvalidPID); 1130 1131 // We explore multiple paths: recurse at increased depth, then stop this 1132 // function. 1133 1134 LLVM_DEBUG(dbgs() << '\n'); 1135 1136 // lb = load balancing = put in cheapest partition 1137 { 1138 SplitProposal BranchSP = SP; 1139 LLVM_DEBUG(dbgs().indent(Depth) 1140 << " [lb] " << Idx << "=P" << CheapestPID << "? "); 1141 BranchSP.add(CheapestPID, Cluster); 1142 pickPartition(Depth + 1, Idx + 1, BranchSP); 1143 } 1144 1145 // ms = most similar = put in partition with the most in common 1146 { 1147 SplitProposal BranchSP = SP; 1148 LLVM_DEBUG(dbgs().indent(Depth) 1149 << " [ms] " << Idx << "=P" << MostSimilarPID << "? "); 1150 BranchSP.add(MostSimilarPID, Cluster); 1151 pickPartition(Depth + 1, Idx + 1, BranchSP); 1152 } 1153 1154 return; 1155 } 1156 1157 // Step 3: If we assigned all WorkList items, submit the proposal. 1158 1159 assert(Idx == WorkList.size()); 1160 assert(NumProposalsSubmitted <= (2u << MaxDepth) && 1161 "Search got out of bounds?"); 1162 SP.setName("recursive_search (depth=" + std::to_string(Depth) + ") #" + 1163 std::to_string(NumProposalsSubmitted++)); 1164 LLVM_DEBUG(dbgs() << '\n'); 1165 SubmitProposal(SP); 1166 } 1167 1168 std::pair<unsigned, CostType> 1169 RecursiveSearchSplitting::findMostSimilarPartition(const WorkListEntry &Entry, 1170 const SplitProposal &SP) { 1171 if (!Entry.NumNonEntryNodes) 1172 return {InvalidPID, 0}; 1173 1174 // We take the partition that is the most similar using Cost as a metric. 1175 // So we take the set of nodes in common, compute their aggregated cost, and 1176 // pick the partition with the highest cost in common. 1177 unsigned ChosenPID = InvalidPID; 1178 CostType ChosenCost = 0; 1179 for (unsigned PID = 0; PID < NumParts; ++PID) { 1180 BitVector BV = SP[PID]; 1181 BV &= Entry.Cluster; // FIXME: & doesn't work between BVs?! 1182 1183 if (BV.none()) 1184 continue; 1185 1186 const CostType Cost = SG.calculateCost(BV); 1187 1188 if (ChosenPID == InvalidPID || ChosenCost < Cost || 1189 (ChosenCost == Cost && PID > ChosenPID)) { 1190 ChosenPID = PID; 1191 ChosenCost = Cost; 1192 } 1193 } 1194 1195 return {ChosenPID, ChosenCost}; 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // DOTGraph Printing Support 1200 //===----------------------------------------------------------------------===// 1201 1202 const SplitGraph::Node *mapEdgeToDst(const SplitGraph::Edge *E) { 1203 return E->Dst; 1204 } 1205 1206 using SplitGraphEdgeDstIterator = 1207 mapped_iterator<SplitGraph::edges_iterator, decltype(&mapEdgeToDst)>; 1208 1209 } // namespace 1210 1211 template <> struct GraphTraits<SplitGraph> { 1212 using NodeRef = const SplitGraph::Node *; 1213 using nodes_iterator = SplitGraph::nodes_iterator; 1214 using ChildIteratorType = SplitGraphEdgeDstIterator; 1215 1216 using EdgeRef = const SplitGraph::Edge *; 1217 using ChildEdgeIteratorType = SplitGraph::edges_iterator; 1218 1219 static NodeRef getEntryNode(NodeRef N) { return N; } 1220 1221 static ChildIteratorType child_begin(NodeRef Ref) { 1222 return {Ref->outgoing_edges().begin(), mapEdgeToDst}; 1223 } 1224 static ChildIteratorType child_end(NodeRef Ref) { 1225 return {Ref->outgoing_edges().end(), mapEdgeToDst}; 1226 } 1227 1228 static nodes_iterator nodes_begin(const SplitGraph &G) { 1229 return G.nodes().begin(); 1230 } 1231 static nodes_iterator nodes_end(const SplitGraph &G) { 1232 return G.nodes().end(); 1233 } 1234 }; 1235 1236 template <> struct DOTGraphTraits<SplitGraph> : public DefaultDOTGraphTraits { 1237 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 1238 1239 static std::string getGraphName(const SplitGraph &SG) { 1240 return SG.getModule().getName().str(); 1241 } 1242 1243 std::string getNodeLabel(const SplitGraph::Node *N, const SplitGraph &SG) { 1244 return N->getName().str(); 1245 } 1246 1247 static std::string getNodeDescription(const SplitGraph::Node *N, 1248 const SplitGraph &SG) { 1249 std::string Result; 1250 if (N->isEntryFunctionCC()) 1251 Result += "entry-fn-cc "; 1252 if (N->isNonCopyable()) 1253 Result += "non-copyable "; 1254 Result += "cost:" + std::to_string(N->getIndividualCost()); 1255 return Result; 1256 } 1257 1258 static std::string getNodeAttributes(const SplitGraph::Node *N, 1259 const SplitGraph &SG) { 1260 return N->hasAnyIncomingEdges() ? "" : "color=\"red\""; 1261 } 1262 1263 static std::string getEdgeAttributes(const SplitGraph::Node *N, 1264 SplitGraphEdgeDstIterator EI, 1265 const SplitGraph &SG) { 1266 1267 switch ((*EI.getCurrent())->Kind) { 1268 case SplitGraph::EdgeKind::DirectCall: 1269 return ""; 1270 case SplitGraph::EdgeKind::IndirectCall: 1271 return "style=\"dashed\""; 1272 } 1273 llvm_unreachable("Unknown SplitGraph::EdgeKind enum"); 1274 } 1275 }; 1276 1277 //===----------------------------------------------------------------------===// 1278 // Driver 1279 //===----------------------------------------------------------------------===// 1280 1281 namespace { 1282 1283 // If we didn't externalize GVs, then local GVs need to be conservatively 1284 // imported into every module (including their initializers), and then cleaned 1285 // up afterwards. 1286 static bool needsConservativeImport(const GlobalValue *GV) { 1287 if (const auto *Var = dyn_cast<GlobalVariable>(GV)) 1288 return Var->hasLocalLinkage(); 1289 return isa<GlobalAlias>(GV); 1290 } 1291 1292 /// Prints a summary of the partition \p N, represented by module \p M, to \p 1293 /// OS. 1294 static void printPartitionSummary(raw_ostream &OS, unsigned N, const Module &M, 1295 unsigned PartCost, unsigned ModuleCost) { 1296 OS << "*** Partition P" << N << " ***\n"; 1297 1298 for (const auto &Fn : M) { 1299 if (!Fn.isDeclaration()) 1300 OS << " - [function] " << Fn.getName() << "\n"; 1301 } 1302 1303 for (const auto &GV : M.globals()) { 1304 if (GV.hasInitializer()) 1305 OS << " - [global] " << GV.getName() << "\n"; 1306 } 1307 1308 OS << "Partition contains " << formatRatioOf(PartCost, ModuleCost) 1309 << "% of the source\n"; 1310 } 1311 1312 static void evaluateProposal(SplitProposal &Best, SplitProposal New) { 1313 SplitModuleTimer SMT("proposal_evaluation", "proposal ranking algorithm"); 1314 1315 LLVM_DEBUG({ 1316 New.verifyCompleteness(); 1317 if (DebugProposalSearch) 1318 New.print(dbgs()); 1319 }); 1320 1321 const double CurBScore = Best.getBottleneckScore(); 1322 const double CurCSScore = Best.getCodeSizeScore(); 1323 const double NewBScore = New.getBottleneckScore(); 1324 const double NewCSScore = New.getCodeSizeScore(); 1325 1326 // TODO: Improve this 1327 // We can probably lower the precision of the comparison at first 1328 // e.g. if we have 1329 // - (Current): BScore: 0.489 CSCore 1.105 1330 // - (New): BScore: 0.475 CSCore 1.305 1331 // Currently we'd choose the new one because the bottleneck score is 1332 // lower, but the new one duplicates more code. It may be worth it to 1333 // discard the new proposal as the impact on build time is negligible. 1334 1335 // Compare them 1336 bool IsBest = false; 1337 if (NewBScore < CurBScore) 1338 IsBest = true; 1339 else if (NewBScore == CurBScore) 1340 IsBest = (NewCSScore < CurCSScore); // Use code size as tie breaker. 1341 1342 if (IsBest) 1343 Best = std::move(New); 1344 1345 LLVM_DEBUG(if (DebugProposalSearch) { 1346 if (IsBest) 1347 dbgs() << "[search] new best proposal!\n"; 1348 else 1349 dbgs() << "[search] discarding - not profitable\n"; 1350 }); 1351 } 1352 1353 /// Trivial helper to create an identical copy of \p M. 1354 static std::unique_ptr<Module> cloneAll(const Module &M) { 1355 ValueToValueMapTy VMap; 1356 return CloneModule(M, VMap, [&](const GlobalValue *GV) { return true; }); 1357 } 1358 1359 /// Writes \p SG as a DOTGraph to \ref ModuleDotCfgDir if requested. 1360 static void writeDOTGraph(const SplitGraph &SG) { 1361 if (ModuleDotCfgOutput.empty()) 1362 return; 1363 1364 std::error_code EC; 1365 raw_fd_ostream OS(ModuleDotCfgOutput, EC); 1366 if (EC) { 1367 errs() << "[" DEBUG_TYPE "]: cannot open '" << ModuleDotCfgOutput 1368 << "' - DOTGraph will not be printed\n"; 1369 } 1370 WriteGraph(OS, SG, /*ShortName=*/false, 1371 /*Title=*/SG.getModule().getName()); 1372 } 1373 1374 static void splitAMDGPUModule( 1375 GetTTIFn GetTTI, Module &M, unsigned NumParts, 1376 function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) { 1377 CallGraph CG(M); 1378 1379 // Externalize functions whose address are taken. 1380 // 1381 // This is needed because partitioning is purely based on calls, but sometimes 1382 // a kernel/function may just look at the address of another local function 1383 // and not do anything (no calls). After partitioning, that local function may 1384 // end up in a different module (so it's just a declaration in the module 1385 // where its address is taken), which emits a "undefined hidden symbol" linker 1386 // error. 1387 // 1388 // Additionally, it guides partitioning to not duplicate this function if it's 1389 // called directly at some point. 1390 // 1391 // TODO: Could we be smarter about this ? This makes all functions whose 1392 // addresses are taken non-copyable. We should probably model this type of 1393 // constraint in the graph and use it to guide splitting, instead of 1394 // externalizing like this. Maybe non-copyable should really mean "keep one 1395 // visible copy, then internalize all other copies" for some functions? 1396 if (!NoExternalizeOnAddrTaken) { 1397 for (auto &Fn : M) { 1398 // TODO: Should aliases count? Probably not but they're so rare I'm not 1399 // sure it's worth fixing. 1400 if (Fn.hasLocalLinkage() && Fn.hasAddressTaken()) { 1401 LLVM_DEBUG(dbgs() << "[externalize] "; Fn.printAsOperand(dbgs()); 1402 dbgs() << " because its address is taken\n"); 1403 externalize(Fn); 1404 } 1405 } 1406 } 1407 1408 // Externalize local GVs, which avoids duplicating their initializers, which 1409 // in turns helps keep code size in check. 1410 if (!NoExternalizeGlobals) { 1411 for (auto &GV : M.globals()) { 1412 if (GV.hasLocalLinkage()) 1413 LLVM_DEBUG(dbgs() << "[externalize] GV " << GV.getName() << '\n'); 1414 externalize(GV); 1415 } 1416 } 1417 1418 // Start by calculating the cost of every function in the module, as well as 1419 // the module's overall cost. 1420 FunctionsCostMap FnCosts; 1421 const CostType ModuleCost = calculateFunctionCosts(GetTTI, M, FnCosts); 1422 1423 // Build the SplitGraph, which represents the module's functions and models 1424 // their dependencies accurately. 1425 SplitGraph SG(M, FnCosts, ModuleCost); 1426 SG.buildGraph(CG); 1427 1428 if (SG.empty()) { 1429 LLVM_DEBUG( 1430 dbgs() 1431 << "[!] no nodes in graph, input is empty - no splitting possible\n"); 1432 ModuleCallback(cloneAll(M)); 1433 return; 1434 } 1435 1436 LLVM_DEBUG({ 1437 dbgs() << "[graph] nodes:\n"; 1438 for (const SplitGraph::Node *N : SG.nodes()) { 1439 dbgs() << " - [" << N->getID() << "]: " << N->getName() << " " 1440 << (N->isGraphEntryPoint() ? "(entry)" : "") << " " 1441 << (N->isNonCopyable() ? "(noncopyable)" : "") << "\n"; 1442 } 1443 }); 1444 1445 writeDOTGraph(SG); 1446 1447 LLVM_DEBUG(dbgs() << "[search] testing splitting strategies\n"); 1448 1449 std::optional<SplitProposal> Proposal; 1450 const auto EvaluateProposal = [&](SplitProposal SP) { 1451 SP.calculateScores(); 1452 if (!Proposal) 1453 Proposal = std::move(SP); 1454 else 1455 evaluateProposal(*Proposal, std::move(SP)); 1456 }; 1457 1458 // TODO: It would be very easy to create new strategies by just adding a base 1459 // class to RecursiveSearchSplitting and abstracting it away. 1460 RecursiveSearchSplitting(SG, NumParts, EvaluateProposal).run(); 1461 LLVM_DEBUG(if (Proposal) dbgs() << "[search done] selected proposal: " 1462 << Proposal->getName() << "\n";); 1463 1464 if (!Proposal) { 1465 LLVM_DEBUG(dbgs() << "[!] no proposal made, no splitting possible!\n"); 1466 ModuleCallback(cloneAll(M)); 1467 return; 1468 } 1469 1470 LLVM_DEBUG(Proposal->print(dbgs());); 1471 1472 std::optional<raw_fd_ostream> SummariesOS; 1473 if (!PartitionSummariesOutput.empty()) { 1474 std::error_code EC; 1475 SummariesOS.emplace(PartitionSummariesOutput, EC); 1476 if (EC) 1477 errs() << "[" DEBUG_TYPE "]: cannot open '" << PartitionSummariesOutput 1478 << "' - Partition summaries will not be printed\n"; 1479 } 1480 1481 for (unsigned PID = 0; PID < NumParts; ++PID) { 1482 SplitModuleTimer SMT2("modules_creation", 1483 "creating modules for each partition"); 1484 LLVM_DEBUG(dbgs() << "[split] creating new modules\n"); 1485 1486 DenseSet<const Function *> FnsInPart; 1487 for (unsigned NodeID : (*Proposal)[PID].set_bits()) 1488 FnsInPart.insert(&SG.getNode(NodeID).getFunction()); 1489 1490 ValueToValueMapTy VMap; 1491 CostType PartCost = 0; 1492 std::unique_ptr<Module> MPart( 1493 CloneModule(M, VMap, [&](const GlobalValue *GV) { 1494 // Functions go in their assigned partition. 1495 if (const auto *Fn = dyn_cast<Function>(GV)) { 1496 if (FnsInPart.contains(Fn)) { 1497 PartCost += SG.getCost(*Fn); 1498 return true; 1499 } 1500 return false; 1501 } 1502 1503 // Everything else goes in the first partition. 1504 return needsConservativeImport(GV) || PID == 0; 1505 })); 1506 1507 // FIXME: Aliases aren't seen often, and their handling isn't perfect so 1508 // bugs are possible. 1509 1510 // Clean-up conservatively imported GVs without any users. 1511 for (auto &GV : make_early_inc_range(MPart->global_values())) { 1512 if (needsConservativeImport(&GV) && GV.use_empty()) 1513 GV.eraseFromParent(); 1514 } 1515 1516 if (SummariesOS) 1517 printPartitionSummary(*SummariesOS, PID, *MPart, PartCost, ModuleCost); 1518 1519 LLVM_DEBUG( 1520 printPartitionSummary(dbgs(), PID, *MPart, PartCost, ModuleCost)); 1521 1522 ModuleCallback(std::move(MPart)); 1523 } 1524 } 1525 } // namespace 1526 1527 PreservedAnalyses AMDGPUSplitModulePass::run(Module &M, 1528 ModuleAnalysisManager &MAM) { 1529 SplitModuleTimer SMT( 1530 "total", "total pass runtime (incl. potentially waiting for lockfile)"); 1531 1532 FunctionAnalysisManager &FAM = 1533 MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1534 const auto TTIGetter = [&FAM](Function &F) -> const TargetTransformInfo & { 1535 return FAM.getResult<TargetIRAnalysis>(F); 1536 }; 1537 1538 bool Done = false; 1539 #ifndef NDEBUG 1540 if (UseLockFile) { 1541 SmallString<128> LockFilePath; 1542 sys::path::system_temp_directory(/*ErasedOnReboot=*/true, LockFilePath); 1543 sys::path::append(LockFilePath, "amdgpu-split-module-debug"); 1544 LLVM_DEBUG(dbgs() << DEBUG_TYPE " using lockfile '" << LockFilePath 1545 << "'\n"); 1546 1547 while (true) { 1548 llvm::LockFileManager Locked(LockFilePath.str()); 1549 switch (Locked) { 1550 case LockFileManager::LFS_Error: 1551 LLVM_DEBUG( 1552 dbgs() << "[amdgpu-split-module] unable to acquire lockfile, debug " 1553 "output may be mangled by other processes\n"); 1554 Locked.unsafeRemoveLockFile(); 1555 break; 1556 case LockFileManager::LFS_Owned: 1557 break; 1558 case LockFileManager::LFS_Shared: { 1559 switch (Locked.waitForUnlock()) { 1560 case LockFileManager::Res_Success: 1561 break; 1562 case LockFileManager::Res_OwnerDied: 1563 continue; // try again to get the lock. 1564 case LockFileManager::Res_Timeout: 1565 LLVM_DEBUG( 1566 dbgs() 1567 << "[amdgpu-split-module] unable to acquire lockfile, debug " 1568 "output may be mangled by other processes\n"); 1569 Locked.unsafeRemoveLockFile(); 1570 break; // give up 1571 } 1572 break; 1573 } 1574 } 1575 1576 splitAMDGPUModule(TTIGetter, M, N, ModuleCallback); 1577 Done = true; 1578 break; 1579 } 1580 } 1581 #endif 1582 1583 if (!Done) 1584 splitAMDGPUModule(TTIGetter, M, N, ModuleCallback); 1585 1586 // We can change linkage/visibilities in the input, consider that nothing is 1587 // preserved just to be safe. This pass runs last anyway. 1588 return PreservedAnalyses::none(); 1589 } 1590 } // namespace llvm 1591