1 //===- ELFObject.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ELFObject.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/StringRef.h" 13 #include "llvm/ADT/Twine.h" 14 #include "llvm/ADT/iterator_range.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/MC/MCELFExtras.h" 17 #include "llvm/MC/MCTargetOptions.h" 18 #include "llvm/Support/Compression.h" 19 #include "llvm/Support/Endian.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/Path.h" 22 #include <algorithm> 23 #include <cstddef> 24 #include <cstdint> 25 #include <iterator> 26 #include <unordered_set> 27 #include <utility> 28 #include <vector> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::objcopy::elf; 33 using namespace llvm::object; 34 using namespace llvm::support; 35 36 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { 37 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + 38 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); 39 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); 40 Phdr.p_type = Seg.Type; 41 Phdr.p_flags = Seg.Flags; 42 Phdr.p_offset = Seg.Offset; 43 Phdr.p_vaddr = Seg.VAddr; 44 Phdr.p_paddr = Seg.PAddr; 45 Phdr.p_filesz = Seg.FileSize; 46 Phdr.p_memsz = Seg.MemSize; 47 Phdr.p_align = Seg.Align; 48 } 49 50 Error SectionBase::removeSectionReferences( 51 bool, function_ref<bool(const SectionBase *)>) { 52 return Error::success(); 53 } 54 55 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) { 56 return Error::success(); 57 } 58 59 Error SectionBase::initialize(SectionTableRef) { return Error::success(); } 60 void SectionBase::finalize() {} 61 void SectionBase::markSymbols() {} 62 void SectionBase::replaceSectionReferences( 63 const DenseMap<SectionBase *, SectionBase *> &) {} 64 void SectionBase::onRemove() {} 65 66 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { 67 uint8_t *B = 68 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset; 69 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); 70 Shdr.sh_name = Sec.NameIndex; 71 Shdr.sh_type = Sec.Type; 72 Shdr.sh_flags = Sec.Flags; 73 Shdr.sh_addr = Sec.Addr; 74 Shdr.sh_offset = Sec.Offset; 75 Shdr.sh_size = Sec.Size; 76 Shdr.sh_link = Sec.Link; 77 Shdr.sh_info = Sec.Info; 78 Shdr.sh_addralign = Sec.Align; 79 Shdr.sh_entsize = Sec.EntrySize; 80 } 81 82 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) { 83 return Error::success(); 84 } 85 86 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) { 87 return Error::success(); 88 } 89 90 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) { 91 return Error::success(); 92 } 93 94 template <class ELFT> 95 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) { 96 return Error::success(); 97 } 98 99 template <class ELFT> 100 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { 101 Sec.EntrySize = sizeof(Elf_Sym); 102 Sec.Size = Sec.Symbols.size() * Sec.EntrySize; 103 // Align to the largest field in Elf_Sym. 104 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); 105 return Error::success(); 106 } 107 108 template <bool Is64> 109 static SmallVector<char, 0> encodeCrel(ArrayRef<Relocation> Relocations) { 110 using uint = std::conditional_t<Is64, uint64_t, uint32_t>; 111 SmallVector<char, 0> Content; 112 raw_svector_ostream OS(Content); 113 ELF::encodeCrel<Is64>(OS, Relocations, [&](const Relocation &R) { 114 uint32_t CurSymIdx = R.RelocSymbol ? R.RelocSymbol->Index : 0; 115 return ELF::Elf_Crel<Is64>{static_cast<uint>(R.Offset), CurSymIdx, R.Type, 116 std::make_signed_t<uint>(R.Addend)}; 117 }); 118 return Content; 119 } 120 121 template <class ELFT> 122 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { 123 if (Sec.Type == SHT_CREL) { 124 Sec.Size = encodeCrel<ELFT::Is64Bits>(Sec.Relocations).size(); 125 } else { 126 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); 127 Sec.Size = Sec.Relocations.size() * Sec.EntrySize; 128 // Align to the largest field in Elf_Rel(a). 129 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); 130 } 131 return Error::success(); 132 } 133 134 template <class ELFT> 135 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) { 136 return Error::success(); 137 } 138 139 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) { 140 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); 141 return Error::success(); 142 } 143 144 template <class ELFT> 145 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) { 146 return Error::success(); 147 } 148 149 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) { 150 return Error::success(); 151 } 152 153 template <class ELFT> 154 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) { 155 return Error::success(); 156 } 157 158 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { 159 return createStringError(errc::operation_not_permitted, 160 "cannot write symbol section index table '" + 161 Sec.Name + "' "); 162 } 163 164 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { 165 return createStringError(errc::operation_not_permitted, 166 "cannot write symbol table '" + Sec.Name + 167 "' out to binary"); 168 } 169 170 Error BinarySectionWriter::visit(const RelocationSection &Sec) { 171 return createStringError(errc::operation_not_permitted, 172 "cannot write relocation section '" + Sec.Name + 173 "' out to binary"); 174 } 175 176 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { 177 return createStringError(errc::operation_not_permitted, 178 "cannot write '" + Sec.Name + "' out to binary"); 179 } 180 181 Error BinarySectionWriter::visit(const GroupSection &Sec) { 182 return createStringError(errc::operation_not_permitted, 183 "cannot write '" + Sec.Name + "' out to binary"); 184 } 185 186 Error SectionWriter::visit(const Section &Sec) { 187 if (Sec.Type != SHT_NOBITS) 188 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); 189 190 return Error::success(); 191 } 192 193 static bool addressOverflows32bit(uint64_t Addr) { 194 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok 195 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; 196 } 197 198 template <class T> static T checkedGetHex(StringRef S) { 199 T Value; 200 bool Fail = S.getAsInteger(16, Value); 201 assert(!Fail); 202 (void)Fail; 203 return Value; 204 } 205 206 // Fills exactly Len bytes of buffer with hexadecimal characters 207 // representing value 'X' 208 template <class T, class Iterator> 209 static Iterator toHexStr(T X, Iterator It, size_t Len) { 210 // Fill range with '0' 211 std::fill(It, It + Len, '0'); 212 213 for (long I = Len - 1; I >= 0; --I) { 214 unsigned char Mod = static_cast<unsigned char>(X) & 15; 215 *(It + I) = hexdigit(Mod, false); 216 X >>= 4; 217 } 218 assert(X == 0); 219 return It + Len; 220 } 221 222 uint8_t IHexRecord::getChecksum(StringRef S) { 223 assert((S.size() & 1) == 0); 224 uint8_t Checksum = 0; 225 while (!S.empty()) { 226 Checksum += checkedGetHex<uint8_t>(S.take_front(2)); 227 S = S.drop_front(2); 228 } 229 return -Checksum; 230 } 231 232 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, 233 ArrayRef<uint8_t> Data) { 234 IHexLineData Line(getLineLength(Data.size())); 235 assert(Line.size()); 236 auto Iter = Line.begin(); 237 *Iter++ = ':'; 238 Iter = toHexStr(Data.size(), Iter, 2); 239 Iter = toHexStr(Addr, Iter, 4); 240 Iter = toHexStr(Type, Iter, 2); 241 for (uint8_t X : Data) 242 Iter = toHexStr(X, Iter, 2); 243 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter)); 244 Iter = toHexStr(getChecksum(S), Iter, 2); 245 *Iter++ = '\r'; 246 *Iter++ = '\n'; 247 assert(Iter == Line.end()); 248 return Line; 249 } 250 251 static Error checkRecord(const IHexRecord &R) { 252 switch (R.Type) { 253 case IHexRecord::Data: 254 if (R.HexData.size() == 0) 255 return createStringError( 256 errc::invalid_argument, 257 "zero data length is not allowed for data records"); 258 break; 259 case IHexRecord::EndOfFile: 260 break; 261 case IHexRecord::SegmentAddr: 262 // 20-bit segment address. Data length must be 2 bytes 263 // (4 bytes in hex) 264 if (R.HexData.size() != 4) 265 return createStringError( 266 errc::invalid_argument, 267 "segment address data should be 2 bytes in size"); 268 break; 269 case IHexRecord::StartAddr80x86: 270 case IHexRecord::StartAddr: 271 if (R.HexData.size() != 8) 272 return createStringError(errc::invalid_argument, 273 "start address data should be 4 bytes in size"); 274 // According to Intel HEX specification '03' record 275 // only specifies the code address within the 20-bit 276 // segmented address space of the 8086/80186. This 277 // means 12 high order bits should be zeroes. 278 if (R.Type == IHexRecord::StartAddr80x86 && 279 R.HexData.take_front(3) != "000") 280 return createStringError(errc::invalid_argument, 281 "start address exceeds 20 bit for 80x86"); 282 break; 283 case IHexRecord::ExtendedAddr: 284 // 16-31 bits of linear base address 285 if (R.HexData.size() != 4) 286 return createStringError( 287 errc::invalid_argument, 288 "extended address data should be 2 bytes in size"); 289 break; 290 default: 291 // Unknown record type 292 return createStringError(errc::invalid_argument, "unknown record type: %u", 293 static_cast<unsigned>(R.Type)); 294 } 295 return Error::success(); 296 } 297 298 // Checks that IHEX line contains valid characters. 299 // This allows converting hexadecimal data to integers 300 // without extra verification. 301 static Error checkChars(StringRef Line) { 302 assert(!Line.empty()); 303 if (Line[0] != ':') 304 return createStringError(errc::invalid_argument, 305 "missing ':' in the beginning of line."); 306 307 for (size_t Pos = 1; Pos < Line.size(); ++Pos) 308 if (hexDigitValue(Line[Pos]) == -1U) 309 return createStringError(errc::invalid_argument, 310 "invalid character at position %zu.", Pos + 1); 311 return Error::success(); 312 } 313 314 Expected<IHexRecord> IHexRecord::parse(StringRef Line) { 315 assert(!Line.empty()); 316 317 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' 318 if (Line.size() < 11) 319 return createStringError(errc::invalid_argument, 320 "line is too short: %zu chars.", Line.size()); 321 322 if (Error E = checkChars(Line)) 323 return std::move(E); 324 325 IHexRecord Rec; 326 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2)); 327 if (Line.size() != getLength(DataLen)) 328 return createStringError(errc::invalid_argument, 329 "invalid line length %zu (should be %zu)", 330 Line.size(), getLength(DataLen)); 331 332 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4)); 333 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2)); 334 Rec.HexData = Line.substr(9, DataLen * 2); 335 336 if (getChecksum(Line.drop_front(1)) != 0) 337 return createStringError(errc::invalid_argument, "incorrect checksum."); 338 if (Error E = checkRecord(Rec)) 339 return std::move(E); 340 return Rec; 341 } 342 343 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { 344 Segment *Seg = Sec->ParentSegment; 345 if (Seg && Seg->Type != ELF::PT_LOAD) 346 Seg = nullptr; 347 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset 348 : Sec->Addr; 349 } 350 351 void IHexSectionWriterBase::writeSection(const SectionBase *Sec, 352 ArrayRef<uint8_t> Data) { 353 assert(Data.size() == Sec->Size); 354 const uint32_t ChunkSize = 16; 355 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; 356 while (!Data.empty()) { 357 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); 358 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { 359 if (Addr > 0xFFFFFU) { 360 // Write extended address record, zeroing segment address 361 // if needed. 362 if (SegmentAddr != 0) 363 SegmentAddr = writeSegmentAddr(0U); 364 BaseAddr = writeBaseAddr(Addr); 365 } else { 366 // We can still remain 16-bit 367 SegmentAddr = writeSegmentAddr(Addr); 368 } 369 } 370 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; 371 assert(SegOffset <= 0xFFFFU); 372 DataSize = std::min(DataSize, 0x10000U - SegOffset); 373 writeData(0, SegOffset, Data.take_front(DataSize)); 374 Addr += DataSize; 375 Data = Data.drop_front(DataSize); 376 } 377 } 378 379 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { 380 assert(Addr <= 0xFFFFFU); 381 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0}; 382 writeData(2, 0, Data); 383 return Addr & 0xF0000U; 384 } 385 386 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { 387 assert(Addr <= 0xFFFFFFFFU); 388 uint64_t Base = Addr & 0xFFFF0000U; 389 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24), 390 static_cast<uint8_t>((Base >> 16) & 0xFF)}; 391 writeData(4, 0, Data); 392 return Base; 393 } 394 395 void IHexSectionWriterBase::writeData(uint8_t, uint16_t, 396 ArrayRef<uint8_t> Data) { 397 Offset += IHexRecord::getLineLength(Data.size()); 398 } 399 400 Error IHexSectionWriterBase::visit(const Section &Sec) { 401 writeSection(&Sec, Sec.Contents); 402 return Error::success(); 403 } 404 405 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { 406 writeSection(&Sec, Sec.Data); 407 return Error::success(); 408 } 409 410 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { 411 // Check that sizer has already done its work 412 assert(Sec.Size == Sec.StrTabBuilder.getSize()); 413 // We are free to pass an invalid pointer to writeSection as long 414 // as we don't actually write any data. The real writer class has 415 // to override this method . 416 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)}); 417 return Error::success(); 418 } 419 420 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { 421 writeSection(&Sec, Sec.Contents); 422 return Error::success(); 423 } 424 425 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, 426 ArrayRef<uint8_t> Data) { 427 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); 428 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size()); 429 Offset += HexData.size(); 430 } 431 432 Error IHexSectionWriter::visit(const StringTableSection &Sec) { 433 assert(Sec.Size == Sec.StrTabBuilder.getSize()); 434 std::vector<uint8_t> Data(Sec.Size); 435 Sec.StrTabBuilder.write(Data.data()); 436 writeSection(&Sec, Data); 437 return Error::success(); 438 } 439 440 Error Section::accept(SectionVisitor &Visitor) const { 441 return Visitor.visit(*this); 442 } 443 444 Error Section::accept(MutableSectionVisitor &Visitor) { 445 return Visitor.visit(*this); 446 } 447 448 void Section::restoreSymTabLink(SymbolTableSection &SymTab) { 449 if (HasSymTabLink) { 450 assert(LinkSection == nullptr); 451 LinkSection = &SymTab; 452 } 453 } 454 455 Error SectionWriter::visit(const OwnedDataSection &Sec) { 456 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset); 457 return Error::success(); 458 } 459 460 template <class ELFT> 461 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { 462 ArrayRef<uint8_t> Compressed = 463 Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>)); 464 SmallVector<uint8_t, 128> Decompressed; 465 DebugCompressionType Type; 466 switch (Sec.ChType) { 467 case ELFCOMPRESS_ZLIB: 468 Type = DebugCompressionType::Zlib; 469 break; 470 case ELFCOMPRESS_ZSTD: 471 Type = DebugCompressionType::Zstd; 472 break; 473 default: 474 return createStringError(errc::invalid_argument, 475 "--decompress-debug-sections: ch_type (" + 476 Twine(Sec.ChType) + ") of section '" + 477 Sec.Name + "' is unsupported"); 478 } 479 if (auto *Reason = 480 compression::getReasonIfUnsupported(compression::formatFor(Type))) 481 return createStringError(errc::invalid_argument, 482 "failed to decompress section '" + Sec.Name + 483 "': " + Reason); 484 if (Error E = compression::decompress(Type, Compressed, Decompressed, 485 static_cast<size_t>(Sec.Size))) 486 return createStringError(errc::invalid_argument, 487 "failed to decompress section '" + Sec.Name + 488 "': " + toString(std::move(E))); 489 490 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 491 std::copy(Decompressed.begin(), Decompressed.end(), Buf); 492 493 return Error::success(); 494 } 495 496 Error BinarySectionWriter::visit(const DecompressedSection &Sec) { 497 return createStringError(errc::operation_not_permitted, 498 "cannot write compressed section '" + Sec.Name + 499 "' "); 500 } 501 502 Error DecompressedSection::accept(SectionVisitor &Visitor) const { 503 return Visitor.visit(*this); 504 } 505 506 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { 507 return Visitor.visit(*this); 508 } 509 510 Error OwnedDataSection::accept(SectionVisitor &Visitor) const { 511 return Visitor.visit(*this); 512 } 513 514 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { 515 return Visitor.visit(*this); 516 } 517 518 void OwnedDataSection::appendHexData(StringRef HexData) { 519 assert((HexData.size() & 1) == 0); 520 while (!HexData.empty()) { 521 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2))); 522 HexData = HexData.drop_front(2); 523 } 524 Size = Data.size(); 525 } 526 527 Error BinarySectionWriter::visit(const CompressedSection &Sec) { 528 return createStringError(errc::operation_not_permitted, 529 "cannot write compressed section '" + Sec.Name + 530 "' "); 531 } 532 533 template <class ELFT> 534 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { 535 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 536 Elf_Chdr_Impl<ELFT> Chdr = {}; 537 switch (Sec.CompressionType) { 538 case DebugCompressionType::None: 539 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); 540 return Error::success(); 541 case DebugCompressionType::Zlib: 542 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; 543 break; 544 case DebugCompressionType::Zstd: 545 Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD; 546 break; 547 } 548 Chdr.ch_size = Sec.DecompressedSize; 549 Chdr.ch_addralign = Sec.DecompressedAlign; 550 memcpy(Buf, &Chdr, sizeof(Chdr)); 551 Buf += sizeof(Chdr); 552 553 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); 554 return Error::success(); 555 } 556 557 CompressedSection::CompressedSection(const SectionBase &Sec, 558 DebugCompressionType CompressionType, 559 bool Is64Bits) 560 : SectionBase(Sec), CompressionType(CompressionType), 561 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { 562 compression::compress(compression::Params(CompressionType), OriginalData, 563 CompressedData); 564 565 Flags |= ELF::SHF_COMPRESSED; 566 OriginalFlags |= ELF::SHF_COMPRESSED; 567 size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>) 568 : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>); 569 Size = ChdrSize + CompressedData.size(); 570 Align = 8; 571 } 572 573 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, 574 uint32_t ChType, uint64_t DecompressedSize, 575 uint64_t DecompressedAlign) 576 : ChType(ChType), CompressionType(DebugCompressionType::None), 577 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { 578 OriginalData = CompressedData; 579 } 580 581 Error CompressedSection::accept(SectionVisitor &Visitor) const { 582 return Visitor.visit(*this); 583 } 584 585 Error CompressedSection::accept(MutableSectionVisitor &Visitor) { 586 return Visitor.visit(*this); 587 } 588 589 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); } 590 591 uint32_t StringTableSection::findIndex(StringRef Name) const { 592 return StrTabBuilder.getOffset(Name); 593 } 594 595 void StringTableSection::prepareForLayout() { 596 StrTabBuilder.finalize(); 597 Size = StrTabBuilder.getSize(); 598 } 599 600 Error SectionWriter::visit(const StringTableSection &Sec) { 601 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) + 602 Sec.Offset); 603 return Error::success(); 604 } 605 606 Error StringTableSection::accept(SectionVisitor &Visitor) const { 607 return Visitor.visit(*this); 608 } 609 610 Error StringTableSection::accept(MutableSectionVisitor &Visitor) { 611 return Visitor.visit(*this); 612 } 613 614 template <class ELFT> 615 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { 616 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 617 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf)); 618 return Error::success(); 619 } 620 621 Error SectionIndexSection::initialize(SectionTableRef SecTable) { 622 Size = 0; 623 Expected<SymbolTableSection *> Sec = 624 SecTable.getSectionOfType<SymbolTableSection>( 625 Link, 626 "Link field value " + Twine(Link) + " in section " + Name + 627 " is invalid", 628 "Link field value " + Twine(Link) + " in section " + Name + 629 " is not a symbol table"); 630 if (!Sec) 631 return Sec.takeError(); 632 633 setSymTab(*Sec); 634 Symbols->setShndxTable(this); 635 return Error::success(); 636 } 637 638 void SectionIndexSection::finalize() { Link = Symbols->Index; } 639 640 Error SectionIndexSection::accept(SectionVisitor &Visitor) const { 641 return Visitor.visit(*this); 642 } 643 644 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { 645 return Visitor.visit(*this); 646 } 647 648 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { 649 switch (Index) { 650 case SHN_ABS: 651 case SHN_COMMON: 652 return true; 653 } 654 655 if (Machine == EM_AMDGPU) { 656 return Index == SHN_AMDGPU_LDS; 657 } 658 659 if (Machine == EM_MIPS) { 660 switch (Index) { 661 case SHN_MIPS_ACOMMON: 662 case SHN_MIPS_SCOMMON: 663 case SHN_MIPS_SUNDEFINED: 664 return true; 665 } 666 } 667 668 if (Machine == EM_HEXAGON) { 669 switch (Index) { 670 case SHN_HEXAGON_SCOMMON: 671 case SHN_HEXAGON_SCOMMON_1: 672 case SHN_HEXAGON_SCOMMON_2: 673 case SHN_HEXAGON_SCOMMON_4: 674 case SHN_HEXAGON_SCOMMON_8: 675 return true; 676 } 677 } 678 return false; 679 } 680 681 // Large indexes force us to clarify exactly what this function should do. This 682 // function should return the value that will appear in st_shndx when written 683 // out. 684 uint16_t Symbol::getShndx() const { 685 if (DefinedIn != nullptr) { 686 if (DefinedIn->Index >= SHN_LORESERVE) 687 return SHN_XINDEX; 688 return DefinedIn->Index; 689 } 690 691 if (ShndxType == SYMBOL_SIMPLE_INDEX) { 692 // This means that we don't have a defined section but we do need to 693 // output a legitimate section index. 694 return SHN_UNDEF; 695 } 696 697 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || 698 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || 699 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); 700 return static_cast<uint16_t>(ShndxType); 701 } 702 703 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } 704 705 void SymbolTableSection::assignIndices() { 706 uint32_t Index = 0; 707 for (auto &Sym : Symbols) { 708 if (Sym->Index != Index) 709 IndicesChanged = true; 710 Sym->Index = Index++; 711 } 712 } 713 714 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, 715 SectionBase *DefinedIn, uint64_t Value, 716 uint8_t Visibility, uint16_t Shndx, 717 uint64_t SymbolSize) { 718 Symbol Sym; 719 Sym.Name = Name.str(); 720 Sym.Binding = Bind; 721 Sym.Type = Type; 722 Sym.DefinedIn = DefinedIn; 723 if (DefinedIn != nullptr) 724 DefinedIn->HasSymbol = true; 725 if (DefinedIn == nullptr) { 726 if (Shndx >= SHN_LORESERVE) 727 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); 728 else 729 Sym.ShndxType = SYMBOL_SIMPLE_INDEX; 730 } 731 Sym.Value = Value; 732 Sym.Visibility = Visibility; 733 Sym.Size = SymbolSize; 734 Sym.Index = Symbols.size(); 735 Symbols.emplace_back(std::make_unique<Symbol>(Sym)); 736 Size += this->EntrySize; 737 } 738 739 Error SymbolTableSection::removeSectionReferences( 740 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 741 if (ToRemove(SectionIndexTable)) 742 SectionIndexTable = nullptr; 743 if (ToRemove(SymbolNames)) { 744 if (!AllowBrokenLinks) 745 return createStringError( 746 llvm::errc::invalid_argument, 747 "string table '%s' cannot be removed because it is " 748 "referenced by the symbol table '%s'", 749 SymbolNames->Name.data(), this->Name.data()); 750 SymbolNames = nullptr; 751 } 752 return removeSymbols( 753 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); 754 } 755 756 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { 757 for (SymPtr &Sym : llvm::drop_begin(Symbols)) 758 Callable(*Sym); 759 std::stable_partition( 760 std::begin(Symbols), std::end(Symbols), 761 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); 762 assignIndices(); 763 } 764 765 Error SymbolTableSection::removeSymbols( 766 function_ref<bool(const Symbol &)> ToRemove) { 767 Symbols.erase( 768 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), 769 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), 770 std::end(Symbols)); 771 auto PrevSize = Size; 772 Size = Symbols.size() * EntrySize; 773 if (Size < PrevSize) 774 IndicesChanged = true; 775 assignIndices(); 776 return Error::success(); 777 } 778 779 void SymbolTableSection::replaceSectionReferences( 780 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 781 for (std::unique_ptr<Symbol> &Sym : Symbols) 782 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn)) 783 Sym->DefinedIn = To; 784 } 785 786 Error SymbolTableSection::initialize(SectionTableRef SecTable) { 787 Size = 0; 788 Expected<StringTableSection *> Sec = 789 SecTable.getSectionOfType<StringTableSection>( 790 Link, 791 "Symbol table has link index of " + Twine(Link) + 792 " which is not a valid index", 793 "Symbol table has link index of " + Twine(Link) + 794 " which is not a string table"); 795 if (!Sec) 796 return Sec.takeError(); 797 798 setStrTab(*Sec); 799 return Error::success(); 800 } 801 802 void SymbolTableSection::finalize() { 803 uint32_t MaxLocalIndex = 0; 804 for (std::unique_ptr<Symbol> &Sym : Symbols) { 805 Sym->NameIndex = 806 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name); 807 if (Sym->Binding == STB_LOCAL) 808 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); 809 } 810 // Now we need to set the Link and Info fields. 811 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; 812 Info = MaxLocalIndex + 1; 813 } 814 815 void SymbolTableSection::prepareForLayout() { 816 // Reserve proper amount of space in section index table, so we can 817 // layout sections correctly. We will fill the table with correct 818 // indexes later in fillShdnxTable. 819 if (SectionIndexTable) 820 SectionIndexTable->reserve(Symbols.size()); 821 822 // Add all of our strings to SymbolNames so that SymbolNames has the right 823 // size before layout is decided. 824 // If the symbol names section has been removed, don't try to add strings to 825 // the table. 826 if (SymbolNames != nullptr) 827 for (std::unique_ptr<Symbol> &Sym : Symbols) 828 SymbolNames->addString(Sym->Name); 829 } 830 831 void SymbolTableSection::fillShndxTable() { 832 if (SectionIndexTable == nullptr) 833 return; 834 // Fill section index table with real section indexes. This function must 835 // be called after assignOffsets. 836 for (const std::unique_ptr<Symbol> &Sym : Symbols) { 837 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) 838 SectionIndexTable->addIndex(Sym->DefinedIn->Index); 839 else 840 SectionIndexTable->addIndex(SHN_UNDEF); 841 } 842 } 843 844 Expected<const Symbol *> 845 SymbolTableSection::getSymbolByIndex(uint32_t Index) const { 846 if (Symbols.size() <= Index) 847 return createStringError(errc::invalid_argument, 848 "invalid symbol index: " + Twine(Index)); 849 return Symbols[Index].get(); 850 } 851 852 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) { 853 Expected<const Symbol *> Sym = 854 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index); 855 if (!Sym) 856 return Sym.takeError(); 857 858 return const_cast<Symbol *>(*Sym); 859 } 860 861 template <class ELFT> 862 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { 863 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset); 864 // Loop though symbols setting each entry of the symbol table. 865 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) { 866 Sym->st_name = Symbol->NameIndex; 867 Sym->st_value = Symbol->Value; 868 Sym->st_size = Symbol->Size; 869 Sym->st_other = Symbol->Visibility; 870 Sym->setBinding(Symbol->Binding); 871 Sym->setType(Symbol->Type); 872 Sym->st_shndx = Symbol->getShndx(); 873 ++Sym; 874 } 875 return Error::success(); 876 } 877 878 Error SymbolTableSection::accept(SectionVisitor &Visitor) const { 879 return Visitor.visit(*this); 880 } 881 882 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { 883 return Visitor.visit(*this); 884 } 885 886 StringRef RelocationSectionBase::getNamePrefix() const { 887 switch (Type) { 888 case SHT_REL: 889 return ".rel"; 890 case SHT_RELA: 891 return ".rela"; 892 case SHT_CREL: 893 return ".crel"; 894 default: 895 llvm_unreachable("not a relocation section"); 896 } 897 } 898 899 Error RelocationSection::removeSectionReferences( 900 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 901 if (ToRemove(Symbols)) { 902 if (!AllowBrokenLinks) 903 return createStringError( 904 llvm::errc::invalid_argument, 905 "symbol table '%s' cannot be removed because it is " 906 "referenced by the relocation section '%s'", 907 Symbols->Name.data(), this->Name.data()); 908 Symbols = nullptr; 909 } 910 911 for (const Relocation &R : Relocations) { 912 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || 913 !ToRemove(R.RelocSymbol->DefinedIn)) 914 continue; 915 return createStringError(llvm::errc::invalid_argument, 916 "section '%s' cannot be removed: (%s+0x%" PRIx64 917 ") has relocation against symbol '%s'", 918 R.RelocSymbol->DefinedIn->Name.data(), 919 SecToApplyRel->Name.data(), R.Offset, 920 R.RelocSymbol->Name.c_str()); 921 } 922 923 return Error::success(); 924 } 925 926 template <class SymTabType> 927 Error RelocSectionWithSymtabBase<SymTabType>::initialize( 928 SectionTableRef SecTable) { 929 if (Link != SHN_UNDEF) { 930 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>( 931 Link, 932 "Link field value " + Twine(Link) + " in section " + Name + 933 " is invalid", 934 "Link field value " + Twine(Link) + " in section " + Name + 935 " is not a symbol table"); 936 if (!Sec) 937 return Sec.takeError(); 938 939 setSymTab(*Sec); 940 } 941 942 if (Info != SHN_UNDEF) { 943 Expected<SectionBase *> Sec = 944 SecTable.getSection(Info, "Info field value " + Twine(Info) + 945 " in section " + Name + " is invalid"); 946 if (!Sec) 947 return Sec.takeError(); 948 949 setSection(*Sec); 950 } else 951 setSection(nullptr); 952 953 return Error::success(); 954 } 955 956 template <class SymTabType> 957 void RelocSectionWithSymtabBase<SymTabType>::finalize() { 958 this->Link = Symbols ? Symbols->Index : 0; 959 960 if (SecToApplyRel != nullptr) 961 this->Info = SecToApplyRel->Index; 962 } 963 964 template <class ELFT> 965 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {} 966 967 template <class ELFT> 968 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { 969 Rela.r_addend = Addend; 970 } 971 972 template <class RelRange, class T> 973 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { 974 for (const auto &Reloc : Relocations) { 975 Buf->r_offset = Reloc.Offset; 976 setAddend(*Buf, Reloc.Addend); 977 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, 978 Reloc.Type, IsMips64EL); 979 ++Buf; 980 } 981 } 982 983 template <class ELFT> 984 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { 985 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 986 if (Sec.Type == SHT_CREL) { 987 auto Content = encodeCrel<ELFT::Is64Bits>(Sec.Relocations); 988 memcpy(Buf, Content.data(), Content.size()); 989 } else if (Sec.Type == SHT_REL) { 990 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf), 991 Sec.getObject().IsMips64EL); 992 } else { 993 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf), 994 Sec.getObject().IsMips64EL); 995 } 996 return Error::success(); 997 } 998 999 Error RelocationSection::accept(SectionVisitor &Visitor) const { 1000 return Visitor.visit(*this); 1001 } 1002 1003 Error RelocationSection::accept(MutableSectionVisitor &Visitor) { 1004 return Visitor.visit(*this); 1005 } 1006 1007 Error RelocationSection::removeSymbols( 1008 function_ref<bool(const Symbol &)> ToRemove) { 1009 for (const Relocation &Reloc : Relocations) 1010 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) 1011 return createStringError( 1012 llvm::errc::invalid_argument, 1013 "not stripping symbol '%s' because it is named in a relocation", 1014 Reloc.RelocSymbol->Name.data()); 1015 return Error::success(); 1016 } 1017 1018 void RelocationSection::markSymbols() { 1019 for (const Relocation &Reloc : Relocations) 1020 if (Reloc.RelocSymbol) 1021 Reloc.RelocSymbol->Referenced = true; 1022 } 1023 1024 void RelocationSection::replaceSectionReferences( 1025 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 1026 // Update the target section if it was replaced. 1027 if (SectionBase *To = FromTo.lookup(SecToApplyRel)) 1028 SecToApplyRel = To; 1029 } 1030 1031 Error SectionWriter::visit(const DynamicRelocationSection &Sec) { 1032 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); 1033 return Error::success(); 1034 } 1035 1036 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { 1037 return Visitor.visit(*this); 1038 } 1039 1040 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { 1041 return Visitor.visit(*this); 1042 } 1043 1044 Error DynamicRelocationSection::removeSectionReferences( 1045 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 1046 if (ToRemove(Symbols)) { 1047 if (!AllowBrokenLinks) 1048 return createStringError( 1049 llvm::errc::invalid_argument, 1050 "symbol table '%s' cannot be removed because it is " 1051 "referenced by the relocation section '%s'", 1052 Symbols->Name.data(), this->Name.data()); 1053 Symbols = nullptr; 1054 } 1055 1056 // SecToApplyRel contains a section referenced by sh_info field. It keeps 1057 // a section to which the relocation section applies. When we remove any 1058 // sections we also remove their relocation sections. Since we do that much 1059 // earlier, this assert should never be triggered. 1060 assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); 1061 return Error::success(); 1062 } 1063 1064 Error Section::removeSectionReferences( 1065 bool AllowBrokenDependency, 1066 function_ref<bool(const SectionBase *)> ToRemove) { 1067 if (ToRemove(LinkSection)) { 1068 if (!AllowBrokenDependency) 1069 return createStringError(llvm::errc::invalid_argument, 1070 "section '%s' cannot be removed because it is " 1071 "referenced by the section '%s'", 1072 LinkSection->Name.data(), this->Name.data()); 1073 LinkSection = nullptr; 1074 } 1075 return Error::success(); 1076 } 1077 1078 void GroupSection::finalize() { 1079 this->Info = Sym ? Sym->Index : 0; 1080 this->Link = SymTab ? SymTab->Index : 0; 1081 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global 1082 // status is not part of the equation. If Sym is localized, the intention is 1083 // likely to make the group fully localized. Drop GRP_COMDAT to suppress 1084 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc 1085 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) 1086 this->FlagWord &= ~GRP_COMDAT; 1087 } 1088 1089 Error GroupSection::removeSectionReferences( 1090 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 1091 if (ToRemove(SymTab)) { 1092 if (!AllowBrokenLinks) 1093 return createStringError( 1094 llvm::errc::invalid_argument, 1095 "section '.symtab' cannot be removed because it is " 1096 "referenced by the group section '%s'", 1097 this->Name.data()); 1098 SymTab = nullptr; 1099 Sym = nullptr; 1100 } 1101 llvm::erase_if(GroupMembers, ToRemove); 1102 return Error::success(); 1103 } 1104 1105 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 1106 if (ToRemove(*Sym)) 1107 return createStringError(llvm::errc::invalid_argument, 1108 "symbol '%s' cannot be removed because it is " 1109 "referenced by the section '%s[%d]'", 1110 Sym->Name.data(), this->Name.data(), this->Index); 1111 return Error::success(); 1112 } 1113 1114 void GroupSection::markSymbols() { 1115 if (Sym) 1116 Sym->Referenced = true; 1117 } 1118 1119 void GroupSection::replaceSectionReferences( 1120 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 1121 for (SectionBase *&Sec : GroupMembers) 1122 if (SectionBase *To = FromTo.lookup(Sec)) 1123 Sec = To; 1124 } 1125 1126 void GroupSection::onRemove() { 1127 // As the header section of the group is removed, drop the Group flag in its 1128 // former members. 1129 for (SectionBase *Sec : GroupMembers) 1130 Sec->Flags &= ~SHF_GROUP; 1131 } 1132 1133 Error Section::initialize(SectionTableRef SecTable) { 1134 if (Link == ELF::SHN_UNDEF) 1135 return Error::success(); 1136 1137 Expected<SectionBase *> Sec = 1138 SecTable.getSection(Link, "Link field value " + Twine(Link) + 1139 " in section " + Name + " is invalid"); 1140 if (!Sec) 1141 return Sec.takeError(); 1142 1143 LinkSection = *Sec; 1144 1145 if (LinkSection->Type == ELF::SHT_SYMTAB) { 1146 HasSymTabLink = true; 1147 LinkSection = nullptr; 1148 } 1149 1150 return Error::success(); 1151 } 1152 1153 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } 1154 1155 void GnuDebugLinkSection::init(StringRef File) { 1156 FileName = sys::path::filename(File); 1157 // The format for the .gnu_debuglink starts with the file name and is 1158 // followed by a null terminator and then the CRC32 of the file. The CRC32 1159 // should be 4 byte aligned. So we add the FileName size, a 1 for the null 1160 // byte, and then finally push the size to alignment and add 4. 1161 Size = alignTo(FileName.size() + 1, 4) + 4; 1162 // The CRC32 will only be aligned if we align the whole section. 1163 Align = 4; 1164 Type = OriginalType = ELF::SHT_PROGBITS; 1165 Name = ".gnu_debuglink"; 1166 // For sections not found in segments, OriginalOffset is only used to 1167 // establish the order that sections should go in. By using the maximum 1168 // possible offset we cause this section to wind up at the end. 1169 OriginalOffset = std::numeric_limits<uint64_t>::max(); 1170 } 1171 1172 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, 1173 uint32_t PrecomputedCRC) 1174 : FileName(File), CRC32(PrecomputedCRC) { 1175 init(File); 1176 } 1177 1178 template <class ELFT> 1179 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { 1180 unsigned char *Buf = 1181 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 1182 Elf_Word *CRC = 1183 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); 1184 *CRC = Sec.CRC32; 1185 llvm::copy(Sec.FileName, Buf); 1186 return Error::success(); 1187 } 1188 1189 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { 1190 return Visitor.visit(*this); 1191 } 1192 1193 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { 1194 return Visitor.visit(*this); 1195 } 1196 1197 template <class ELFT> 1198 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { 1199 ELF::Elf32_Word *Buf = 1200 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); 1201 endian::write32<ELFT::Endianness>(Buf++, Sec.FlagWord); 1202 for (SectionBase *S : Sec.GroupMembers) 1203 endian::write32<ELFT::Endianness>(Buf++, S->Index); 1204 return Error::success(); 1205 } 1206 1207 Error GroupSection::accept(SectionVisitor &Visitor) const { 1208 return Visitor.visit(*this); 1209 } 1210 1211 Error GroupSection::accept(MutableSectionVisitor &Visitor) { 1212 return Visitor.visit(*this); 1213 } 1214 1215 // Returns true IFF a section is wholly inside the range of a segment 1216 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { 1217 // If a section is empty it should be treated like it has a size of 1. This is 1218 // to clarify the case when an empty section lies on a boundary between two 1219 // segments and ensures that the section "belongs" to the second segment and 1220 // not the first. 1221 uint64_t SecSize = Sec.Size ? Sec.Size : 1; 1222 1223 // Ignore just added sections. 1224 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max()) 1225 return false; 1226 1227 if (Sec.Type == SHT_NOBITS) { 1228 if (!(Sec.Flags & SHF_ALLOC)) 1229 return false; 1230 1231 bool SectionIsTLS = Sec.Flags & SHF_TLS; 1232 bool SegmentIsTLS = Seg.Type == PT_TLS; 1233 if (SectionIsTLS != SegmentIsTLS) 1234 return false; 1235 1236 return Seg.VAddr <= Sec.Addr && 1237 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; 1238 } 1239 1240 return Seg.Offset <= Sec.OriginalOffset && 1241 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; 1242 } 1243 1244 // Returns true IFF a segment's original offset is inside of another segment's 1245 // range. 1246 static bool segmentOverlapsSegment(const Segment &Child, 1247 const Segment &Parent) { 1248 1249 return Parent.OriginalOffset <= Child.OriginalOffset && 1250 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; 1251 } 1252 1253 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { 1254 // Any segment without a parent segment should come before a segment 1255 // that has a parent segment. 1256 if (A->OriginalOffset < B->OriginalOffset) 1257 return true; 1258 if (A->OriginalOffset > B->OriginalOffset) 1259 return false; 1260 // If alignments are different, the one with a smaller alignment cannot be the 1261 // parent; otherwise, layoutSegments will not respect the larger alignment 1262 // requirement. This rule ensures that PT_LOAD/PT_INTERP/PT_GNU_RELRO/PT_TLS 1263 // segments at the same offset will be aligned correctly. 1264 if (A->Align != B->Align) 1265 return A->Align > B->Align; 1266 return A->Index < B->Index; 1267 } 1268 1269 void BasicELFBuilder::initFileHeader() { 1270 Obj->Flags = 0x0; 1271 Obj->Type = ET_REL; 1272 Obj->OSABI = ELFOSABI_NONE; 1273 Obj->ABIVersion = 0; 1274 Obj->Entry = 0x0; 1275 Obj->Machine = EM_NONE; 1276 Obj->Version = 1; 1277 } 1278 1279 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } 1280 1281 StringTableSection *BasicELFBuilder::addStrTab() { 1282 auto &StrTab = Obj->addSection<StringTableSection>(); 1283 StrTab.Name = ".strtab"; 1284 1285 Obj->SectionNames = &StrTab; 1286 return &StrTab; 1287 } 1288 1289 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { 1290 auto &SymTab = Obj->addSection<SymbolTableSection>(); 1291 1292 SymTab.Name = ".symtab"; 1293 SymTab.Link = StrTab->Index; 1294 1295 // The symbol table always needs a null symbol 1296 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); 1297 1298 Obj->SymbolTable = &SymTab; 1299 return &SymTab; 1300 } 1301 1302 Error BasicELFBuilder::initSections() { 1303 for (SectionBase &Sec : Obj->sections()) 1304 if (Error Err = Sec.initialize(Obj->sections())) 1305 return Err; 1306 1307 return Error::success(); 1308 } 1309 1310 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { 1311 auto Data = ArrayRef<uint8_t>( 1312 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), 1313 MemBuf->getBufferSize()); 1314 auto &DataSection = Obj->addSection<Section>(Data); 1315 DataSection.Name = ".data"; 1316 DataSection.Type = ELF::SHT_PROGBITS; 1317 DataSection.Size = Data.size(); 1318 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; 1319 1320 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); 1321 std::replace_if( 1322 std::begin(SanitizedFilename), std::end(SanitizedFilename), 1323 [](char C) { return !isAlnum(C); }, '_'); 1324 Twine Prefix = Twine("_binary_") + SanitizedFilename; 1325 1326 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, 1327 /*Value=*/0, NewSymbolVisibility, 0, 0); 1328 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, 1329 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0); 1330 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, 1331 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS, 1332 0); 1333 } 1334 1335 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() { 1336 initFileHeader(); 1337 initHeaderSegment(); 1338 1339 SymbolTableSection *SymTab = addSymTab(addStrTab()); 1340 if (Error Err = initSections()) 1341 return std::move(Err); 1342 addData(SymTab); 1343 1344 return std::move(Obj); 1345 } 1346 1347 // Adds sections from IHEX data file. Data should have been 1348 // fully validated by this time. 1349 void IHexELFBuilder::addDataSections() { 1350 OwnedDataSection *Section = nullptr; 1351 uint64_t SegmentAddr = 0, BaseAddr = 0; 1352 uint32_t SecNo = 1; 1353 1354 for (const IHexRecord &R : Records) { 1355 uint64_t RecAddr; 1356 switch (R.Type) { 1357 case IHexRecord::Data: 1358 // Ignore empty data records 1359 if (R.HexData.empty()) 1360 continue; 1361 RecAddr = R.Addr + SegmentAddr + BaseAddr; 1362 if (!Section || Section->Addr + Section->Size != RecAddr) { 1363 // OriginalOffset field is only used to sort sections before layout, so 1364 // instead of keeping track of real offsets in IHEX file, and as 1365 // layoutSections() and layoutSectionsForOnlyKeepDebug() use 1366 // llvm::stable_sort(), we can just set it to a constant (zero). 1367 Section = &Obj->addSection<OwnedDataSection>( 1368 ".sec" + std::to_string(SecNo), RecAddr, 1369 ELF::SHF_ALLOC | ELF::SHF_WRITE, 0); 1370 SecNo++; 1371 } 1372 Section->appendHexData(R.HexData); 1373 break; 1374 case IHexRecord::EndOfFile: 1375 break; 1376 case IHexRecord::SegmentAddr: 1377 // 20-bit segment address. 1378 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4; 1379 break; 1380 case IHexRecord::StartAddr80x86: 1381 case IHexRecord::StartAddr: 1382 Obj->Entry = checkedGetHex<uint32_t>(R.HexData); 1383 assert(Obj->Entry <= 0xFFFFFU); 1384 break; 1385 case IHexRecord::ExtendedAddr: 1386 // 16-31 bits of linear base address 1387 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16; 1388 break; 1389 default: 1390 llvm_unreachable("unknown record type"); 1391 } 1392 } 1393 } 1394 1395 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() { 1396 initFileHeader(); 1397 initHeaderSegment(); 1398 StringTableSection *StrTab = addStrTab(); 1399 addSymTab(StrTab); 1400 if (Error Err = initSections()) 1401 return std::move(Err); 1402 addDataSections(); 1403 1404 return std::move(Obj); 1405 } 1406 1407 template <class ELFT> 1408 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj, 1409 std::optional<StringRef> ExtractPartition) 1410 : ElfFile(ElfObj.getELFFile()), Obj(Obj), 1411 ExtractPartition(ExtractPartition) { 1412 Obj.IsMips64EL = ElfFile.isMips64EL(); 1413 } 1414 1415 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { 1416 for (Segment &Parent : Obj.segments()) { 1417 // Every segment will overlap with itself but we don't want a segment to 1418 // be its own parent so we avoid that situation. 1419 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { 1420 // We want a canonical "most parental" segment but this requires 1421 // inspecting the ParentSegment. 1422 if (compareSegmentsByOffset(&Parent, &Child)) 1423 if (Child.ParentSegment == nullptr || 1424 compareSegmentsByOffset(&Parent, Child.ParentSegment)) { 1425 Child.ParentSegment = &Parent; 1426 } 1427 } 1428 } 1429 } 1430 1431 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() { 1432 if (!ExtractPartition) 1433 return Error::success(); 1434 1435 for (const SectionBase &Sec : Obj.sections()) { 1436 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { 1437 EhdrOffset = Sec.Offset; 1438 return Error::success(); 1439 } 1440 } 1441 return createStringError(errc::invalid_argument, 1442 "could not find partition named '" + 1443 *ExtractPartition + "'"); 1444 } 1445 1446 template <class ELFT> 1447 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) { 1448 uint32_t Index = 0; 1449 1450 Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers = 1451 HeadersFile.program_headers(); 1452 if (!Headers) 1453 return Headers.takeError(); 1454 1455 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) { 1456 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) 1457 return createStringError( 1458 errc::invalid_argument, 1459 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) + 1460 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) + 1461 " goes past the end of the file"); 1462 1463 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset, 1464 (size_t)Phdr.p_filesz}; 1465 Segment &Seg = Obj.addSegment(Data); 1466 Seg.Type = Phdr.p_type; 1467 Seg.Flags = Phdr.p_flags; 1468 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; 1469 Seg.Offset = Phdr.p_offset + EhdrOffset; 1470 Seg.VAddr = Phdr.p_vaddr; 1471 Seg.PAddr = Phdr.p_paddr; 1472 Seg.FileSize = Phdr.p_filesz; 1473 Seg.MemSize = Phdr.p_memsz; 1474 Seg.Align = Phdr.p_align; 1475 Seg.Index = Index++; 1476 for (SectionBase &Sec : Obj.sections()) 1477 if (sectionWithinSegment(Sec, Seg)) { 1478 Seg.addSection(&Sec); 1479 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) 1480 Sec.ParentSegment = &Seg; 1481 } 1482 } 1483 1484 auto &ElfHdr = Obj.ElfHdrSegment; 1485 ElfHdr.Index = Index++; 1486 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; 1487 1488 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); 1489 auto &PrHdr = Obj.ProgramHdrSegment; 1490 PrHdr.Type = PT_PHDR; 1491 PrHdr.Flags = 0; 1492 // The spec requires us to have p_vaddr % p_align == p_offset % p_align. 1493 // Whereas this works automatically for ElfHdr, here OriginalOffset is 1494 // always non-zero and to ensure the equation we assign the same value to 1495 // VAddr as well. 1496 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; 1497 PrHdr.PAddr = 0; 1498 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; 1499 // The spec requires us to naturally align all the fields. 1500 PrHdr.Align = sizeof(Elf_Addr); 1501 PrHdr.Index = Index++; 1502 1503 // Now we do an O(n^2) loop through the segments in order to match up 1504 // segments. 1505 for (Segment &Child : Obj.segments()) 1506 setParentSegment(Child); 1507 setParentSegment(ElfHdr); 1508 setParentSegment(PrHdr); 1509 1510 return Error::success(); 1511 } 1512 1513 template <class ELFT> 1514 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { 1515 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) 1516 return createStringError(errc::invalid_argument, 1517 "invalid alignment " + Twine(GroupSec->Align) + 1518 " of group section '" + GroupSec->Name + "'"); 1519 SectionTableRef SecTable = Obj.sections(); 1520 if (GroupSec->Link != SHN_UNDEF) { 1521 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( 1522 GroupSec->Link, 1523 "link field value '" + Twine(GroupSec->Link) + "' in section '" + 1524 GroupSec->Name + "' is invalid", 1525 "link field value '" + Twine(GroupSec->Link) + "' in section '" + 1526 GroupSec->Name + "' is not a symbol table"); 1527 if (!SymTab) 1528 return SymTab.takeError(); 1529 1530 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info); 1531 if (!Sym) 1532 return createStringError(errc::invalid_argument, 1533 "info field value '" + Twine(GroupSec->Info) + 1534 "' in section '" + GroupSec->Name + 1535 "' is not a valid symbol index"); 1536 GroupSec->setSymTab(*SymTab); 1537 GroupSec->setSymbol(*Sym); 1538 } 1539 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || 1540 GroupSec->Contents.empty()) 1541 return createStringError(errc::invalid_argument, 1542 "the content of the section " + GroupSec->Name + 1543 " is malformed"); 1544 const ELF::Elf32_Word *Word = 1545 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); 1546 const ELF::Elf32_Word *End = 1547 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); 1548 GroupSec->setFlagWord(endian::read32<ELFT::Endianness>(Word++)); 1549 for (; Word != End; ++Word) { 1550 uint32_t Index = support::endian::read32<ELFT::Endianness>(Word); 1551 Expected<SectionBase *> Sec = SecTable.getSection( 1552 Index, "group member index " + Twine(Index) + " in section '" + 1553 GroupSec->Name + "' is invalid"); 1554 if (!Sec) 1555 return Sec.takeError(); 1556 1557 GroupSec->addMember(*Sec); 1558 } 1559 1560 return Error::success(); 1561 } 1562 1563 template <class ELFT> 1564 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { 1565 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index); 1566 if (!Shdr) 1567 return Shdr.takeError(); 1568 1569 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr); 1570 if (!StrTabData) 1571 return StrTabData.takeError(); 1572 1573 ArrayRef<Elf_Word> ShndxData; 1574 1575 Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols = 1576 ElfFile.symbols(*Shdr); 1577 if (!Symbols) 1578 return Symbols.takeError(); 1579 1580 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) { 1581 SectionBase *DefSection = nullptr; 1582 1583 Expected<StringRef> Name = Sym.getName(*StrTabData); 1584 if (!Name) 1585 return Name.takeError(); 1586 1587 if (Sym.st_shndx == SHN_XINDEX) { 1588 if (SymTab->getShndxTable() == nullptr) 1589 return createStringError(errc::invalid_argument, 1590 "symbol '" + *Name + 1591 "' has index SHN_XINDEX but no " 1592 "SHT_SYMTAB_SHNDX section exists"); 1593 if (ShndxData.data() == nullptr) { 1594 Expected<const Elf_Shdr *> ShndxSec = 1595 ElfFile.getSection(SymTab->getShndxTable()->Index); 1596 if (!ShndxSec) 1597 return ShndxSec.takeError(); 1598 1599 Expected<ArrayRef<Elf_Word>> Data = 1600 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec); 1601 if (!Data) 1602 return Data.takeError(); 1603 1604 ShndxData = *Data; 1605 if (ShndxData.size() != Symbols->size()) 1606 return createStringError( 1607 errc::invalid_argument, 1608 "symbol section index table does not have the same number of " 1609 "entries as the symbol table"); 1610 } 1611 Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; 1612 Expected<SectionBase *> Sec = Obj.sections().getSection( 1613 Index, 1614 "symbol '" + *Name + "' has invalid section index " + Twine(Index)); 1615 if (!Sec) 1616 return Sec.takeError(); 1617 1618 DefSection = *Sec; 1619 } else if (Sym.st_shndx >= SHN_LORESERVE) { 1620 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { 1621 return createStringError( 1622 errc::invalid_argument, 1623 "symbol '" + *Name + 1624 "' has unsupported value greater than or equal " 1625 "to SHN_LORESERVE: " + 1626 Twine(Sym.st_shndx)); 1627 } 1628 } else if (Sym.st_shndx != SHN_UNDEF) { 1629 Expected<SectionBase *> Sec = Obj.sections().getSection( 1630 Sym.st_shndx, "symbol '" + *Name + 1631 "' is defined has invalid section index " + 1632 Twine(Sym.st_shndx)); 1633 if (!Sec) 1634 return Sec.takeError(); 1635 1636 DefSection = *Sec; 1637 } 1638 1639 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection, 1640 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); 1641 } 1642 1643 return Error::success(); 1644 } 1645 1646 template <class ELFT> 1647 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {} 1648 1649 template <class ELFT> 1650 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { 1651 ToSet = Rela.r_addend; 1652 } 1653 1654 template <class T> 1655 static Error initRelocations(RelocationSection *Relocs, T RelRange) { 1656 for (const auto &Rel : RelRange) { 1657 Relocation ToAdd; 1658 ToAdd.Offset = Rel.r_offset; 1659 getAddend(ToAdd.Addend, Rel); 1660 ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); 1661 1662 if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { 1663 if (!Relocs->getObject().SymbolTable) 1664 return createStringError( 1665 errc::invalid_argument, 1666 "'" + Relocs->Name + "': relocation references symbol with index " + 1667 Twine(Sym) + ", but there is no symbol table"); 1668 Expected<Symbol *> SymByIndex = 1669 Relocs->getObject().SymbolTable->getSymbolByIndex(Sym); 1670 if (!SymByIndex) 1671 return SymByIndex.takeError(); 1672 1673 ToAdd.RelocSymbol = *SymByIndex; 1674 } 1675 1676 Relocs->addRelocation(ToAdd); 1677 } 1678 1679 return Error::success(); 1680 } 1681 1682 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index, 1683 Twine ErrMsg) { 1684 if (Index == SHN_UNDEF || Index > Sections.size()) 1685 return createStringError(errc::invalid_argument, ErrMsg); 1686 return Sections[Index - 1].get(); 1687 } 1688 1689 template <class T> 1690 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index, 1691 Twine IndexErrMsg, 1692 Twine TypeErrMsg) { 1693 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg); 1694 if (!BaseSec) 1695 return BaseSec.takeError(); 1696 1697 if (T *Sec = dyn_cast<T>(*BaseSec)) 1698 return Sec; 1699 1700 return createStringError(errc::invalid_argument, TypeErrMsg); 1701 } 1702 1703 template <class ELFT> 1704 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { 1705 switch (Shdr.sh_type) { 1706 case SHT_REL: 1707 case SHT_RELA: 1708 case SHT_CREL: 1709 if (Shdr.sh_flags & SHF_ALLOC) { 1710 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1711 return Obj.addSection<DynamicRelocationSection>(*Data); 1712 else 1713 return Data.takeError(); 1714 } 1715 return Obj.addSection<RelocationSection>(Obj); 1716 case SHT_STRTAB: 1717 // If a string table is allocated we don't want to mess with it. That would 1718 // mean altering the memory image. There are no special link types or 1719 // anything so we can just use a Section. 1720 if (Shdr.sh_flags & SHF_ALLOC) { 1721 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1722 return Obj.addSection<Section>(*Data); 1723 else 1724 return Data.takeError(); 1725 } 1726 return Obj.addSection<StringTableSection>(); 1727 case SHT_HASH: 1728 case SHT_GNU_HASH: 1729 // Hash tables should refer to SHT_DYNSYM which we're not going to change. 1730 // Because of this we don't need to mess with the hash tables either. 1731 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1732 return Obj.addSection<Section>(*Data); 1733 else 1734 return Data.takeError(); 1735 case SHT_GROUP: 1736 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1737 return Obj.addSection<GroupSection>(*Data); 1738 else 1739 return Data.takeError(); 1740 case SHT_DYNSYM: 1741 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1742 return Obj.addSection<DynamicSymbolTableSection>(*Data); 1743 else 1744 return Data.takeError(); 1745 case SHT_DYNAMIC: 1746 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1747 return Obj.addSection<DynamicSection>(*Data); 1748 else 1749 return Data.takeError(); 1750 case SHT_SYMTAB: { 1751 // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI. 1752 if (Obj.SymbolTable != nullptr) 1753 return createStringError(llvm::errc::invalid_argument, 1754 "found multiple SHT_SYMTAB sections"); 1755 auto &SymTab = Obj.addSection<SymbolTableSection>(); 1756 Obj.SymbolTable = &SymTab; 1757 return SymTab; 1758 } 1759 case SHT_SYMTAB_SHNDX: { 1760 auto &ShndxSection = Obj.addSection<SectionIndexSection>(); 1761 Obj.SectionIndexTable = &ShndxSection; 1762 return ShndxSection; 1763 } 1764 case SHT_NOBITS: 1765 return Obj.addSection<Section>(ArrayRef<uint8_t>()); 1766 default: { 1767 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr); 1768 if (!Data) 1769 return Data.takeError(); 1770 1771 Expected<StringRef> Name = ElfFile.getSectionName(Shdr); 1772 if (!Name) 1773 return Name.takeError(); 1774 1775 if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED)) 1776 return Obj.addSection<Section>(*Data); 1777 auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data()); 1778 return Obj.addSection<CompressedSection>(CompressedSection( 1779 *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign)); 1780 } 1781 } 1782 } 1783 1784 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() { 1785 uint32_t Index = 0; 1786 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = 1787 ElfFile.sections(); 1788 if (!Sections) 1789 return Sections.takeError(); 1790 1791 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) { 1792 if (Index == 0) { 1793 ++Index; 1794 continue; 1795 } 1796 Expected<SectionBase &> Sec = makeSection(Shdr); 1797 if (!Sec) 1798 return Sec.takeError(); 1799 1800 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr); 1801 if (!SecName) 1802 return SecName.takeError(); 1803 Sec->Name = SecName->str(); 1804 Sec->Type = Sec->OriginalType = Shdr.sh_type; 1805 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; 1806 Sec->Addr = Shdr.sh_addr; 1807 Sec->Offset = Shdr.sh_offset; 1808 Sec->OriginalOffset = Shdr.sh_offset; 1809 Sec->Size = Shdr.sh_size; 1810 Sec->Link = Shdr.sh_link; 1811 Sec->Info = Shdr.sh_info; 1812 Sec->Align = Shdr.sh_addralign; 1813 Sec->EntrySize = Shdr.sh_entsize; 1814 Sec->Index = Index++; 1815 Sec->OriginalIndex = Sec->Index; 1816 Sec->OriginalData = ArrayRef<uint8_t>( 1817 ElfFile.base() + Shdr.sh_offset, 1818 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); 1819 } 1820 1821 return Error::success(); 1822 } 1823 1824 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) { 1825 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; 1826 if (ShstrIndex == SHN_XINDEX) { 1827 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0); 1828 if (!Sec) 1829 return Sec.takeError(); 1830 1831 ShstrIndex = (*Sec)->sh_link; 1832 } 1833 1834 if (ShstrIndex == SHN_UNDEF) 1835 Obj.HadShdrs = false; 1836 else { 1837 Expected<StringTableSection *> Sec = 1838 Obj.sections().template getSectionOfType<StringTableSection>( 1839 ShstrIndex, 1840 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + 1841 " is invalid", 1842 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + 1843 " does not reference a string table"); 1844 if (!Sec) 1845 return Sec.takeError(); 1846 1847 Obj.SectionNames = *Sec; 1848 } 1849 1850 // If a section index table exists we'll need to initialize it before we 1851 // initialize the symbol table because the symbol table might need to 1852 // reference it. 1853 if (Obj.SectionIndexTable) 1854 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections())) 1855 return Err; 1856 1857 // Now that all of the sections have been added we can fill out some extra 1858 // details about symbol tables. We need the symbol table filled out before 1859 // any relocations. 1860 if (Obj.SymbolTable) { 1861 if (Error Err = Obj.SymbolTable->initialize(Obj.sections())) 1862 return Err; 1863 if (Error Err = initSymbolTable(Obj.SymbolTable)) 1864 return Err; 1865 } else if (EnsureSymtab) { 1866 if (Error Err = Obj.addNewSymbolTable()) 1867 return Err; 1868 } 1869 1870 // Now that all sections and symbols have been added we can add 1871 // relocations that reference symbols and set the link and info fields for 1872 // relocation sections. 1873 for (SectionBase &Sec : Obj.sections()) { 1874 if (&Sec == Obj.SymbolTable) 1875 continue; 1876 if (Error Err = Sec.initialize(Obj.sections())) 1877 return Err; 1878 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) { 1879 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = 1880 ElfFile.sections(); 1881 if (!Sections) 1882 return Sections.takeError(); 1883 1884 const typename ELFFile<ELFT>::Elf_Shdr *Shdr = 1885 Sections->begin() + RelSec->Index; 1886 if (RelSec->Type == SHT_CREL) { 1887 auto RelsOrRelas = ElfFile.crels(*Shdr); 1888 if (!RelsOrRelas) 1889 return RelsOrRelas.takeError(); 1890 if (Error Err = initRelocations(RelSec, RelsOrRelas->first)) 1891 return Err; 1892 if (Error Err = initRelocations(RelSec, RelsOrRelas->second)) 1893 return Err; 1894 } else if (RelSec->Type == SHT_REL) { 1895 Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels = 1896 ElfFile.rels(*Shdr); 1897 if (!Rels) 1898 return Rels.takeError(); 1899 1900 if (Error Err = initRelocations(RelSec, *Rels)) 1901 return Err; 1902 } else { 1903 Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = 1904 ElfFile.relas(*Shdr); 1905 if (!Relas) 1906 return Relas.takeError(); 1907 1908 if (Error Err = initRelocations(RelSec, *Relas)) 1909 return Err; 1910 } 1911 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) { 1912 if (Error Err = initGroupSection(GroupSec)) 1913 return Err; 1914 } 1915 } 1916 1917 return Error::success(); 1918 } 1919 1920 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) { 1921 if (Error E = readSectionHeaders()) 1922 return E; 1923 if (Error E = findEhdrOffset()) 1924 return E; 1925 1926 // The ELFFile whose ELF headers and program headers are copied into the 1927 // output file. Normally the same as ElfFile, but if we're extracting a 1928 // loadable partition it will point to the partition's headers. 1929 Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef( 1930 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); 1931 if (!HeadersFile) 1932 return HeadersFile.takeError(); 1933 1934 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); 1935 Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64; 1936 Obj.OSABI = Ehdr.e_ident[EI_OSABI]; 1937 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; 1938 Obj.Type = Ehdr.e_type; 1939 Obj.Machine = Ehdr.e_machine; 1940 Obj.Version = Ehdr.e_version; 1941 Obj.Entry = Ehdr.e_entry; 1942 Obj.Flags = Ehdr.e_flags; 1943 1944 if (Error E = readSections(EnsureSymtab)) 1945 return E; 1946 return readProgramHeaders(*HeadersFile); 1947 } 1948 1949 Writer::~Writer() = default; 1950 1951 Reader::~Reader() = default; 1952 1953 Expected<std::unique_ptr<Object>> 1954 BinaryReader::create(bool /*EnsureSymtab*/) const { 1955 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); 1956 } 1957 1958 Expected<std::vector<IHexRecord>> IHexReader::parse() const { 1959 SmallVector<StringRef, 16> Lines; 1960 std::vector<IHexRecord> Records; 1961 bool HasSections = false; 1962 1963 MemBuf->getBuffer().split(Lines, '\n'); 1964 Records.reserve(Lines.size()); 1965 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { 1966 StringRef Line = Lines[LineNo - 1].trim(); 1967 if (Line.empty()) 1968 continue; 1969 1970 Expected<IHexRecord> R = IHexRecord::parse(Line); 1971 if (!R) 1972 return parseError(LineNo, R.takeError()); 1973 if (R->Type == IHexRecord::EndOfFile) 1974 break; 1975 HasSections |= (R->Type == IHexRecord::Data); 1976 Records.push_back(*R); 1977 } 1978 if (!HasSections) 1979 return parseError(-1U, "no sections"); 1980 1981 return std::move(Records); 1982 } 1983 1984 Expected<std::unique_ptr<Object>> 1985 IHexReader::create(bool /*EnsureSymtab*/) const { 1986 Expected<std::vector<IHexRecord>> Records = parse(); 1987 if (!Records) 1988 return Records.takeError(); 1989 1990 return IHexELFBuilder(*Records).build(); 1991 } 1992 1993 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const { 1994 auto Obj = std::make_unique<Object>(); 1995 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { 1996 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition); 1997 if (Error Err = Builder.build(EnsureSymtab)) 1998 return std::move(Err); 1999 return std::move(Obj); 2000 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { 2001 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition); 2002 if (Error Err = Builder.build(EnsureSymtab)) 2003 return std::move(Err); 2004 return std::move(Obj); 2005 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { 2006 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition); 2007 if (Error Err = Builder.build(EnsureSymtab)) 2008 return std::move(Err); 2009 return std::move(Obj); 2010 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { 2011 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition); 2012 if (Error Err = Builder.build(EnsureSymtab)) 2013 return std::move(Err); 2014 return std::move(Obj); 2015 } 2016 return createStringError(errc::invalid_argument, "invalid file type"); 2017 } 2018 2019 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { 2020 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart()); 2021 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); 2022 Ehdr.e_ident[EI_MAG0] = 0x7f; 2023 Ehdr.e_ident[EI_MAG1] = 'E'; 2024 Ehdr.e_ident[EI_MAG2] = 'L'; 2025 Ehdr.e_ident[EI_MAG3] = 'F'; 2026 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 2027 Ehdr.e_ident[EI_DATA] = 2028 ELFT::Endianness == llvm::endianness::big ? ELFDATA2MSB : ELFDATA2LSB; 2029 Ehdr.e_ident[EI_VERSION] = EV_CURRENT; 2030 Ehdr.e_ident[EI_OSABI] = Obj.OSABI; 2031 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; 2032 2033 Ehdr.e_type = Obj.Type; 2034 Ehdr.e_machine = Obj.Machine; 2035 Ehdr.e_version = Obj.Version; 2036 Ehdr.e_entry = Obj.Entry; 2037 // We have to use the fully-qualified name llvm::size 2038 // since some compilers complain on ambiguous resolution. 2039 Ehdr.e_phnum = llvm::size(Obj.segments()); 2040 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; 2041 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; 2042 Ehdr.e_flags = Obj.Flags; 2043 Ehdr.e_ehsize = sizeof(Elf_Ehdr); 2044 if (WriteSectionHeaders && Obj.sections().size() != 0) { 2045 Ehdr.e_shentsize = sizeof(Elf_Shdr); 2046 Ehdr.e_shoff = Obj.SHOff; 2047 // """ 2048 // If the number of sections is greater than or equal to 2049 // SHN_LORESERVE (0xff00), this member has the value zero and the actual 2050 // number of section header table entries is contained in the sh_size field 2051 // of the section header at index 0. 2052 // """ 2053 auto Shnum = Obj.sections().size() + 1; 2054 if (Shnum >= SHN_LORESERVE) 2055 Ehdr.e_shnum = 0; 2056 else 2057 Ehdr.e_shnum = Shnum; 2058 // """ 2059 // If the section name string table section index is greater than or equal 2060 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) 2061 // and the actual index of the section name string table section is 2062 // contained in the sh_link field of the section header at index 0. 2063 // """ 2064 if (Obj.SectionNames->Index >= SHN_LORESERVE) 2065 Ehdr.e_shstrndx = SHN_XINDEX; 2066 else 2067 Ehdr.e_shstrndx = Obj.SectionNames->Index; 2068 } else { 2069 Ehdr.e_shentsize = 0; 2070 Ehdr.e_shoff = 0; 2071 Ehdr.e_shnum = 0; 2072 Ehdr.e_shstrndx = 0; 2073 } 2074 } 2075 2076 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { 2077 for (auto &Seg : Obj.segments()) 2078 writePhdr(Seg); 2079 } 2080 2081 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { 2082 // This reference serves to write the dummy section header at the begining 2083 // of the file. It is not used for anything else 2084 Elf_Shdr &Shdr = 2085 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff); 2086 Shdr.sh_name = 0; 2087 Shdr.sh_type = SHT_NULL; 2088 Shdr.sh_flags = 0; 2089 Shdr.sh_addr = 0; 2090 Shdr.sh_offset = 0; 2091 // See writeEhdr for why we do this. 2092 uint64_t Shnum = Obj.sections().size() + 1; 2093 if (Shnum >= SHN_LORESERVE) 2094 Shdr.sh_size = Shnum; 2095 else 2096 Shdr.sh_size = 0; 2097 // See writeEhdr for why we do this. 2098 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) 2099 Shdr.sh_link = Obj.SectionNames->Index; 2100 else 2101 Shdr.sh_link = 0; 2102 Shdr.sh_info = 0; 2103 Shdr.sh_addralign = 0; 2104 Shdr.sh_entsize = 0; 2105 2106 for (SectionBase &Sec : Obj.sections()) 2107 writeShdr(Sec); 2108 } 2109 2110 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() { 2111 for (SectionBase &Sec : Obj.sections()) 2112 // Segments are responsible for writing their contents, so only write the 2113 // section data if the section is not in a segment. Note that this renders 2114 // sections in segments effectively immutable. 2115 if (Sec.ParentSegment == nullptr) 2116 if (Error Err = Sec.accept(*SecWriter)) 2117 return Err; 2118 2119 return Error::success(); 2120 } 2121 2122 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() { 2123 for (Segment &Seg : Obj.segments()) { 2124 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size()); 2125 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(), 2126 Size); 2127 } 2128 2129 for (const auto &it : Obj.getUpdatedSections()) { 2130 SectionBase *Sec = it.first; 2131 ArrayRef<uint8_t> Data = it.second; 2132 2133 auto *Parent = Sec->ParentSegment; 2134 assert(Parent && "This section should've been part of a segment."); 2135 uint64_t Offset = 2136 Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; 2137 llvm::copy(Data, Buf->getBufferStart() + Offset); 2138 } 2139 2140 // Iterate over removed sections and overwrite their old data with zeroes. 2141 for (auto &Sec : Obj.removedSections()) { 2142 Segment *Parent = Sec.ParentSegment; 2143 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) 2144 continue; 2145 uint64_t Offset = 2146 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; 2147 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size); 2148 } 2149 } 2150 2151 template <class ELFT> 2152 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, 2153 bool OnlyKeepDebug) 2154 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), 2155 OnlyKeepDebug(OnlyKeepDebug) {} 2156 2157 Error Object::updateSectionData(SecPtr &Sec, ArrayRef<uint8_t> Data) { 2158 if (!Sec->hasContents()) 2159 return createStringError( 2160 errc::invalid_argument, 2161 "section '%s' cannot be updated because it does not have contents", 2162 Sec->Name.c_str()); 2163 2164 if (Data.size() > Sec->Size && Sec->ParentSegment) 2165 return createStringError(errc::invalid_argument, 2166 "cannot fit data of size %zu into section '%s' " 2167 "with size %" PRIu64 " that is part of a segment", 2168 Data.size(), Sec->Name.c_str(), Sec->Size); 2169 2170 if (!Sec->ParentSegment) { 2171 Sec = std::make_unique<OwnedDataSection>(*Sec, Data); 2172 } else { 2173 // The segment writer will be in charge of updating these contents. 2174 Sec->Size = Data.size(); 2175 UpdatedSections[Sec.get()] = Data; 2176 } 2177 2178 return Error::success(); 2179 } 2180 2181 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) { 2182 auto It = llvm::find_if(Sections, 2183 [&](const SecPtr &Sec) { return Sec->Name == Name; }); 2184 if (It == Sections.end()) 2185 return createStringError(errc::invalid_argument, "section '%s' not found", 2186 Name.str().c_str()); 2187 return updateSectionData(*It, Data); 2188 } 2189 2190 Error Object::updateSectionData(SectionBase &S, ArrayRef<uint8_t> Data) { 2191 auto It = llvm::find_if(Sections, 2192 [&](const SecPtr &Sec) { return Sec.get() == &S; }); 2193 assert(It != Sections.end() && "The section should belong to the object"); 2194 return updateSectionData(*It, Data); 2195 } 2196 2197 Error Object::removeSections( 2198 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) { 2199 2200 auto Iter = std::stable_partition( 2201 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { 2202 if (ToRemove(*Sec)) 2203 return false; 2204 // TODO: A compressed relocation section may be recognized as 2205 // RelocationSectionBase. We don't want such a section to be removed. 2206 if (isa<CompressedSection>(Sec)) 2207 return true; 2208 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { 2209 if (auto ToRelSec = RelSec->getSection()) 2210 return !ToRemove(*ToRelSec); 2211 } 2212 // Remove empty group sections. 2213 if (Sec->Type == ELF::SHT_GROUP) { 2214 auto GroupSec = cast<GroupSection>(Sec.get()); 2215 return !llvm::all_of(GroupSec->members(), ToRemove); 2216 } 2217 return true; 2218 }); 2219 if (SymbolTable != nullptr && ToRemove(*SymbolTable)) 2220 SymbolTable = nullptr; 2221 if (SectionNames != nullptr && ToRemove(*SectionNames)) 2222 SectionNames = nullptr; 2223 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) 2224 SectionIndexTable = nullptr; 2225 // Now make sure there are no remaining references to the sections that will 2226 // be removed. Sometimes it is impossible to remove a reference so we emit 2227 // an error here instead. 2228 std::unordered_set<const SectionBase *> RemoveSections; 2229 RemoveSections.reserve(std::distance(Iter, std::end(Sections))); 2230 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { 2231 for (auto &Segment : Segments) 2232 Segment->removeSection(RemoveSec.get()); 2233 RemoveSec->onRemove(); 2234 RemoveSections.insert(RemoveSec.get()); 2235 } 2236 2237 // For each section that remains alive, we want to remove the dead references. 2238 // This either might update the content of the section (e.g. remove symbols 2239 // from symbol table that belongs to removed section) or trigger an error if 2240 // a live section critically depends on a section being removed somehow 2241 // (e.g. the removed section is referenced by a relocation). 2242 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) { 2243 if (Error E = KeepSec->removeSectionReferences( 2244 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { 2245 return RemoveSections.find(Sec) != RemoveSections.end(); 2246 })) 2247 return E; 2248 } 2249 2250 // Transfer removed sections into the Object RemovedSections container for use 2251 // later. 2252 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections)); 2253 // Now finally get rid of them all together. 2254 Sections.erase(Iter, std::end(Sections)); 2255 return Error::success(); 2256 } 2257 2258 Error Object::replaceSections( 2259 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 2260 auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { 2261 return Lhs->Index < Rhs->Index; 2262 }; 2263 assert(llvm::is_sorted(Sections, SectionIndexLess) && 2264 "Sections are expected to be sorted by Index"); 2265 // Set indices of new sections so that they can be later sorted into positions 2266 // of removed ones. 2267 for (auto &I : FromTo) 2268 I.second->Index = I.first->Index; 2269 2270 // Notify all sections about the replacement. 2271 for (auto &Sec : Sections) 2272 Sec->replaceSectionReferences(FromTo); 2273 2274 if (Error E = removeSections( 2275 /*AllowBrokenLinks=*/false, 2276 [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; })) 2277 return E; 2278 llvm::sort(Sections, SectionIndexLess); 2279 return Error::success(); 2280 } 2281 2282 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 2283 if (SymbolTable) 2284 for (const SecPtr &Sec : Sections) 2285 if (Error E = Sec->removeSymbols(ToRemove)) 2286 return E; 2287 return Error::success(); 2288 } 2289 2290 Error Object::addNewSymbolTable() { 2291 assert(!SymbolTable && "Object must not has a SymbolTable."); 2292 2293 // Reuse an existing SHT_STRTAB section if it exists. 2294 StringTableSection *StrTab = nullptr; 2295 for (SectionBase &Sec : sections()) { 2296 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { 2297 StrTab = static_cast<StringTableSection *>(&Sec); 2298 2299 // Prefer a string table that is not the section header string table, if 2300 // such a table exists. 2301 if (SectionNames != &Sec) 2302 break; 2303 } 2304 } 2305 if (!StrTab) 2306 StrTab = &addSection<StringTableSection>(); 2307 2308 SymbolTableSection &SymTab = addSection<SymbolTableSection>(); 2309 SymTab.Name = ".symtab"; 2310 SymTab.Link = StrTab->Index; 2311 if (Error Err = SymTab.initialize(sections())) 2312 return Err; 2313 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); 2314 2315 SymbolTable = &SymTab; 2316 2317 return Error::success(); 2318 } 2319 2320 // Orders segments such that if x = y->ParentSegment then y comes before x. 2321 static void orderSegments(std::vector<Segment *> &Segments) { 2322 llvm::stable_sort(Segments, compareSegmentsByOffset); 2323 } 2324 2325 // This function finds a consistent layout for a list of segments starting from 2326 // an Offset. It assumes that Segments have been sorted by orderSegments and 2327 // returns an Offset one past the end of the last segment. 2328 static uint64_t layoutSegments(std::vector<Segment *> &Segments, 2329 uint64_t Offset) { 2330 assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); 2331 // The only way a segment should move is if a section was between two 2332 // segments and that section was removed. If that section isn't in a segment 2333 // then it's acceptable, but not ideal, to simply move it to after the 2334 // segments. So we can simply layout segments one after the other accounting 2335 // for alignment. 2336 for (Segment *Seg : Segments) { 2337 // We assume that segments have been ordered by OriginalOffset and Index 2338 // such that a parent segment will always come before a child segment in 2339 // OrderedSegments. This means that the Offset of the ParentSegment should 2340 // already be set and we can set our offset relative to it. 2341 if (Seg->ParentSegment != nullptr) { 2342 Segment *Parent = Seg->ParentSegment; 2343 Seg->Offset = 2344 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; 2345 } else { 2346 Seg->Offset = 2347 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr); 2348 } 2349 Offset = std::max(Offset, Seg->Offset + Seg->FileSize); 2350 } 2351 return Offset; 2352 } 2353 2354 // This function finds a consistent layout for a list of sections. It assumes 2355 // that the ->ParentSegment of each section has already been laid out. The 2356 // supplied starting Offset is used for the starting offset of any section that 2357 // does not have a ParentSegment. It returns either the offset given if all 2358 // sections had a ParentSegment or an offset one past the last section if there 2359 // was a section that didn't have a ParentSegment. 2360 template <class Range> 2361 static uint64_t layoutSections(Range Sections, uint64_t Offset) { 2362 // Now the offset of every segment has been set we can assign the offsets 2363 // of each section. For sections that are covered by a segment we should use 2364 // the segment's original offset and the section's original offset to compute 2365 // the offset from the start of the segment. Using the offset from the start 2366 // of the segment we can assign a new offset to the section. For sections not 2367 // covered by segments we can just bump Offset to the next valid location. 2368 // While it is not necessary, layout the sections in the order based on their 2369 // original offsets to resemble the input file as close as possible. 2370 std::vector<SectionBase *> OutOfSegmentSections; 2371 uint32_t Index = 1; 2372 for (auto &Sec : Sections) { 2373 Sec.Index = Index++; 2374 if (Sec.ParentSegment != nullptr) { 2375 const Segment &Segment = *Sec.ParentSegment; 2376 Sec.Offset = 2377 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); 2378 } else 2379 OutOfSegmentSections.push_back(&Sec); 2380 } 2381 2382 llvm::stable_sort(OutOfSegmentSections, 2383 [](const SectionBase *Lhs, const SectionBase *Rhs) { 2384 return Lhs->OriginalOffset < Rhs->OriginalOffset; 2385 }); 2386 for (auto *Sec : OutOfSegmentSections) { 2387 Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align); 2388 Sec->Offset = Offset; 2389 if (Sec->Type != SHT_NOBITS) 2390 Offset += Sec->Size; 2391 } 2392 return Offset; 2393 } 2394 2395 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus 2396 // occupy no space in the file. 2397 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { 2398 // The layout algorithm requires the sections to be handled in the order of 2399 // their offsets in the input file, at least inside segments. 2400 std::vector<SectionBase *> Sections; 2401 Sections.reserve(Obj.sections().size()); 2402 uint32_t Index = 1; 2403 for (auto &Sec : Obj.sections()) { 2404 Sec.Index = Index++; 2405 Sections.push_back(&Sec); 2406 } 2407 llvm::stable_sort(Sections, 2408 [](const SectionBase *Lhs, const SectionBase *Rhs) { 2409 return Lhs->OriginalOffset < Rhs->OriginalOffset; 2410 }); 2411 2412 for (auto *Sec : Sections) { 2413 auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD 2414 ? Sec->ParentSegment->firstSection() 2415 : nullptr; 2416 2417 // The first section in a PT_LOAD has to have congruent offset and address 2418 // modulo the alignment, which usually equals the maximum page size. 2419 if (FirstSec && FirstSec == Sec) 2420 Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr); 2421 2422 // sh_offset is not significant for SHT_NOBITS sections, but the congruence 2423 // rule must be followed if it is the first section in a PT_LOAD. Do not 2424 // advance Off. 2425 if (Sec->Type == SHT_NOBITS) { 2426 Sec->Offset = Off; 2427 continue; 2428 } 2429 2430 if (!FirstSec) { 2431 // FirstSec being nullptr generally means that Sec does not have the 2432 // SHF_ALLOC flag. 2433 Off = Sec->Align ? alignTo(Off, Sec->Align) : Off; 2434 } else if (FirstSec != Sec) { 2435 // The offset is relative to the first section in the PT_LOAD segment. Use 2436 // sh_offset for non-SHF_ALLOC sections. 2437 Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; 2438 } 2439 Sec->Offset = Off; 2440 Off += Sec->Size; 2441 } 2442 return Off; 2443 } 2444 2445 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values 2446 // have been updated. 2447 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments, 2448 uint64_t HdrEnd) { 2449 uint64_t MaxOffset = 0; 2450 for (Segment *Seg : Segments) { 2451 if (Seg->Type == PT_PHDR) 2452 continue; 2453 2454 // The segment offset is generally the offset of the first section. 2455 // 2456 // For a segment containing no section (see sectionWithinSegment), if it has 2457 // a parent segment, copy the parent segment's offset field. This works for 2458 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for 2459 // debugging anyway. 2460 const SectionBase *FirstSec = Seg->firstSection(); 2461 uint64_t Offset = 2462 FirstSec ? FirstSec->Offset 2463 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); 2464 uint64_t FileSize = 0; 2465 for (const SectionBase *Sec : Seg->Sections) { 2466 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; 2467 if (Sec->Offset + Size > Offset) 2468 FileSize = std::max(FileSize, Sec->Offset + Size - Offset); 2469 } 2470 2471 // If the segment includes EHDR and program headers, don't make it smaller 2472 // than the headers. 2473 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { 2474 FileSize += Offset - Seg->Offset; 2475 Offset = Seg->Offset; 2476 FileSize = std::max(FileSize, HdrEnd - Offset); 2477 } 2478 2479 Seg->Offset = Offset; 2480 Seg->FileSize = FileSize; 2481 MaxOffset = std::max(MaxOffset, Offset + FileSize); 2482 } 2483 return MaxOffset; 2484 } 2485 2486 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { 2487 Segment &ElfHdr = Obj.ElfHdrSegment; 2488 ElfHdr.Type = PT_PHDR; 2489 ElfHdr.Flags = 0; 2490 ElfHdr.VAddr = 0; 2491 ElfHdr.PAddr = 0; 2492 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); 2493 ElfHdr.Align = 0; 2494 } 2495 2496 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { 2497 // We need a temporary list of segments that has a special order to it 2498 // so that we know that anytime ->ParentSegment is set that segment has 2499 // already had its offset properly set. 2500 std::vector<Segment *> OrderedSegments; 2501 for (Segment &Segment : Obj.segments()) 2502 OrderedSegments.push_back(&Segment); 2503 OrderedSegments.push_back(&Obj.ElfHdrSegment); 2504 OrderedSegments.push_back(&Obj.ProgramHdrSegment); 2505 orderSegments(OrderedSegments); 2506 2507 uint64_t Offset; 2508 if (OnlyKeepDebug) { 2509 // For --only-keep-debug, the sections that did not preserve contents were 2510 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and 2511 // then rewrite p_offset/p_filesz of program headers. 2512 uint64_t HdrEnd = 2513 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); 2514 Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); 2515 Offset = std::max(Offset, 2516 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd)); 2517 } else { 2518 // Offset is used as the start offset of the first segment to be laid out. 2519 // Since the ELF Header (ElfHdrSegment) must be at the start of the file, 2520 // we start at offset 0. 2521 Offset = layoutSegments(OrderedSegments, 0); 2522 Offset = layoutSections(Obj.sections(), Offset); 2523 } 2524 // If we need to write the section header table out then we need to align the 2525 // Offset so that SHOffset is valid. 2526 if (WriteSectionHeaders) 2527 Offset = alignTo(Offset, sizeof(Elf_Addr)); 2528 Obj.SHOff = Offset; 2529 } 2530 2531 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { 2532 // We already have the section header offset so we can calculate the total 2533 // size by just adding up the size of each section header. 2534 if (!WriteSectionHeaders) 2535 return Obj.SHOff; 2536 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. 2537 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); 2538 } 2539 2540 template <class ELFT> Error ELFWriter<ELFT>::write() { 2541 // Segment data must be written first, so that the ELF header and program 2542 // header tables can overwrite it, if covered by a segment. 2543 writeSegmentData(); 2544 writeEhdr(); 2545 writePhdrs(); 2546 if (Error E = writeSectionData()) 2547 return E; 2548 if (WriteSectionHeaders) 2549 writeShdrs(); 2550 2551 // TODO: Implement direct writing to the output stream (without intermediate 2552 // memory buffer Buf). 2553 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2554 return Error::success(); 2555 } 2556 2557 static Error removeUnneededSections(Object &Obj) { 2558 // We can remove an empty symbol table from non-relocatable objects. 2559 // Relocatable objects typically have relocation sections whose 2560 // sh_link field points to .symtab, so we can't remove .symtab 2561 // even if it is empty. 2562 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || 2563 !Obj.SymbolTable->empty()) 2564 return Error::success(); 2565 2566 // .strtab can be used for section names. In such a case we shouldn't 2567 // remove it. 2568 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames 2569 ? nullptr 2570 : Obj.SymbolTable->getStrTab(); 2571 return Obj.removeSections(false, [&](const SectionBase &Sec) { 2572 return &Sec == Obj.SymbolTable || &Sec == StrTab; 2573 }); 2574 } 2575 2576 template <class ELFT> Error ELFWriter<ELFT>::finalize() { 2577 // It could happen that SectionNames has been removed and yet the user wants 2578 // a section header table output. We need to throw an error if a user tries 2579 // to do that. 2580 if (Obj.SectionNames == nullptr && WriteSectionHeaders) 2581 return createStringError(llvm::errc::invalid_argument, 2582 "cannot write section header table because " 2583 "section header string table was removed"); 2584 2585 if (Error E = removeUnneededSections(Obj)) 2586 return E; 2587 2588 // If the .symtab indices have not been changed, restore the sh_link to 2589 // .symtab for sections that were linked to .symtab. 2590 if (Obj.SymbolTable && !Obj.SymbolTable->indicesChanged()) 2591 for (SectionBase &Sec : Obj.sections()) 2592 Sec.restoreSymTabLink(*Obj.SymbolTable); 2593 2594 // We need to assign indexes before we perform layout because we need to know 2595 // if we need large indexes or not. We can assign indexes first and check as 2596 // we go to see if we will actully need large indexes. 2597 bool NeedsLargeIndexes = false; 2598 if (Obj.sections().size() >= SHN_LORESERVE) { 2599 SectionTableRef Sections = Obj.sections(); 2600 // Sections doesn't include the null section header, so account for this 2601 // when skipping the first N sections. 2602 NeedsLargeIndexes = 2603 any_of(drop_begin(Sections, SHN_LORESERVE - 1), 2604 [](const SectionBase &Sec) { return Sec.HasSymbol; }); 2605 // TODO: handle case where only one section needs the large index table but 2606 // only needs it because the large index table hasn't been removed yet. 2607 } 2608 2609 if (NeedsLargeIndexes) { 2610 // This means we definitely need to have a section index table but if we 2611 // already have one then we should use it instead of making a new one. 2612 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { 2613 // Addition of a section to the end does not invalidate the indexes of 2614 // other sections and assigns the correct index to the new section. 2615 auto &Shndx = Obj.addSection<SectionIndexSection>(); 2616 Obj.SymbolTable->setShndxTable(&Shndx); 2617 Shndx.setSymTab(Obj.SymbolTable); 2618 } 2619 } else { 2620 // Since we don't need SectionIndexTable we should remove it and all 2621 // references to it. 2622 if (Obj.SectionIndexTable != nullptr) { 2623 // We do not support sections referring to the section index table. 2624 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/, 2625 [this](const SectionBase &Sec) { 2626 return &Sec == Obj.SectionIndexTable; 2627 })) 2628 return E; 2629 } 2630 } 2631 2632 // Make sure we add the names of all the sections. Importantly this must be 2633 // done after we decide to add or remove SectionIndexes. 2634 if (Obj.SectionNames != nullptr) 2635 for (const SectionBase &Sec : Obj.sections()) 2636 Obj.SectionNames->addString(Sec.Name); 2637 2638 initEhdrSegment(); 2639 2640 // Before we can prepare for layout the indexes need to be finalized. 2641 // Also, the output arch may not be the same as the input arch, so fix up 2642 // size-related fields before doing layout calculations. 2643 uint64_t Index = 0; 2644 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>(); 2645 for (SectionBase &Sec : Obj.sections()) { 2646 Sec.Index = Index++; 2647 if (Error Err = Sec.accept(*SecSizer)) 2648 return Err; 2649 } 2650 2651 // The symbol table does not update all other sections on update. For 2652 // instance, symbol names are not added as new symbols are added. This means 2653 // that some sections, like .strtab, don't yet have their final size. 2654 if (Obj.SymbolTable != nullptr) 2655 Obj.SymbolTable->prepareForLayout(); 2656 2657 // Now that all strings are added we want to finalize string table builders, 2658 // because that affects section sizes which in turn affects section offsets. 2659 for (SectionBase &Sec : Obj.sections()) 2660 if (auto StrTab = dyn_cast<StringTableSection>(&Sec)) 2661 StrTab->prepareForLayout(); 2662 2663 assignOffsets(); 2664 2665 // layoutSections could have modified section indexes, so we need 2666 // to fill the index table after assignOffsets. 2667 if (Obj.SymbolTable != nullptr) 2668 Obj.SymbolTable->fillShndxTable(); 2669 2670 // Finally now that all offsets and indexes have been set we can finalize any 2671 // remaining issues. 2672 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); 2673 for (SectionBase &Sec : Obj.sections()) { 2674 Sec.HeaderOffset = Offset; 2675 Offset += sizeof(Elf_Shdr); 2676 if (WriteSectionHeaders) 2677 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name); 2678 Sec.finalize(); 2679 } 2680 2681 size_t TotalSize = totalSize(); 2682 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2683 if (!Buf) 2684 return createStringError(errc::not_enough_memory, 2685 "failed to allocate memory buffer of " + 2686 Twine::utohexstr(TotalSize) + " bytes"); 2687 2688 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf); 2689 return Error::success(); 2690 } 2691 2692 Error BinaryWriter::write() { 2693 SmallVector<const SectionBase *, 30> SectionsToWrite; 2694 for (const SectionBase &Sec : Obj.allocSections()) { 2695 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) 2696 SectionsToWrite.push_back(&Sec); 2697 } 2698 2699 if (SectionsToWrite.empty()) 2700 return Error::success(); 2701 2702 llvm::stable_sort(SectionsToWrite, 2703 [](const SectionBase *LHS, const SectionBase *RHS) { 2704 return LHS->Offset < RHS->Offset; 2705 }); 2706 2707 assert(SectionsToWrite.front()->Offset == 0); 2708 2709 for (size_t i = 0; i != SectionsToWrite.size(); ++i) { 2710 const SectionBase &Sec = *SectionsToWrite[i]; 2711 if (Error Err = Sec.accept(*SecWriter)) 2712 return Err; 2713 if (GapFill == 0) 2714 continue; 2715 uint64_t PadOffset = (i < SectionsToWrite.size() - 1) 2716 ? SectionsToWrite[i + 1]->Offset 2717 : Buf->getBufferSize(); 2718 assert(PadOffset <= Buf->getBufferSize()); 2719 assert(Sec.Offset + Sec.Size <= PadOffset); 2720 std::fill(Buf->getBufferStart() + Sec.Offset + Sec.Size, 2721 Buf->getBufferStart() + PadOffset, GapFill); 2722 } 2723 2724 // TODO: Implement direct writing to the output stream (without intermediate 2725 // memory buffer Buf). 2726 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2727 return Error::success(); 2728 } 2729 2730 Error BinaryWriter::finalize() { 2731 // Compute the section LMA based on its sh_offset and the containing segment's 2732 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty 2733 // sections as MinAddr. In the output, the contents between address 0 and 2734 // MinAddr will be skipped. 2735 uint64_t MinAddr = UINT64_MAX; 2736 for (SectionBase &Sec : Obj.allocSections()) { 2737 if (Sec.ParentSegment != nullptr) 2738 Sec.Addr = 2739 Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr; 2740 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) 2741 MinAddr = std::min(MinAddr, Sec.Addr); 2742 } 2743 2744 // Now that every section has been laid out we just need to compute the total 2745 // file size. This might not be the same as the offset returned by 2746 // layoutSections, because we want to truncate the last segment to the end of 2747 // its last non-empty section, to match GNU objcopy's behaviour. 2748 TotalSize = PadTo > MinAddr ? PadTo - MinAddr : 0; 2749 for (SectionBase &Sec : Obj.allocSections()) 2750 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { 2751 Sec.Offset = Sec.Addr - MinAddr; 2752 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size); 2753 } 2754 2755 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2756 if (!Buf) 2757 return createStringError(errc::not_enough_memory, 2758 "failed to allocate memory buffer of " + 2759 Twine::utohexstr(TotalSize) + " bytes"); 2760 SecWriter = std::make_unique<BinarySectionWriter>(*Buf); 2761 return Error::success(); 2762 } 2763 2764 Error ASCIIHexWriter::checkSection(const SectionBase &S) const { 2765 if (addressOverflows32bit(S.Addr) || 2766 addressOverflows32bit(S.Addr + S.Size - 1)) 2767 return createStringError( 2768 errc::invalid_argument, 2769 "section '%s' address range [0x%llx, 0x%llx] is not 32 bit", 2770 S.Name.c_str(), S.Addr, S.Addr + S.Size - 1); 2771 return Error::success(); 2772 } 2773 2774 Error ASCIIHexWriter::finalize() { 2775 // We can't write 64-bit addresses. 2776 if (addressOverflows32bit(Obj.Entry)) 2777 return createStringError(errc::invalid_argument, 2778 "entry point address 0x%llx overflows 32 bits", 2779 Obj.Entry); 2780 2781 for (const SectionBase &S : Obj.sections()) { 2782 if ((S.Flags & ELF::SHF_ALLOC) && S.Type != ELF::SHT_NOBITS && S.Size > 0) { 2783 if (Error E = checkSection(S)) 2784 return E; 2785 Sections.push_back(&S); 2786 } 2787 } 2788 2789 llvm::sort(Sections, [](const SectionBase *A, const SectionBase *B) { 2790 return sectionPhysicalAddr(A) < sectionPhysicalAddr(B); 2791 }); 2792 2793 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer = 2794 WritableMemoryBuffer::getNewMemBuffer(0); 2795 if (!EmptyBuffer) 2796 return createStringError(errc::not_enough_memory, 2797 "failed to allocate memory buffer of 0 bytes"); 2798 2799 Expected<size_t> ExpTotalSize = getTotalSize(*EmptyBuffer); 2800 if (!ExpTotalSize) 2801 return ExpTotalSize.takeError(); 2802 TotalSize = *ExpTotalSize; 2803 2804 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2805 if (!Buf) 2806 return createStringError(errc::not_enough_memory, 2807 "failed to allocate memory buffer of 0x" + 2808 Twine::utohexstr(TotalSize) + " bytes"); 2809 return Error::success(); 2810 } 2811 2812 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { 2813 IHexLineData HexData; 2814 uint8_t Data[4] = {}; 2815 // We don't write entry point record if entry is zero. 2816 if (Obj.Entry == 0) 2817 return 0; 2818 2819 if (Obj.Entry <= 0xFFFFFU) { 2820 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; 2821 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry), 2822 llvm::endianness::big); 2823 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data); 2824 } else { 2825 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry), 2826 llvm::endianness::big); 2827 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data); 2828 } 2829 memcpy(Buf, HexData.data(), HexData.size()); 2830 return HexData.size(); 2831 } 2832 2833 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { 2834 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {}); 2835 memcpy(Buf, HexData.data(), HexData.size()); 2836 return HexData.size(); 2837 } 2838 2839 Expected<size_t> 2840 IHexWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const { 2841 IHexSectionWriterBase LengthCalc(EmptyBuffer); 2842 for (const SectionBase *Sec : Sections) 2843 if (Error Err = Sec->accept(LengthCalc)) 2844 return std::move(Err); 2845 2846 // We need space to write section records + StartAddress record 2847 // (if start adress is not zero) + EndOfFile record. 2848 return LengthCalc.getBufferOffset() + 2849 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) + 2850 IHexRecord::getLineLength(0); 2851 } 2852 2853 Error IHexWriter::write() { 2854 IHexSectionWriter Writer(*Buf); 2855 // Write sections. 2856 for (const SectionBase *Sec : Sections) 2857 if (Error Err = Sec->accept(Writer)) 2858 return Err; 2859 2860 uint64_t Offset = Writer.getBufferOffset(); 2861 // Write entry point address. 2862 Offset += writeEntryPointRecord( 2863 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); 2864 // Write EOF. 2865 Offset += writeEndOfFileRecord( 2866 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); 2867 assert(Offset == TotalSize); 2868 2869 // TODO: Implement direct writing to the output stream (without intermediate 2870 // memory buffer Buf). 2871 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2872 return Error::success(); 2873 } 2874 2875 Error SRECSectionWriterBase::visit(const StringTableSection &Sec) { 2876 // Check that the sizer has already done its work. 2877 assert(Sec.Size == Sec.StrTabBuilder.getSize() && 2878 "Expected section size to have been finalized"); 2879 // We don't need to write anything here because the real writer has already 2880 // done it. 2881 return Error::success(); 2882 } 2883 2884 Error SRECSectionWriterBase::visit(const Section &Sec) { 2885 writeSection(Sec, Sec.Contents); 2886 return Error::success(); 2887 } 2888 2889 Error SRECSectionWriterBase::visit(const OwnedDataSection &Sec) { 2890 writeSection(Sec, Sec.Data); 2891 return Error::success(); 2892 } 2893 2894 Error SRECSectionWriterBase::visit(const DynamicRelocationSection &Sec) { 2895 writeSection(Sec, Sec.Contents); 2896 return Error::success(); 2897 } 2898 2899 void SRECSectionWriter::writeRecord(SRecord &Record, uint64_t Off) { 2900 SRecLineData Data = Record.toString(); 2901 memcpy(Out.getBufferStart() + Off, Data.data(), Data.size()); 2902 } 2903 2904 void SRECSectionWriterBase::writeRecords(uint32_t Entry) { 2905 // The ELF header could contain an entry point outside of the sections we have 2906 // seen that does not fit the current record Type. 2907 Type = std::max(Type, SRecord::getType(Entry)); 2908 uint64_t Off = HeaderSize; 2909 for (SRecord &Record : Records) { 2910 Record.Type = Type; 2911 writeRecord(Record, Off); 2912 Off += Record.getSize(); 2913 } 2914 Offset = Off; 2915 } 2916 2917 void SRECSectionWriterBase::writeSection(const SectionBase &S, 2918 ArrayRef<uint8_t> Data) { 2919 const uint32_t ChunkSize = 16; 2920 uint32_t Address = sectionPhysicalAddr(&S); 2921 uint32_t EndAddr = Address + S.Size - 1; 2922 Type = std::max(SRecord::getType(EndAddr), Type); 2923 while (!Data.empty()) { 2924 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); 2925 SRecord Record{Type, Address, Data.take_front(DataSize)}; 2926 Records.push_back(Record); 2927 Data = Data.drop_front(DataSize); 2928 Address += DataSize; 2929 } 2930 } 2931 2932 Error SRECSectionWriter::visit(const StringTableSection &Sec) { 2933 assert(Sec.Size == Sec.StrTabBuilder.getSize() && 2934 "Section size does not match the section's string table builder size"); 2935 std::vector<uint8_t> Data(Sec.Size); 2936 Sec.StrTabBuilder.write(Data.data()); 2937 writeSection(Sec, Data); 2938 return Error::success(); 2939 } 2940 2941 SRecLineData SRecord::toString() const { 2942 SRecLineData Line(getSize()); 2943 auto *Iter = Line.begin(); 2944 *Iter++ = 'S'; 2945 *Iter++ = '0' + Type; 2946 // Write 1 byte (2 hex characters) record count. 2947 Iter = toHexStr(getCount(), Iter, 2); 2948 // Write the address field with length depending on record type. 2949 Iter = toHexStr(Address, Iter, getAddressSize()); 2950 // Write data byte by byte. 2951 for (uint8_t X : Data) 2952 Iter = toHexStr(X, Iter, 2); 2953 // Write the 1 byte checksum. 2954 Iter = toHexStr(getChecksum(), Iter, 2); 2955 *Iter++ = '\r'; 2956 *Iter++ = '\n'; 2957 assert(Iter == Line.end()); 2958 return Line; 2959 } 2960 2961 uint8_t SRecord::getChecksum() const { 2962 uint32_t Sum = getCount(); 2963 Sum += (Address >> 24) & 0xFF; 2964 Sum += (Address >> 16) & 0xFF; 2965 Sum += (Address >> 8) & 0xFF; 2966 Sum += Address & 0xFF; 2967 for (uint8_t Byte : Data) 2968 Sum += Byte; 2969 return 0xFF - (Sum & 0xFF); 2970 } 2971 2972 size_t SRecord::getSize() const { 2973 // Type, Count, Checksum, and CRLF are two characters each. 2974 return 2 + 2 + getAddressSize() + Data.size() * 2 + 2 + 2; 2975 } 2976 2977 uint8_t SRecord::getAddressSize() const { 2978 switch (Type) { 2979 case Type::S2: 2980 return 6; 2981 case Type::S3: 2982 return 8; 2983 case Type::S7: 2984 return 8; 2985 case Type::S8: 2986 return 6; 2987 default: 2988 return 4; 2989 } 2990 } 2991 2992 uint8_t SRecord::getCount() const { 2993 uint8_t DataSize = Data.size(); 2994 uint8_t ChecksumSize = 1; 2995 return getAddressSize() / 2 + DataSize + ChecksumSize; 2996 } 2997 2998 uint8_t SRecord::getType(uint32_t Address) { 2999 if (isUInt<16>(Address)) 3000 return SRecord::S1; 3001 if (isUInt<24>(Address)) 3002 return SRecord::S2; 3003 return SRecord::S3; 3004 } 3005 3006 SRecord SRecord::getHeader(StringRef FileName) { 3007 // Header is a record with Type S0, Address 0, and Data that is a 3008 // vendor-specific text comment. For the comment we will use the output file 3009 // name truncated to 40 characters to match the behavior of GNU objcopy. 3010 StringRef HeaderContents = FileName.slice(0, 40); 3011 ArrayRef<uint8_t> Data( 3012 reinterpret_cast<const uint8_t *>(HeaderContents.data()), 3013 HeaderContents.size()); 3014 return {SRecord::S0, 0, Data}; 3015 } 3016 3017 size_t SRECWriter::writeHeader(uint8_t *Buf) { 3018 SRecLineData Record = SRecord::getHeader(OutputFileName).toString(); 3019 memcpy(Buf, Record.data(), Record.size()); 3020 return Record.size(); 3021 } 3022 3023 size_t SRECWriter::writeTerminator(uint8_t *Buf, uint8_t Type) { 3024 assert(Type >= SRecord::S7 && Type <= SRecord::S9 && 3025 "Invalid record type for terminator"); 3026 uint32_t Entry = Obj.Entry; 3027 SRecLineData Data = SRecord{Type, Entry, {}}.toString(); 3028 memcpy(Buf, Data.data(), Data.size()); 3029 return Data.size(); 3030 } 3031 3032 Expected<size_t> 3033 SRECWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const { 3034 SRECSizeCalculator SizeCalc(EmptyBuffer, 0); 3035 for (const SectionBase *Sec : Sections) 3036 if (Error Err = Sec->accept(SizeCalc)) 3037 return std::move(Err); 3038 3039 SizeCalc.writeRecords(Obj.Entry); 3040 // We need to add the size of the Header and Terminator records. 3041 SRecord Header = SRecord::getHeader(OutputFileName); 3042 uint8_t TerminatorType = 10 - SizeCalc.getType(); 3043 SRecord Terminator = {TerminatorType, static_cast<uint32_t>(Obj.Entry), {}}; 3044 return Header.getSize() + SizeCalc.getBufferOffset() + Terminator.getSize(); 3045 } 3046 3047 Error SRECWriter::write() { 3048 uint32_t HeaderSize = 3049 writeHeader(reinterpret_cast<uint8_t *>(Buf->getBufferStart())); 3050 SRECSectionWriter Writer(*Buf, HeaderSize); 3051 for (const SectionBase *S : Sections) { 3052 if (Error E = S->accept(Writer)) 3053 return E; 3054 } 3055 Writer.writeRecords(Obj.Entry); 3056 uint64_t Offset = Writer.getBufferOffset(); 3057 3058 // An S1 record terminates with an S9 record, S2 with S8, and S3 with S7. 3059 uint8_t TerminatorType = 10 - Writer.getType(); 3060 Offset += writeTerminator( 3061 reinterpret_cast<uint8_t *>(Buf->getBufferStart() + Offset), 3062 TerminatorType); 3063 assert(Offset == TotalSize); 3064 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 3065 return Error::success(); 3066 } 3067 3068 namespace llvm { 3069 namespace objcopy { 3070 namespace elf { 3071 3072 template class ELFBuilder<ELF64LE>; 3073 template class ELFBuilder<ELF64BE>; 3074 template class ELFBuilder<ELF32LE>; 3075 template class ELFBuilder<ELF32BE>; 3076 3077 template class ELFWriter<ELF64LE>; 3078 template class ELFWriter<ELF64BE>; 3079 template class ELFWriter<ELF32LE>; 3080 template class ELFWriter<ELF32BE>; 3081 3082 } // end namespace elf 3083 } // end namespace objcopy 3084 } // end namespace llvm 3085