xref: /llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp (revision 10772807ab72ce2b68d76816f8753219b2acbac3)
1 //===- ELFObject.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ELFObject.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCELFExtras.h"
17 #include "llvm/MC/MCTargetOptions.h"
18 #include "llvm/Support/Compression.h"
19 #include "llvm/Support/Endian.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/Path.h"
22 #include <algorithm>
23 #include <cstddef>
24 #include <cstdint>
25 #include <iterator>
26 #include <unordered_set>
27 #include <utility>
28 #include <vector>
29 
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::objcopy::elf;
33 using namespace llvm::object;
34 using namespace llvm::support;
35 
36 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
37   uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
38                Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
39   Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
40   Phdr.p_type = Seg.Type;
41   Phdr.p_flags = Seg.Flags;
42   Phdr.p_offset = Seg.Offset;
43   Phdr.p_vaddr = Seg.VAddr;
44   Phdr.p_paddr = Seg.PAddr;
45   Phdr.p_filesz = Seg.FileSize;
46   Phdr.p_memsz = Seg.MemSize;
47   Phdr.p_align = Seg.Align;
48 }
49 
50 Error SectionBase::removeSectionReferences(
51     bool, function_ref<bool(const SectionBase *)>) {
52   return Error::success();
53 }
54 
55 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
56   return Error::success();
57 }
58 
59 Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
60 void SectionBase::finalize() {}
61 void SectionBase::markSymbols() {}
62 void SectionBase::replaceSectionReferences(
63     const DenseMap<SectionBase *, SectionBase *> &) {}
64 void SectionBase::onRemove() {}
65 
66 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
67   uint8_t *B =
68       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
69   Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
70   Shdr.sh_name = Sec.NameIndex;
71   Shdr.sh_type = Sec.Type;
72   Shdr.sh_flags = Sec.Flags;
73   Shdr.sh_addr = Sec.Addr;
74   Shdr.sh_offset = Sec.Offset;
75   Shdr.sh_size = Sec.Size;
76   Shdr.sh_link = Sec.Link;
77   Shdr.sh_info = Sec.Info;
78   Shdr.sh_addralign = Sec.Align;
79   Shdr.sh_entsize = Sec.EntrySize;
80 }
81 
82 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
83   return Error::success();
84 }
85 
86 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
87   return Error::success();
88 }
89 
90 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
91   return Error::success();
92 }
93 
94 template <class ELFT>
95 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
96   return Error::success();
97 }
98 
99 template <class ELFT>
100 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
101   Sec.EntrySize = sizeof(Elf_Sym);
102   Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
103   // Align to the largest field in Elf_Sym.
104   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
105   return Error::success();
106 }
107 
108 template <bool Is64>
109 static SmallVector<char, 0> encodeCrel(ArrayRef<Relocation> Relocations) {
110   using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
111   SmallVector<char, 0> Content;
112   raw_svector_ostream OS(Content);
113   ELF::encodeCrel<Is64>(OS, Relocations, [&](const Relocation &R) {
114     uint32_t CurSymIdx = R.RelocSymbol ? R.RelocSymbol->Index : 0;
115     return ELF::Elf_Crel<Is64>{static_cast<uint>(R.Offset), CurSymIdx, R.Type,
116                                std::make_signed_t<uint>(R.Addend)};
117   });
118   return Content;
119 }
120 
121 template <class ELFT>
122 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
123   if (Sec.Type == SHT_CREL) {
124     Sec.Size = encodeCrel<ELFT::Is64Bits>(Sec.Relocations).size();
125   } else {
126     Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
127     Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
128     // Align to the largest field in Elf_Rel(a).
129     Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
130   }
131   return Error::success();
132 }
133 
134 template <class ELFT>
135 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
136   return Error::success();
137 }
138 
139 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
140   Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
141   return Error::success();
142 }
143 
144 template <class ELFT>
145 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
146   return Error::success();
147 }
148 
149 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
150   return Error::success();
151 }
152 
153 template <class ELFT>
154 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
155   return Error::success();
156 }
157 
158 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
159   return createStringError(errc::operation_not_permitted,
160                            "cannot write symbol section index table '" +
161                                Sec.Name + "' ");
162 }
163 
164 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
165   return createStringError(errc::operation_not_permitted,
166                            "cannot write symbol table '" + Sec.Name +
167                                "' out to binary");
168 }
169 
170 Error BinarySectionWriter::visit(const RelocationSection &Sec) {
171   return createStringError(errc::operation_not_permitted,
172                            "cannot write relocation section '" + Sec.Name +
173                                "' out to binary");
174 }
175 
176 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
177   return createStringError(errc::operation_not_permitted,
178                            "cannot write '" + Sec.Name + "' out to binary");
179 }
180 
181 Error BinarySectionWriter::visit(const GroupSection &Sec) {
182   return createStringError(errc::operation_not_permitted,
183                            "cannot write '" + Sec.Name + "' out to binary");
184 }
185 
186 Error SectionWriter::visit(const Section &Sec) {
187   if (Sec.Type != SHT_NOBITS)
188     llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
189 
190   return Error::success();
191 }
192 
193 static bool addressOverflows32bit(uint64_t Addr) {
194   // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
195   return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
196 }
197 
198 template <class T> static T checkedGetHex(StringRef S) {
199   T Value;
200   bool Fail = S.getAsInteger(16, Value);
201   assert(!Fail);
202   (void)Fail;
203   return Value;
204 }
205 
206 // Fills exactly Len bytes of buffer with hexadecimal characters
207 // representing value 'X'
208 template <class T, class Iterator>
209 static Iterator toHexStr(T X, Iterator It, size_t Len) {
210   // Fill range with '0'
211   std::fill(It, It + Len, '0');
212 
213   for (long I = Len - 1; I >= 0; --I) {
214     unsigned char Mod = static_cast<unsigned char>(X) & 15;
215     *(It + I) = hexdigit(Mod, false);
216     X >>= 4;
217   }
218   assert(X == 0);
219   return It + Len;
220 }
221 
222 uint8_t IHexRecord::getChecksum(StringRef S) {
223   assert((S.size() & 1) == 0);
224   uint8_t Checksum = 0;
225   while (!S.empty()) {
226     Checksum += checkedGetHex<uint8_t>(S.take_front(2));
227     S = S.drop_front(2);
228   }
229   return -Checksum;
230 }
231 
232 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
233                                  ArrayRef<uint8_t> Data) {
234   IHexLineData Line(getLineLength(Data.size()));
235   assert(Line.size());
236   auto Iter = Line.begin();
237   *Iter++ = ':';
238   Iter = toHexStr(Data.size(), Iter, 2);
239   Iter = toHexStr(Addr, Iter, 4);
240   Iter = toHexStr(Type, Iter, 2);
241   for (uint8_t X : Data)
242     Iter = toHexStr(X, Iter, 2);
243   StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
244   Iter = toHexStr(getChecksum(S), Iter, 2);
245   *Iter++ = '\r';
246   *Iter++ = '\n';
247   assert(Iter == Line.end());
248   return Line;
249 }
250 
251 static Error checkRecord(const IHexRecord &R) {
252   switch (R.Type) {
253   case IHexRecord::Data:
254     if (R.HexData.size() == 0)
255       return createStringError(
256           errc::invalid_argument,
257           "zero data length is not allowed for data records");
258     break;
259   case IHexRecord::EndOfFile:
260     break;
261   case IHexRecord::SegmentAddr:
262     // 20-bit segment address. Data length must be 2 bytes
263     // (4 bytes in hex)
264     if (R.HexData.size() != 4)
265       return createStringError(
266           errc::invalid_argument,
267           "segment address data should be 2 bytes in size");
268     break;
269   case IHexRecord::StartAddr80x86:
270   case IHexRecord::StartAddr:
271     if (R.HexData.size() != 8)
272       return createStringError(errc::invalid_argument,
273                                "start address data should be 4 bytes in size");
274     // According to Intel HEX specification '03' record
275     // only specifies the code address within the 20-bit
276     // segmented address space of the 8086/80186. This
277     // means 12 high order bits should be zeroes.
278     if (R.Type == IHexRecord::StartAddr80x86 &&
279         R.HexData.take_front(3) != "000")
280       return createStringError(errc::invalid_argument,
281                                "start address exceeds 20 bit for 80x86");
282     break;
283   case IHexRecord::ExtendedAddr:
284     // 16-31 bits of linear base address
285     if (R.HexData.size() != 4)
286       return createStringError(
287           errc::invalid_argument,
288           "extended address data should be 2 bytes in size");
289     break;
290   default:
291     // Unknown record type
292     return createStringError(errc::invalid_argument, "unknown record type: %u",
293                              static_cast<unsigned>(R.Type));
294   }
295   return Error::success();
296 }
297 
298 // Checks that IHEX line contains valid characters.
299 // This allows converting hexadecimal data to integers
300 // without extra verification.
301 static Error checkChars(StringRef Line) {
302   assert(!Line.empty());
303   if (Line[0] != ':')
304     return createStringError(errc::invalid_argument,
305                              "missing ':' in the beginning of line.");
306 
307   for (size_t Pos = 1; Pos < Line.size(); ++Pos)
308     if (hexDigitValue(Line[Pos]) == -1U)
309       return createStringError(errc::invalid_argument,
310                                "invalid character at position %zu.", Pos + 1);
311   return Error::success();
312 }
313 
314 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
315   assert(!Line.empty());
316 
317   // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
318   if (Line.size() < 11)
319     return createStringError(errc::invalid_argument,
320                              "line is too short: %zu chars.", Line.size());
321 
322   if (Error E = checkChars(Line))
323     return std::move(E);
324 
325   IHexRecord Rec;
326   size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
327   if (Line.size() != getLength(DataLen))
328     return createStringError(errc::invalid_argument,
329                              "invalid line length %zu (should be %zu)",
330                              Line.size(), getLength(DataLen));
331 
332   Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
333   Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
334   Rec.HexData = Line.substr(9, DataLen * 2);
335 
336   if (getChecksum(Line.drop_front(1)) != 0)
337     return createStringError(errc::invalid_argument, "incorrect checksum.");
338   if (Error E = checkRecord(Rec))
339     return std::move(E);
340   return Rec;
341 }
342 
343 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
344   Segment *Seg = Sec->ParentSegment;
345   if (Seg && Seg->Type != ELF::PT_LOAD)
346     Seg = nullptr;
347   return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
348              : Sec->Addr;
349 }
350 
351 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
352                                          ArrayRef<uint8_t> Data) {
353   assert(Data.size() == Sec->Size);
354   const uint32_t ChunkSize = 16;
355   uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
356   while (!Data.empty()) {
357     uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
358     if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
359       if (Addr > 0xFFFFFU) {
360         // Write extended address record, zeroing segment address
361         // if needed.
362         if (SegmentAddr != 0)
363           SegmentAddr = writeSegmentAddr(0U);
364         BaseAddr = writeBaseAddr(Addr);
365       } else {
366         // We can still remain 16-bit
367         SegmentAddr = writeSegmentAddr(Addr);
368       }
369     }
370     uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
371     assert(SegOffset <= 0xFFFFU);
372     DataSize = std::min(DataSize, 0x10000U - SegOffset);
373     writeData(0, SegOffset, Data.take_front(DataSize));
374     Addr += DataSize;
375     Data = Data.drop_front(DataSize);
376   }
377 }
378 
379 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
380   assert(Addr <= 0xFFFFFU);
381   uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
382   writeData(2, 0, Data);
383   return Addr & 0xF0000U;
384 }
385 
386 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
387   assert(Addr <= 0xFFFFFFFFU);
388   uint64_t Base = Addr & 0xFFFF0000U;
389   uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
390                     static_cast<uint8_t>((Base >> 16) & 0xFF)};
391   writeData(4, 0, Data);
392   return Base;
393 }
394 
395 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
396                                       ArrayRef<uint8_t> Data) {
397   Offset += IHexRecord::getLineLength(Data.size());
398 }
399 
400 Error IHexSectionWriterBase::visit(const Section &Sec) {
401   writeSection(&Sec, Sec.Contents);
402   return Error::success();
403 }
404 
405 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
406   writeSection(&Sec, Sec.Data);
407   return Error::success();
408 }
409 
410 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
411   // Check that sizer has already done its work
412   assert(Sec.Size == Sec.StrTabBuilder.getSize());
413   // We are free to pass an invalid pointer to writeSection as long
414   // as we don't actually write any data. The real writer class has
415   // to override this method .
416   writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
417   return Error::success();
418 }
419 
420 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
421   writeSection(&Sec, Sec.Contents);
422   return Error::success();
423 }
424 
425 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
426                                   ArrayRef<uint8_t> Data) {
427   IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
428   memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
429   Offset += HexData.size();
430 }
431 
432 Error IHexSectionWriter::visit(const StringTableSection &Sec) {
433   assert(Sec.Size == Sec.StrTabBuilder.getSize());
434   std::vector<uint8_t> Data(Sec.Size);
435   Sec.StrTabBuilder.write(Data.data());
436   writeSection(&Sec, Data);
437   return Error::success();
438 }
439 
440 Error Section::accept(SectionVisitor &Visitor) const {
441   return Visitor.visit(*this);
442 }
443 
444 Error Section::accept(MutableSectionVisitor &Visitor) {
445   return Visitor.visit(*this);
446 }
447 
448 void Section::restoreSymTabLink(SymbolTableSection &SymTab) {
449   if (HasSymTabLink) {
450     assert(LinkSection == nullptr);
451     LinkSection = &SymTab;
452   }
453 }
454 
455 Error SectionWriter::visit(const OwnedDataSection &Sec) {
456   llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
457   return Error::success();
458 }
459 
460 template <class ELFT>
461 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
462   ArrayRef<uint8_t> Compressed =
463       Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>));
464   SmallVector<uint8_t, 128> Decompressed;
465   DebugCompressionType Type;
466   switch (Sec.ChType) {
467   case ELFCOMPRESS_ZLIB:
468     Type = DebugCompressionType::Zlib;
469     break;
470   case ELFCOMPRESS_ZSTD:
471     Type = DebugCompressionType::Zstd;
472     break;
473   default:
474     return createStringError(errc::invalid_argument,
475                              "--decompress-debug-sections: ch_type (" +
476                                  Twine(Sec.ChType) + ") of section '" +
477                                  Sec.Name + "' is unsupported");
478   }
479   if (auto *Reason =
480           compression::getReasonIfUnsupported(compression::formatFor(Type)))
481     return createStringError(errc::invalid_argument,
482                              "failed to decompress section '" + Sec.Name +
483                                  "': " + Reason);
484   if (Error E = compression::decompress(Type, Compressed, Decompressed,
485                                         static_cast<size_t>(Sec.Size)))
486     return createStringError(errc::invalid_argument,
487                              "failed to decompress section '" + Sec.Name +
488                                  "': " + toString(std::move(E)));
489 
490   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
491   std::copy(Decompressed.begin(), Decompressed.end(), Buf);
492 
493   return Error::success();
494 }
495 
496 Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
497   return createStringError(errc::operation_not_permitted,
498                            "cannot write compressed section '" + Sec.Name +
499                                "' ");
500 }
501 
502 Error DecompressedSection::accept(SectionVisitor &Visitor) const {
503   return Visitor.visit(*this);
504 }
505 
506 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
507   return Visitor.visit(*this);
508 }
509 
510 Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
511   return Visitor.visit(*this);
512 }
513 
514 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
515   return Visitor.visit(*this);
516 }
517 
518 void OwnedDataSection::appendHexData(StringRef HexData) {
519   assert((HexData.size() & 1) == 0);
520   while (!HexData.empty()) {
521     Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
522     HexData = HexData.drop_front(2);
523   }
524   Size = Data.size();
525 }
526 
527 Error BinarySectionWriter::visit(const CompressedSection &Sec) {
528   return createStringError(errc::operation_not_permitted,
529                            "cannot write compressed section '" + Sec.Name +
530                                "' ");
531 }
532 
533 template <class ELFT>
534 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
535   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
536   Elf_Chdr_Impl<ELFT> Chdr = {};
537   switch (Sec.CompressionType) {
538   case DebugCompressionType::None:
539     std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
540     return Error::success();
541   case DebugCompressionType::Zlib:
542     Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
543     break;
544   case DebugCompressionType::Zstd:
545     Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD;
546     break;
547   }
548   Chdr.ch_size = Sec.DecompressedSize;
549   Chdr.ch_addralign = Sec.DecompressedAlign;
550   memcpy(Buf, &Chdr, sizeof(Chdr));
551   Buf += sizeof(Chdr);
552 
553   std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
554   return Error::success();
555 }
556 
557 CompressedSection::CompressedSection(const SectionBase &Sec,
558                                      DebugCompressionType CompressionType,
559                                      bool Is64Bits)
560     : SectionBase(Sec), CompressionType(CompressionType),
561       DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
562   compression::compress(compression::Params(CompressionType), OriginalData,
563                         CompressedData);
564 
565   Flags |= ELF::SHF_COMPRESSED;
566   OriginalFlags |= ELF::SHF_COMPRESSED;
567   size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>)
568                              : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>);
569   Size = ChdrSize + CompressedData.size();
570   Align = 8;
571 }
572 
573 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
574                                      uint32_t ChType, uint64_t DecompressedSize,
575                                      uint64_t DecompressedAlign)
576     : ChType(ChType), CompressionType(DebugCompressionType::None),
577       DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
578   OriginalData = CompressedData;
579 }
580 
581 Error CompressedSection::accept(SectionVisitor &Visitor) const {
582   return Visitor.visit(*this);
583 }
584 
585 Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
586   return Visitor.visit(*this);
587 }
588 
589 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
590 
591 uint32_t StringTableSection::findIndex(StringRef Name) const {
592   return StrTabBuilder.getOffset(Name);
593 }
594 
595 void StringTableSection::prepareForLayout() {
596   StrTabBuilder.finalize();
597   Size = StrTabBuilder.getSize();
598 }
599 
600 Error SectionWriter::visit(const StringTableSection &Sec) {
601   Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
602                           Sec.Offset);
603   return Error::success();
604 }
605 
606 Error StringTableSection::accept(SectionVisitor &Visitor) const {
607   return Visitor.visit(*this);
608 }
609 
610 Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
611   return Visitor.visit(*this);
612 }
613 
614 template <class ELFT>
615 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
616   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
617   llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
618   return Error::success();
619 }
620 
621 Error SectionIndexSection::initialize(SectionTableRef SecTable) {
622   Size = 0;
623   Expected<SymbolTableSection *> Sec =
624       SecTable.getSectionOfType<SymbolTableSection>(
625           Link,
626           "Link field value " + Twine(Link) + " in section " + Name +
627               " is invalid",
628           "Link field value " + Twine(Link) + " in section " + Name +
629               " is not a symbol table");
630   if (!Sec)
631     return Sec.takeError();
632 
633   setSymTab(*Sec);
634   Symbols->setShndxTable(this);
635   return Error::success();
636 }
637 
638 void SectionIndexSection::finalize() { Link = Symbols->Index; }
639 
640 Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
641   return Visitor.visit(*this);
642 }
643 
644 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
645   return Visitor.visit(*this);
646 }
647 
648 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
649   switch (Index) {
650   case SHN_ABS:
651   case SHN_COMMON:
652     return true;
653   }
654 
655   if (Machine == EM_AMDGPU) {
656     return Index == SHN_AMDGPU_LDS;
657   }
658 
659   if (Machine == EM_MIPS) {
660     switch (Index) {
661     case SHN_MIPS_ACOMMON:
662     case SHN_MIPS_SCOMMON:
663     case SHN_MIPS_SUNDEFINED:
664       return true;
665     }
666   }
667 
668   if (Machine == EM_HEXAGON) {
669     switch (Index) {
670     case SHN_HEXAGON_SCOMMON:
671     case SHN_HEXAGON_SCOMMON_1:
672     case SHN_HEXAGON_SCOMMON_2:
673     case SHN_HEXAGON_SCOMMON_4:
674     case SHN_HEXAGON_SCOMMON_8:
675       return true;
676     }
677   }
678   return false;
679 }
680 
681 // Large indexes force us to clarify exactly what this function should do. This
682 // function should return the value that will appear in st_shndx when written
683 // out.
684 uint16_t Symbol::getShndx() const {
685   if (DefinedIn != nullptr) {
686     if (DefinedIn->Index >= SHN_LORESERVE)
687       return SHN_XINDEX;
688     return DefinedIn->Index;
689   }
690 
691   if (ShndxType == SYMBOL_SIMPLE_INDEX) {
692     // This means that we don't have a defined section but we do need to
693     // output a legitimate section index.
694     return SHN_UNDEF;
695   }
696 
697   assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
698          (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
699          (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
700   return static_cast<uint16_t>(ShndxType);
701 }
702 
703 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
704 
705 void SymbolTableSection::assignIndices() {
706   uint32_t Index = 0;
707   for (auto &Sym : Symbols) {
708     if (Sym->Index != Index)
709       IndicesChanged = true;
710     Sym->Index = Index++;
711   }
712 }
713 
714 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
715                                    SectionBase *DefinedIn, uint64_t Value,
716                                    uint8_t Visibility, uint16_t Shndx,
717                                    uint64_t SymbolSize) {
718   Symbol Sym;
719   Sym.Name = Name.str();
720   Sym.Binding = Bind;
721   Sym.Type = Type;
722   Sym.DefinedIn = DefinedIn;
723   if (DefinedIn != nullptr)
724     DefinedIn->HasSymbol = true;
725   if (DefinedIn == nullptr) {
726     if (Shndx >= SHN_LORESERVE)
727       Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
728     else
729       Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
730   }
731   Sym.Value = Value;
732   Sym.Visibility = Visibility;
733   Sym.Size = SymbolSize;
734   Sym.Index = Symbols.size();
735   Symbols.emplace_back(std::make_unique<Symbol>(Sym));
736   Size += this->EntrySize;
737 }
738 
739 Error SymbolTableSection::removeSectionReferences(
740     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
741   if (ToRemove(SectionIndexTable))
742     SectionIndexTable = nullptr;
743   if (ToRemove(SymbolNames)) {
744     if (!AllowBrokenLinks)
745       return createStringError(
746           llvm::errc::invalid_argument,
747           "string table '%s' cannot be removed because it is "
748           "referenced by the symbol table '%s'",
749           SymbolNames->Name.data(), this->Name.data());
750     SymbolNames = nullptr;
751   }
752   return removeSymbols(
753       [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
754 }
755 
756 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
757   for (SymPtr &Sym : llvm::drop_begin(Symbols))
758     Callable(*Sym);
759   std::stable_partition(
760       std::begin(Symbols), std::end(Symbols),
761       [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
762   assignIndices();
763 }
764 
765 Error SymbolTableSection::removeSymbols(
766     function_ref<bool(const Symbol &)> ToRemove) {
767   Symbols.erase(
768       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
769                      [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
770       std::end(Symbols));
771   auto PrevSize = Size;
772   Size = Symbols.size() * EntrySize;
773   if (Size < PrevSize)
774     IndicesChanged = true;
775   assignIndices();
776   return Error::success();
777 }
778 
779 void SymbolTableSection::replaceSectionReferences(
780     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
781   for (std::unique_ptr<Symbol> &Sym : Symbols)
782     if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
783       Sym->DefinedIn = To;
784 }
785 
786 Error SymbolTableSection::initialize(SectionTableRef SecTable) {
787   Size = 0;
788   Expected<StringTableSection *> Sec =
789       SecTable.getSectionOfType<StringTableSection>(
790           Link,
791           "Symbol table has link index of " + Twine(Link) +
792               " which is not a valid index",
793           "Symbol table has link index of " + Twine(Link) +
794               " which is not a string table");
795   if (!Sec)
796     return Sec.takeError();
797 
798   setStrTab(*Sec);
799   return Error::success();
800 }
801 
802 void SymbolTableSection::finalize() {
803   uint32_t MaxLocalIndex = 0;
804   for (std::unique_ptr<Symbol> &Sym : Symbols) {
805     Sym->NameIndex =
806         SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
807     if (Sym->Binding == STB_LOCAL)
808       MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
809   }
810   // Now we need to set the Link and Info fields.
811   Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
812   Info = MaxLocalIndex + 1;
813 }
814 
815 void SymbolTableSection::prepareForLayout() {
816   // Reserve proper amount of space in section index table, so we can
817   // layout sections correctly. We will fill the table with correct
818   // indexes later in fillShdnxTable.
819   if (SectionIndexTable)
820     SectionIndexTable->reserve(Symbols.size());
821 
822   // Add all of our strings to SymbolNames so that SymbolNames has the right
823   // size before layout is decided.
824   // If the symbol names section has been removed, don't try to add strings to
825   // the table.
826   if (SymbolNames != nullptr)
827     for (std::unique_ptr<Symbol> &Sym : Symbols)
828       SymbolNames->addString(Sym->Name);
829 }
830 
831 void SymbolTableSection::fillShndxTable() {
832   if (SectionIndexTable == nullptr)
833     return;
834   // Fill section index table with real section indexes. This function must
835   // be called after assignOffsets.
836   for (const std::unique_ptr<Symbol> &Sym : Symbols) {
837     if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
838       SectionIndexTable->addIndex(Sym->DefinedIn->Index);
839     else
840       SectionIndexTable->addIndex(SHN_UNDEF);
841   }
842 }
843 
844 Expected<const Symbol *>
845 SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
846   if (Symbols.size() <= Index)
847     return createStringError(errc::invalid_argument,
848                              "invalid symbol index: " + Twine(Index));
849   return Symbols[Index].get();
850 }
851 
852 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
853   Expected<const Symbol *> Sym =
854       static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
855   if (!Sym)
856     return Sym.takeError();
857 
858   return const_cast<Symbol *>(*Sym);
859 }
860 
861 template <class ELFT>
862 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
863   Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
864   // Loop though symbols setting each entry of the symbol table.
865   for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
866     Sym->st_name = Symbol->NameIndex;
867     Sym->st_value = Symbol->Value;
868     Sym->st_size = Symbol->Size;
869     Sym->st_other = Symbol->Visibility;
870     Sym->setBinding(Symbol->Binding);
871     Sym->setType(Symbol->Type);
872     Sym->st_shndx = Symbol->getShndx();
873     ++Sym;
874   }
875   return Error::success();
876 }
877 
878 Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
879   return Visitor.visit(*this);
880 }
881 
882 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
883   return Visitor.visit(*this);
884 }
885 
886 StringRef RelocationSectionBase::getNamePrefix() const {
887   switch (Type) {
888   case SHT_REL:
889     return ".rel";
890   case SHT_RELA:
891     return ".rela";
892   case SHT_CREL:
893     return ".crel";
894   default:
895     llvm_unreachable("not a relocation section");
896   }
897 }
898 
899 Error RelocationSection::removeSectionReferences(
900     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
901   if (ToRemove(Symbols)) {
902     if (!AllowBrokenLinks)
903       return createStringError(
904           llvm::errc::invalid_argument,
905           "symbol table '%s' cannot be removed because it is "
906           "referenced by the relocation section '%s'",
907           Symbols->Name.data(), this->Name.data());
908     Symbols = nullptr;
909   }
910 
911   for (const Relocation &R : Relocations) {
912     if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
913         !ToRemove(R.RelocSymbol->DefinedIn))
914       continue;
915     return createStringError(llvm::errc::invalid_argument,
916                              "section '%s' cannot be removed: (%s+0x%" PRIx64
917                              ") has relocation against symbol '%s'",
918                              R.RelocSymbol->DefinedIn->Name.data(),
919                              SecToApplyRel->Name.data(), R.Offset,
920                              R.RelocSymbol->Name.c_str());
921   }
922 
923   return Error::success();
924 }
925 
926 template <class SymTabType>
927 Error RelocSectionWithSymtabBase<SymTabType>::initialize(
928     SectionTableRef SecTable) {
929   if (Link != SHN_UNDEF) {
930     Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
931         Link,
932         "Link field value " + Twine(Link) + " in section " + Name +
933             " is invalid",
934         "Link field value " + Twine(Link) + " in section " + Name +
935             " is not a symbol table");
936     if (!Sec)
937       return Sec.takeError();
938 
939     setSymTab(*Sec);
940   }
941 
942   if (Info != SHN_UNDEF) {
943     Expected<SectionBase *> Sec =
944         SecTable.getSection(Info, "Info field value " + Twine(Info) +
945                                       " in section " + Name + " is invalid");
946     if (!Sec)
947       return Sec.takeError();
948 
949     setSection(*Sec);
950   } else
951     setSection(nullptr);
952 
953   return Error::success();
954 }
955 
956 template <class SymTabType>
957 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
958   this->Link = Symbols ? Symbols->Index : 0;
959 
960   if (SecToApplyRel != nullptr)
961     this->Info = SecToApplyRel->Index;
962 }
963 
964 template <class ELFT>
965 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
966 
967 template <class ELFT>
968 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
969   Rela.r_addend = Addend;
970 }
971 
972 template <class RelRange, class T>
973 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) {
974   for (const auto &Reloc : Relocations) {
975     Buf->r_offset = Reloc.Offset;
976     setAddend(*Buf, Reloc.Addend);
977     Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
978                           Reloc.Type, IsMips64EL);
979     ++Buf;
980   }
981 }
982 
983 template <class ELFT>
984 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
985   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
986   if (Sec.Type == SHT_CREL) {
987     auto Content = encodeCrel<ELFT::Is64Bits>(Sec.Relocations);
988     memcpy(Buf, Content.data(), Content.size());
989   } else if (Sec.Type == SHT_REL) {
990     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf),
991              Sec.getObject().IsMips64EL);
992   } else {
993     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf),
994              Sec.getObject().IsMips64EL);
995   }
996   return Error::success();
997 }
998 
999 Error RelocationSection::accept(SectionVisitor &Visitor) const {
1000   return Visitor.visit(*this);
1001 }
1002 
1003 Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
1004   return Visitor.visit(*this);
1005 }
1006 
1007 Error RelocationSection::removeSymbols(
1008     function_ref<bool(const Symbol &)> ToRemove) {
1009   for (const Relocation &Reloc : Relocations)
1010     if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
1011       return createStringError(
1012           llvm::errc::invalid_argument,
1013           "not stripping symbol '%s' because it is named in a relocation",
1014           Reloc.RelocSymbol->Name.data());
1015   return Error::success();
1016 }
1017 
1018 void RelocationSection::markSymbols() {
1019   for (const Relocation &Reloc : Relocations)
1020     if (Reloc.RelocSymbol)
1021       Reloc.RelocSymbol->Referenced = true;
1022 }
1023 
1024 void RelocationSection::replaceSectionReferences(
1025     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1026   // Update the target section if it was replaced.
1027   if (SectionBase *To = FromTo.lookup(SecToApplyRel))
1028     SecToApplyRel = To;
1029 }
1030 
1031 Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
1032   llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
1033   return Error::success();
1034 }
1035 
1036 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
1037   return Visitor.visit(*this);
1038 }
1039 
1040 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
1041   return Visitor.visit(*this);
1042 }
1043 
1044 Error DynamicRelocationSection::removeSectionReferences(
1045     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1046   if (ToRemove(Symbols)) {
1047     if (!AllowBrokenLinks)
1048       return createStringError(
1049           llvm::errc::invalid_argument,
1050           "symbol table '%s' cannot be removed because it is "
1051           "referenced by the relocation section '%s'",
1052           Symbols->Name.data(), this->Name.data());
1053     Symbols = nullptr;
1054   }
1055 
1056   // SecToApplyRel contains a section referenced by sh_info field. It keeps
1057   // a section to which the relocation section applies. When we remove any
1058   // sections we also remove their relocation sections. Since we do that much
1059   // earlier, this assert should never be triggered.
1060   assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
1061   return Error::success();
1062 }
1063 
1064 Error Section::removeSectionReferences(
1065     bool AllowBrokenDependency,
1066     function_ref<bool(const SectionBase *)> ToRemove) {
1067   if (ToRemove(LinkSection)) {
1068     if (!AllowBrokenDependency)
1069       return createStringError(llvm::errc::invalid_argument,
1070                                "section '%s' cannot be removed because it is "
1071                                "referenced by the section '%s'",
1072                                LinkSection->Name.data(), this->Name.data());
1073     LinkSection = nullptr;
1074   }
1075   return Error::success();
1076 }
1077 
1078 void GroupSection::finalize() {
1079   this->Info = Sym ? Sym->Index : 0;
1080   this->Link = SymTab ? SymTab->Index : 0;
1081   // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1082   // status is not part of the equation. If Sym is localized, the intention is
1083   // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1084   // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1085   if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1086     this->FlagWord &= ~GRP_COMDAT;
1087 }
1088 
1089 Error GroupSection::removeSectionReferences(
1090     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1091   if (ToRemove(SymTab)) {
1092     if (!AllowBrokenLinks)
1093       return createStringError(
1094           llvm::errc::invalid_argument,
1095           "section '.symtab' cannot be removed because it is "
1096           "referenced by the group section '%s'",
1097           this->Name.data());
1098     SymTab = nullptr;
1099     Sym = nullptr;
1100   }
1101   llvm::erase_if(GroupMembers, ToRemove);
1102   return Error::success();
1103 }
1104 
1105 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1106   if (ToRemove(*Sym))
1107     return createStringError(llvm::errc::invalid_argument,
1108                              "symbol '%s' cannot be removed because it is "
1109                              "referenced by the section '%s[%d]'",
1110                              Sym->Name.data(), this->Name.data(), this->Index);
1111   return Error::success();
1112 }
1113 
1114 void GroupSection::markSymbols() {
1115   if (Sym)
1116     Sym->Referenced = true;
1117 }
1118 
1119 void GroupSection::replaceSectionReferences(
1120     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1121   for (SectionBase *&Sec : GroupMembers)
1122     if (SectionBase *To = FromTo.lookup(Sec))
1123       Sec = To;
1124 }
1125 
1126 void GroupSection::onRemove() {
1127   // As the header section of the group is removed, drop the Group flag in its
1128   // former members.
1129   for (SectionBase *Sec : GroupMembers)
1130     Sec->Flags &= ~SHF_GROUP;
1131 }
1132 
1133 Error Section::initialize(SectionTableRef SecTable) {
1134   if (Link == ELF::SHN_UNDEF)
1135     return Error::success();
1136 
1137   Expected<SectionBase *> Sec =
1138       SecTable.getSection(Link, "Link field value " + Twine(Link) +
1139                                     " in section " + Name + " is invalid");
1140   if (!Sec)
1141     return Sec.takeError();
1142 
1143   LinkSection = *Sec;
1144 
1145   if (LinkSection->Type == ELF::SHT_SYMTAB) {
1146     HasSymTabLink = true;
1147     LinkSection = nullptr;
1148   }
1149 
1150   return Error::success();
1151 }
1152 
1153 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1154 
1155 void GnuDebugLinkSection::init(StringRef File) {
1156   FileName = sys::path::filename(File);
1157   // The format for the .gnu_debuglink starts with the file name and is
1158   // followed by a null terminator and then the CRC32 of the file. The CRC32
1159   // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1160   // byte, and then finally push the size to alignment and add 4.
1161   Size = alignTo(FileName.size() + 1, 4) + 4;
1162   // The CRC32 will only be aligned if we align the whole section.
1163   Align = 4;
1164   Type = OriginalType = ELF::SHT_PROGBITS;
1165   Name = ".gnu_debuglink";
1166   // For sections not found in segments, OriginalOffset is only used to
1167   // establish the order that sections should go in. By using the maximum
1168   // possible offset we cause this section to wind up at the end.
1169   OriginalOffset = std::numeric_limits<uint64_t>::max();
1170 }
1171 
1172 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1173                                          uint32_t PrecomputedCRC)
1174     : FileName(File), CRC32(PrecomputedCRC) {
1175   init(File);
1176 }
1177 
1178 template <class ELFT>
1179 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1180   unsigned char *Buf =
1181       reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1182   Elf_Word *CRC =
1183       reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1184   *CRC = Sec.CRC32;
1185   llvm::copy(Sec.FileName, Buf);
1186   return Error::success();
1187 }
1188 
1189 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1190   return Visitor.visit(*this);
1191 }
1192 
1193 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1194   return Visitor.visit(*this);
1195 }
1196 
1197 template <class ELFT>
1198 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1199   ELF::Elf32_Word *Buf =
1200       reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1201   endian::write32<ELFT::Endianness>(Buf++, Sec.FlagWord);
1202   for (SectionBase *S : Sec.GroupMembers)
1203     endian::write32<ELFT::Endianness>(Buf++, S->Index);
1204   return Error::success();
1205 }
1206 
1207 Error GroupSection::accept(SectionVisitor &Visitor) const {
1208   return Visitor.visit(*this);
1209 }
1210 
1211 Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1212   return Visitor.visit(*this);
1213 }
1214 
1215 // Returns true IFF a section is wholly inside the range of a segment
1216 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1217   // If a section is empty it should be treated like it has a size of 1. This is
1218   // to clarify the case when an empty section lies on a boundary between two
1219   // segments and ensures that the section "belongs" to the second segment and
1220   // not the first.
1221   uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1222 
1223   // Ignore just added sections.
1224   if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1225     return false;
1226 
1227   if (Sec.Type == SHT_NOBITS) {
1228     if (!(Sec.Flags & SHF_ALLOC))
1229       return false;
1230 
1231     bool SectionIsTLS = Sec.Flags & SHF_TLS;
1232     bool SegmentIsTLS = Seg.Type == PT_TLS;
1233     if (SectionIsTLS != SegmentIsTLS)
1234       return false;
1235 
1236     return Seg.VAddr <= Sec.Addr &&
1237            Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1238   }
1239 
1240   return Seg.Offset <= Sec.OriginalOffset &&
1241          Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1242 }
1243 
1244 // Returns true IFF a segment's original offset is inside of another segment's
1245 // range.
1246 static bool segmentOverlapsSegment(const Segment &Child,
1247                                    const Segment &Parent) {
1248 
1249   return Parent.OriginalOffset <= Child.OriginalOffset &&
1250          Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1251 }
1252 
1253 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1254   // Any segment without a parent segment should come before a segment
1255   // that has a parent segment.
1256   if (A->OriginalOffset < B->OriginalOffset)
1257     return true;
1258   if (A->OriginalOffset > B->OriginalOffset)
1259     return false;
1260   // If alignments are different, the one with a smaller alignment cannot be the
1261   // parent; otherwise, layoutSegments will not respect the larger alignment
1262   // requirement. This rule ensures that PT_LOAD/PT_INTERP/PT_GNU_RELRO/PT_TLS
1263   // segments at the same offset will be aligned correctly.
1264   if (A->Align != B->Align)
1265     return A->Align > B->Align;
1266   return A->Index < B->Index;
1267 }
1268 
1269 void BasicELFBuilder::initFileHeader() {
1270   Obj->Flags = 0x0;
1271   Obj->Type = ET_REL;
1272   Obj->OSABI = ELFOSABI_NONE;
1273   Obj->ABIVersion = 0;
1274   Obj->Entry = 0x0;
1275   Obj->Machine = EM_NONE;
1276   Obj->Version = 1;
1277 }
1278 
1279 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1280 
1281 StringTableSection *BasicELFBuilder::addStrTab() {
1282   auto &StrTab = Obj->addSection<StringTableSection>();
1283   StrTab.Name = ".strtab";
1284 
1285   Obj->SectionNames = &StrTab;
1286   return &StrTab;
1287 }
1288 
1289 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1290   auto &SymTab = Obj->addSection<SymbolTableSection>();
1291 
1292   SymTab.Name = ".symtab";
1293   SymTab.Link = StrTab->Index;
1294 
1295   // The symbol table always needs a null symbol
1296   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1297 
1298   Obj->SymbolTable = &SymTab;
1299   return &SymTab;
1300 }
1301 
1302 Error BasicELFBuilder::initSections() {
1303   for (SectionBase &Sec : Obj->sections())
1304     if (Error Err = Sec.initialize(Obj->sections()))
1305       return Err;
1306 
1307   return Error::success();
1308 }
1309 
1310 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1311   auto Data = ArrayRef<uint8_t>(
1312       reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1313       MemBuf->getBufferSize());
1314   auto &DataSection = Obj->addSection<Section>(Data);
1315   DataSection.Name = ".data";
1316   DataSection.Type = ELF::SHT_PROGBITS;
1317   DataSection.Size = Data.size();
1318   DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1319 
1320   std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1321   std::replace_if(
1322       std::begin(SanitizedFilename), std::end(SanitizedFilename),
1323       [](char C) { return !isAlnum(C); }, '_');
1324   Twine Prefix = Twine("_binary_") + SanitizedFilename;
1325 
1326   SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1327                     /*Value=*/0, NewSymbolVisibility, 0, 0);
1328   SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1329                     /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1330   SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1331                     /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1332                     0);
1333 }
1334 
1335 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1336   initFileHeader();
1337   initHeaderSegment();
1338 
1339   SymbolTableSection *SymTab = addSymTab(addStrTab());
1340   if (Error Err = initSections())
1341     return std::move(Err);
1342   addData(SymTab);
1343 
1344   return std::move(Obj);
1345 }
1346 
1347 // Adds sections from IHEX data file. Data should have been
1348 // fully validated by this time.
1349 void IHexELFBuilder::addDataSections() {
1350   OwnedDataSection *Section = nullptr;
1351   uint64_t SegmentAddr = 0, BaseAddr = 0;
1352   uint32_t SecNo = 1;
1353 
1354   for (const IHexRecord &R : Records) {
1355     uint64_t RecAddr;
1356     switch (R.Type) {
1357     case IHexRecord::Data:
1358       // Ignore empty data records
1359       if (R.HexData.empty())
1360         continue;
1361       RecAddr = R.Addr + SegmentAddr + BaseAddr;
1362       if (!Section || Section->Addr + Section->Size != RecAddr) {
1363         // OriginalOffset field is only used to sort sections before layout, so
1364         // instead of keeping track of real offsets in IHEX file, and as
1365         // layoutSections() and layoutSectionsForOnlyKeepDebug() use
1366         // llvm::stable_sort(), we can just set it to a constant (zero).
1367         Section = &Obj->addSection<OwnedDataSection>(
1368             ".sec" + std::to_string(SecNo), RecAddr,
1369             ELF::SHF_ALLOC | ELF::SHF_WRITE, 0);
1370         SecNo++;
1371       }
1372       Section->appendHexData(R.HexData);
1373       break;
1374     case IHexRecord::EndOfFile:
1375       break;
1376     case IHexRecord::SegmentAddr:
1377       // 20-bit segment address.
1378       SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1379       break;
1380     case IHexRecord::StartAddr80x86:
1381     case IHexRecord::StartAddr:
1382       Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1383       assert(Obj->Entry <= 0xFFFFFU);
1384       break;
1385     case IHexRecord::ExtendedAddr:
1386       // 16-31 bits of linear base address
1387       BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1388       break;
1389     default:
1390       llvm_unreachable("unknown record type");
1391     }
1392   }
1393 }
1394 
1395 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1396   initFileHeader();
1397   initHeaderSegment();
1398   StringTableSection *StrTab = addStrTab();
1399   addSymTab(StrTab);
1400   if (Error Err = initSections())
1401     return std::move(Err);
1402   addDataSections();
1403 
1404   return std::move(Obj);
1405 }
1406 
1407 template <class ELFT>
1408 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
1409                              std::optional<StringRef> ExtractPartition)
1410     : ElfFile(ElfObj.getELFFile()), Obj(Obj),
1411       ExtractPartition(ExtractPartition) {
1412   Obj.IsMips64EL = ElfFile.isMips64EL();
1413 }
1414 
1415 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1416   for (Segment &Parent : Obj.segments()) {
1417     // Every segment will overlap with itself but we don't want a segment to
1418     // be its own parent so we avoid that situation.
1419     if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1420       // We want a canonical "most parental" segment but this requires
1421       // inspecting the ParentSegment.
1422       if (compareSegmentsByOffset(&Parent, &Child))
1423         if (Child.ParentSegment == nullptr ||
1424             compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1425           Child.ParentSegment = &Parent;
1426         }
1427     }
1428   }
1429 }
1430 
1431 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1432   if (!ExtractPartition)
1433     return Error::success();
1434 
1435   for (const SectionBase &Sec : Obj.sections()) {
1436     if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1437       EhdrOffset = Sec.Offset;
1438       return Error::success();
1439     }
1440   }
1441   return createStringError(errc::invalid_argument,
1442                            "could not find partition named '" +
1443                                *ExtractPartition + "'");
1444 }
1445 
1446 template <class ELFT>
1447 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1448   uint32_t Index = 0;
1449 
1450   Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1451       HeadersFile.program_headers();
1452   if (!Headers)
1453     return Headers.takeError();
1454 
1455   for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1456     if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1457       return createStringError(
1458           errc::invalid_argument,
1459           "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1460               " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1461               " goes past the end of the file");
1462 
1463     ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1464                            (size_t)Phdr.p_filesz};
1465     Segment &Seg = Obj.addSegment(Data);
1466     Seg.Type = Phdr.p_type;
1467     Seg.Flags = Phdr.p_flags;
1468     Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1469     Seg.Offset = Phdr.p_offset + EhdrOffset;
1470     Seg.VAddr = Phdr.p_vaddr;
1471     Seg.PAddr = Phdr.p_paddr;
1472     Seg.FileSize = Phdr.p_filesz;
1473     Seg.MemSize = Phdr.p_memsz;
1474     Seg.Align = Phdr.p_align;
1475     Seg.Index = Index++;
1476     for (SectionBase &Sec : Obj.sections())
1477       if (sectionWithinSegment(Sec, Seg)) {
1478         Seg.addSection(&Sec);
1479         if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1480           Sec.ParentSegment = &Seg;
1481       }
1482   }
1483 
1484   auto &ElfHdr = Obj.ElfHdrSegment;
1485   ElfHdr.Index = Index++;
1486   ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1487 
1488   const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1489   auto &PrHdr = Obj.ProgramHdrSegment;
1490   PrHdr.Type = PT_PHDR;
1491   PrHdr.Flags = 0;
1492   // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1493   // Whereas this works automatically for ElfHdr, here OriginalOffset is
1494   // always non-zero and to ensure the equation we assign the same value to
1495   // VAddr as well.
1496   PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1497   PrHdr.PAddr = 0;
1498   PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1499   // The spec requires us to naturally align all the fields.
1500   PrHdr.Align = sizeof(Elf_Addr);
1501   PrHdr.Index = Index++;
1502 
1503   // Now we do an O(n^2) loop through the segments in order to match up
1504   // segments.
1505   for (Segment &Child : Obj.segments())
1506     setParentSegment(Child);
1507   setParentSegment(ElfHdr);
1508   setParentSegment(PrHdr);
1509 
1510   return Error::success();
1511 }
1512 
1513 template <class ELFT>
1514 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1515   if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1516     return createStringError(errc::invalid_argument,
1517                              "invalid alignment " + Twine(GroupSec->Align) +
1518                                  " of group section '" + GroupSec->Name + "'");
1519   SectionTableRef SecTable = Obj.sections();
1520   if (GroupSec->Link != SHN_UNDEF) {
1521     auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1522         GroupSec->Link,
1523         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1524             GroupSec->Name + "' is invalid",
1525         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1526             GroupSec->Name + "' is not a symbol table");
1527     if (!SymTab)
1528       return SymTab.takeError();
1529 
1530     Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1531     if (!Sym)
1532       return createStringError(errc::invalid_argument,
1533                                "info field value '" + Twine(GroupSec->Info) +
1534                                    "' in section '" + GroupSec->Name +
1535                                    "' is not a valid symbol index");
1536     GroupSec->setSymTab(*SymTab);
1537     GroupSec->setSymbol(*Sym);
1538   }
1539   if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1540       GroupSec->Contents.empty())
1541     return createStringError(errc::invalid_argument,
1542                              "the content of the section " + GroupSec->Name +
1543                                  " is malformed");
1544   const ELF::Elf32_Word *Word =
1545       reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1546   const ELF::Elf32_Word *End =
1547       Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1548   GroupSec->setFlagWord(endian::read32<ELFT::Endianness>(Word++));
1549   for (; Word != End; ++Word) {
1550     uint32_t Index = support::endian::read32<ELFT::Endianness>(Word);
1551     Expected<SectionBase *> Sec = SecTable.getSection(
1552         Index, "group member index " + Twine(Index) + " in section '" +
1553                    GroupSec->Name + "' is invalid");
1554     if (!Sec)
1555       return Sec.takeError();
1556 
1557     GroupSec->addMember(*Sec);
1558   }
1559 
1560   return Error::success();
1561 }
1562 
1563 template <class ELFT>
1564 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1565   Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1566   if (!Shdr)
1567     return Shdr.takeError();
1568 
1569   Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1570   if (!StrTabData)
1571     return StrTabData.takeError();
1572 
1573   ArrayRef<Elf_Word> ShndxData;
1574 
1575   Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1576       ElfFile.symbols(*Shdr);
1577   if (!Symbols)
1578     return Symbols.takeError();
1579 
1580   for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1581     SectionBase *DefSection = nullptr;
1582 
1583     Expected<StringRef> Name = Sym.getName(*StrTabData);
1584     if (!Name)
1585       return Name.takeError();
1586 
1587     if (Sym.st_shndx == SHN_XINDEX) {
1588       if (SymTab->getShndxTable() == nullptr)
1589         return createStringError(errc::invalid_argument,
1590                                  "symbol '" + *Name +
1591                                      "' has index SHN_XINDEX but no "
1592                                      "SHT_SYMTAB_SHNDX section exists");
1593       if (ShndxData.data() == nullptr) {
1594         Expected<const Elf_Shdr *> ShndxSec =
1595             ElfFile.getSection(SymTab->getShndxTable()->Index);
1596         if (!ShndxSec)
1597           return ShndxSec.takeError();
1598 
1599         Expected<ArrayRef<Elf_Word>> Data =
1600             ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1601         if (!Data)
1602           return Data.takeError();
1603 
1604         ShndxData = *Data;
1605         if (ShndxData.size() != Symbols->size())
1606           return createStringError(
1607               errc::invalid_argument,
1608               "symbol section index table does not have the same number of "
1609               "entries as the symbol table");
1610       }
1611       Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1612       Expected<SectionBase *> Sec = Obj.sections().getSection(
1613           Index,
1614           "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1615       if (!Sec)
1616         return Sec.takeError();
1617 
1618       DefSection = *Sec;
1619     } else if (Sym.st_shndx >= SHN_LORESERVE) {
1620       if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1621         return createStringError(
1622             errc::invalid_argument,
1623             "symbol '" + *Name +
1624                 "' has unsupported value greater than or equal "
1625                 "to SHN_LORESERVE: " +
1626                 Twine(Sym.st_shndx));
1627       }
1628     } else if (Sym.st_shndx != SHN_UNDEF) {
1629       Expected<SectionBase *> Sec = Obj.sections().getSection(
1630           Sym.st_shndx, "symbol '" + *Name +
1631                             "' is defined has invalid section index " +
1632                             Twine(Sym.st_shndx));
1633       if (!Sec)
1634         return Sec.takeError();
1635 
1636       DefSection = *Sec;
1637     }
1638 
1639     SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1640                       Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1641   }
1642 
1643   return Error::success();
1644 }
1645 
1646 template <class ELFT>
1647 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1648 
1649 template <class ELFT>
1650 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1651   ToSet = Rela.r_addend;
1652 }
1653 
1654 template <class T>
1655 static Error initRelocations(RelocationSection *Relocs, T RelRange) {
1656   for (const auto &Rel : RelRange) {
1657     Relocation ToAdd;
1658     ToAdd.Offset = Rel.r_offset;
1659     getAddend(ToAdd.Addend, Rel);
1660     ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL);
1661 
1662     if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) {
1663       if (!Relocs->getObject().SymbolTable)
1664         return createStringError(
1665             errc::invalid_argument,
1666             "'" + Relocs->Name + "': relocation references symbol with index " +
1667                 Twine(Sym) + ", but there is no symbol table");
1668       Expected<Symbol *> SymByIndex =
1669           Relocs->getObject().SymbolTable->getSymbolByIndex(Sym);
1670       if (!SymByIndex)
1671         return SymByIndex.takeError();
1672 
1673       ToAdd.RelocSymbol = *SymByIndex;
1674     }
1675 
1676     Relocs->addRelocation(ToAdd);
1677   }
1678 
1679   return Error::success();
1680 }
1681 
1682 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1683                                                     Twine ErrMsg) {
1684   if (Index == SHN_UNDEF || Index > Sections.size())
1685     return createStringError(errc::invalid_argument, ErrMsg);
1686   return Sections[Index - 1].get();
1687 }
1688 
1689 template <class T>
1690 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1691                                                 Twine IndexErrMsg,
1692                                                 Twine TypeErrMsg) {
1693   Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1694   if (!BaseSec)
1695     return BaseSec.takeError();
1696 
1697   if (T *Sec = dyn_cast<T>(*BaseSec))
1698     return Sec;
1699 
1700   return createStringError(errc::invalid_argument, TypeErrMsg);
1701 }
1702 
1703 template <class ELFT>
1704 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1705   switch (Shdr.sh_type) {
1706   case SHT_REL:
1707   case SHT_RELA:
1708   case SHT_CREL:
1709     if (Shdr.sh_flags & SHF_ALLOC) {
1710       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1711         return Obj.addSection<DynamicRelocationSection>(*Data);
1712       else
1713         return Data.takeError();
1714     }
1715     return Obj.addSection<RelocationSection>(Obj);
1716   case SHT_STRTAB:
1717     // If a string table is allocated we don't want to mess with it. That would
1718     // mean altering the memory image. There are no special link types or
1719     // anything so we can just use a Section.
1720     if (Shdr.sh_flags & SHF_ALLOC) {
1721       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1722         return Obj.addSection<Section>(*Data);
1723       else
1724         return Data.takeError();
1725     }
1726     return Obj.addSection<StringTableSection>();
1727   case SHT_HASH:
1728   case SHT_GNU_HASH:
1729     // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1730     // Because of this we don't need to mess with the hash tables either.
1731     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1732       return Obj.addSection<Section>(*Data);
1733     else
1734       return Data.takeError();
1735   case SHT_GROUP:
1736     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1737       return Obj.addSection<GroupSection>(*Data);
1738     else
1739       return Data.takeError();
1740   case SHT_DYNSYM:
1741     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1742       return Obj.addSection<DynamicSymbolTableSection>(*Data);
1743     else
1744       return Data.takeError();
1745   case SHT_DYNAMIC:
1746     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1747       return Obj.addSection<DynamicSection>(*Data);
1748     else
1749       return Data.takeError();
1750   case SHT_SYMTAB: {
1751     // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI.
1752     if (Obj.SymbolTable != nullptr)
1753       return createStringError(llvm::errc::invalid_argument,
1754                                "found multiple SHT_SYMTAB sections");
1755     auto &SymTab = Obj.addSection<SymbolTableSection>();
1756     Obj.SymbolTable = &SymTab;
1757     return SymTab;
1758   }
1759   case SHT_SYMTAB_SHNDX: {
1760     auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1761     Obj.SectionIndexTable = &ShndxSection;
1762     return ShndxSection;
1763   }
1764   case SHT_NOBITS:
1765     return Obj.addSection<Section>(ArrayRef<uint8_t>());
1766   default: {
1767     Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1768     if (!Data)
1769       return Data.takeError();
1770 
1771     Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1772     if (!Name)
1773       return Name.takeError();
1774 
1775     if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED))
1776       return Obj.addSection<Section>(*Data);
1777     auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data());
1778     return Obj.addSection<CompressedSection>(CompressedSection(
1779         *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign));
1780   }
1781   }
1782 }
1783 
1784 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1785   uint32_t Index = 0;
1786   Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1787       ElfFile.sections();
1788   if (!Sections)
1789     return Sections.takeError();
1790 
1791   for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1792     if (Index == 0) {
1793       ++Index;
1794       continue;
1795     }
1796     Expected<SectionBase &> Sec = makeSection(Shdr);
1797     if (!Sec)
1798       return Sec.takeError();
1799 
1800     Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1801     if (!SecName)
1802       return SecName.takeError();
1803     Sec->Name = SecName->str();
1804     Sec->Type = Sec->OriginalType = Shdr.sh_type;
1805     Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1806     Sec->Addr = Shdr.sh_addr;
1807     Sec->Offset = Shdr.sh_offset;
1808     Sec->OriginalOffset = Shdr.sh_offset;
1809     Sec->Size = Shdr.sh_size;
1810     Sec->Link = Shdr.sh_link;
1811     Sec->Info = Shdr.sh_info;
1812     Sec->Align = Shdr.sh_addralign;
1813     Sec->EntrySize = Shdr.sh_entsize;
1814     Sec->Index = Index++;
1815     Sec->OriginalIndex = Sec->Index;
1816     Sec->OriginalData = ArrayRef<uint8_t>(
1817         ElfFile.base() + Shdr.sh_offset,
1818         (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1819   }
1820 
1821   return Error::success();
1822 }
1823 
1824 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1825   uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1826   if (ShstrIndex == SHN_XINDEX) {
1827     Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1828     if (!Sec)
1829       return Sec.takeError();
1830 
1831     ShstrIndex = (*Sec)->sh_link;
1832   }
1833 
1834   if (ShstrIndex == SHN_UNDEF)
1835     Obj.HadShdrs = false;
1836   else {
1837     Expected<StringTableSection *> Sec =
1838         Obj.sections().template getSectionOfType<StringTableSection>(
1839             ShstrIndex,
1840             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1841                 " is invalid",
1842             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1843                 " does not reference a string table");
1844     if (!Sec)
1845       return Sec.takeError();
1846 
1847     Obj.SectionNames = *Sec;
1848   }
1849 
1850   // If a section index table exists we'll need to initialize it before we
1851   // initialize the symbol table because the symbol table might need to
1852   // reference it.
1853   if (Obj.SectionIndexTable)
1854     if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1855       return Err;
1856 
1857   // Now that all of the sections have been added we can fill out some extra
1858   // details about symbol tables. We need the symbol table filled out before
1859   // any relocations.
1860   if (Obj.SymbolTable) {
1861     if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1862       return Err;
1863     if (Error Err = initSymbolTable(Obj.SymbolTable))
1864       return Err;
1865   } else if (EnsureSymtab) {
1866     if (Error Err = Obj.addNewSymbolTable())
1867       return Err;
1868   }
1869 
1870   // Now that all sections and symbols have been added we can add
1871   // relocations that reference symbols and set the link and info fields for
1872   // relocation sections.
1873   for (SectionBase &Sec : Obj.sections()) {
1874     if (&Sec == Obj.SymbolTable)
1875       continue;
1876     if (Error Err = Sec.initialize(Obj.sections()))
1877       return Err;
1878     if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1879       Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1880           ElfFile.sections();
1881       if (!Sections)
1882         return Sections.takeError();
1883 
1884       const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1885           Sections->begin() + RelSec->Index;
1886       if (RelSec->Type == SHT_CREL) {
1887         auto RelsOrRelas = ElfFile.crels(*Shdr);
1888         if (!RelsOrRelas)
1889           return RelsOrRelas.takeError();
1890         if (Error Err = initRelocations(RelSec, RelsOrRelas->first))
1891           return Err;
1892         if (Error Err = initRelocations(RelSec, RelsOrRelas->second))
1893           return Err;
1894       } else if (RelSec->Type == SHT_REL) {
1895         Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1896             ElfFile.rels(*Shdr);
1897         if (!Rels)
1898           return Rels.takeError();
1899 
1900         if (Error Err = initRelocations(RelSec, *Rels))
1901           return Err;
1902       } else {
1903         Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1904             ElfFile.relas(*Shdr);
1905         if (!Relas)
1906           return Relas.takeError();
1907 
1908         if (Error Err = initRelocations(RelSec, *Relas))
1909           return Err;
1910       }
1911     } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1912       if (Error Err = initGroupSection(GroupSec))
1913         return Err;
1914     }
1915   }
1916 
1917   return Error::success();
1918 }
1919 
1920 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1921   if (Error E = readSectionHeaders())
1922     return E;
1923   if (Error E = findEhdrOffset())
1924     return E;
1925 
1926   // The ELFFile whose ELF headers and program headers are copied into the
1927   // output file. Normally the same as ElfFile, but if we're extracting a
1928   // loadable partition it will point to the partition's headers.
1929   Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1930       {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1931   if (!HeadersFile)
1932     return HeadersFile.takeError();
1933 
1934   const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1935   Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64;
1936   Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1937   Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1938   Obj.Type = Ehdr.e_type;
1939   Obj.Machine = Ehdr.e_machine;
1940   Obj.Version = Ehdr.e_version;
1941   Obj.Entry = Ehdr.e_entry;
1942   Obj.Flags = Ehdr.e_flags;
1943 
1944   if (Error E = readSections(EnsureSymtab))
1945     return E;
1946   return readProgramHeaders(*HeadersFile);
1947 }
1948 
1949 Writer::~Writer() = default;
1950 
1951 Reader::~Reader() = default;
1952 
1953 Expected<std::unique_ptr<Object>>
1954 BinaryReader::create(bool /*EnsureSymtab*/) const {
1955   return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1956 }
1957 
1958 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1959   SmallVector<StringRef, 16> Lines;
1960   std::vector<IHexRecord> Records;
1961   bool HasSections = false;
1962 
1963   MemBuf->getBuffer().split(Lines, '\n');
1964   Records.reserve(Lines.size());
1965   for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1966     StringRef Line = Lines[LineNo - 1].trim();
1967     if (Line.empty())
1968       continue;
1969 
1970     Expected<IHexRecord> R = IHexRecord::parse(Line);
1971     if (!R)
1972       return parseError(LineNo, R.takeError());
1973     if (R->Type == IHexRecord::EndOfFile)
1974       break;
1975     HasSections |= (R->Type == IHexRecord::Data);
1976     Records.push_back(*R);
1977   }
1978   if (!HasSections)
1979     return parseError(-1U, "no sections");
1980 
1981   return std::move(Records);
1982 }
1983 
1984 Expected<std::unique_ptr<Object>>
1985 IHexReader::create(bool /*EnsureSymtab*/) const {
1986   Expected<std::vector<IHexRecord>> Records = parse();
1987   if (!Records)
1988     return Records.takeError();
1989 
1990   return IHexELFBuilder(*Records).build();
1991 }
1992 
1993 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1994   auto Obj = std::make_unique<Object>();
1995   if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1996     ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1997     if (Error Err = Builder.build(EnsureSymtab))
1998       return std::move(Err);
1999     return std::move(Obj);
2000   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
2001     ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
2002     if (Error Err = Builder.build(EnsureSymtab))
2003       return std::move(Err);
2004     return std::move(Obj);
2005   } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
2006     ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
2007     if (Error Err = Builder.build(EnsureSymtab))
2008       return std::move(Err);
2009     return std::move(Obj);
2010   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
2011     ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
2012     if (Error Err = Builder.build(EnsureSymtab))
2013       return std::move(Err);
2014     return std::move(Obj);
2015   }
2016   return createStringError(errc::invalid_argument, "invalid file type");
2017 }
2018 
2019 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
2020   Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
2021   std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
2022   Ehdr.e_ident[EI_MAG0] = 0x7f;
2023   Ehdr.e_ident[EI_MAG1] = 'E';
2024   Ehdr.e_ident[EI_MAG2] = 'L';
2025   Ehdr.e_ident[EI_MAG3] = 'F';
2026   Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
2027   Ehdr.e_ident[EI_DATA] =
2028       ELFT::Endianness == llvm::endianness::big ? ELFDATA2MSB : ELFDATA2LSB;
2029   Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
2030   Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
2031   Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
2032 
2033   Ehdr.e_type = Obj.Type;
2034   Ehdr.e_machine = Obj.Machine;
2035   Ehdr.e_version = Obj.Version;
2036   Ehdr.e_entry = Obj.Entry;
2037   // We have to use the fully-qualified name llvm::size
2038   // since some compilers complain on ambiguous resolution.
2039   Ehdr.e_phnum = llvm::size(Obj.segments());
2040   Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
2041   Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
2042   Ehdr.e_flags = Obj.Flags;
2043   Ehdr.e_ehsize = sizeof(Elf_Ehdr);
2044   if (WriteSectionHeaders && Obj.sections().size() != 0) {
2045     Ehdr.e_shentsize = sizeof(Elf_Shdr);
2046     Ehdr.e_shoff = Obj.SHOff;
2047     // """
2048     // If the number of sections is greater than or equal to
2049     // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2050     // number of section header table entries is contained in the sh_size field
2051     // of the section header at index 0.
2052     // """
2053     auto Shnum = Obj.sections().size() + 1;
2054     if (Shnum >= SHN_LORESERVE)
2055       Ehdr.e_shnum = 0;
2056     else
2057       Ehdr.e_shnum = Shnum;
2058     // """
2059     // If the section name string table section index is greater than or equal
2060     // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2061     // and the actual index of the section name string table section is
2062     // contained in the sh_link field of the section header at index 0.
2063     // """
2064     if (Obj.SectionNames->Index >= SHN_LORESERVE)
2065       Ehdr.e_shstrndx = SHN_XINDEX;
2066     else
2067       Ehdr.e_shstrndx = Obj.SectionNames->Index;
2068   } else {
2069     Ehdr.e_shentsize = 0;
2070     Ehdr.e_shoff = 0;
2071     Ehdr.e_shnum = 0;
2072     Ehdr.e_shstrndx = 0;
2073   }
2074 }
2075 
2076 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2077   for (auto &Seg : Obj.segments())
2078     writePhdr(Seg);
2079 }
2080 
2081 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2082   // This reference serves to write the dummy section header at the begining
2083   // of the file. It is not used for anything else
2084   Elf_Shdr &Shdr =
2085       *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2086   Shdr.sh_name = 0;
2087   Shdr.sh_type = SHT_NULL;
2088   Shdr.sh_flags = 0;
2089   Shdr.sh_addr = 0;
2090   Shdr.sh_offset = 0;
2091   // See writeEhdr for why we do this.
2092   uint64_t Shnum = Obj.sections().size() + 1;
2093   if (Shnum >= SHN_LORESERVE)
2094     Shdr.sh_size = Shnum;
2095   else
2096     Shdr.sh_size = 0;
2097   // See writeEhdr for why we do this.
2098   if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2099     Shdr.sh_link = Obj.SectionNames->Index;
2100   else
2101     Shdr.sh_link = 0;
2102   Shdr.sh_info = 0;
2103   Shdr.sh_addralign = 0;
2104   Shdr.sh_entsize = 0;
2105 
2106   for (SectionBase &Sec : Obj.sections())
2107     writeShdr(Sec);
2108 }
2109 
2110 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2111   for (SectionBase &Sec : Obj.sections())
2112     // Segments are responsible for writing their contents, so only write the
2113     // section data if the section is not in a segment. Note that this renders
2114     // sections in segments effectively immutable.
2115     if (Sec.ParentSegment == nullptr)
2116       if (Error Err = Sec.accept(*SecWriter))
2117         return Err;
2118 
2119   return Error::success();
2120 }
2121 
2122 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2123   for (Segment &Seg : Obj.segments()) {
2124     size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2125     std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2126                 Size);
2127   }
2128 
2129   for (const auto &it : Obj.getUpdatedSections()) {
2130     SectionBase *Sec = it.first;
2131     ArrayRef<uint8_t> Data = it.second;
2132 
2133     auto *Parent = Sec->ParentSegment;
2134     assert(Parent && "This section should've been part of a segment.");
2135     uint64_t Offset =
2136         Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2137     llvm::copy(Data, Buf->getBufferStart() + Offset);
2138   }
2139 
2140   // Iterate over removed sections and overwrite their old data with zeroes.
2141   for (auto &Sec : Obj.removedSections()) {
2142     Segment *Parent = Sec.ParentSegment;
2143     if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2144       continue;
2145     uint64_t Offset =
2146         Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2147     std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2148   }
2149 }
2150 
2151 template <class ELFT>
2152 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2153                            bool OnlyKeepDebug)
2154     : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2155       OnlyKeepDebug(OnlyKeepDebug) {}
2156 
2157 Error Object::updateSectionData(SecPtr &Sec, ArrayRef<uint8_t> Data) {
2158   if (!Sec->hasContents())
2159     return createStringError(
2160         errc::invalid_argument,
2161         "section '%s' cannot be updated because it does not have contents",
2162         Sec->Name.c_str());
2163 
2164   if (Data.size() > Sec->Size && Sec->ParentSegment)
2165     return createStringError(errc::invalid_argument,
2166                              "cannot fit data of size %zu into section '%s' "
2167                              "with size %" PRIu64 " that is part of a segment",
2168                              Data.size(), Sec->Name.c_str(), Sec->Size);
2169 
2170   if (!Sec->ParentSegment) {
2171     Sec = std::make_unique<OwnedDataSection>(*Sec, Data);
2172   } else {
2173     // The segment writer will be in charge of updating these contents.
2174     Sec->Size = Data.size();
2175     UpdatedSections[Sec.get()] = Data;
2176   }
2177 
2178   return Error::success();
2179 }
2180 
2181 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) {
2182   auto It = llvm::find_if(Sections,
2183                           [&](const SecPtr &Sec) { return Sec->Name == Name; });
2184   if (It == Sections.end())
2185     return createStringError(errc::invalid_argument, "section '%s' not found",
2186                              Name.str().c_str());
2187   return updateSectionData(*It, Data);
2188 }
2189 
2190 Error Object::updateSectionData(SectionBase &S, ArrayRef<uint8_t> Data) {
2191   auto It = llvm::find_if(Sections,
2192                           [&](const SecPtr &Sec) { return Sec.get() == &S; });
2193   assert(It != Sections.end() && "The section should belong to the object");
2194   return updateSectionData(*It, Data);
2195 }
2196 
2197 Error Object::removeSections(
2198     bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2199 
2200   auto Iter = std::stable_partition(
2201       std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2202         if (ToRemove(*Sec))
2203           return false;
2204         // TODO: A compressed relocation section may be recognized as
2205         // RelocationSectionBase. We don't want such a section to be removed.
2206         if (isa<CompressedSection>(Sec))
2207           return true;
2208         if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2209           if (auto ToRelSec = RelSec->getSection())
2210             return !ToRemove(*ToRelSec);
2211         }
2212         // Remove empty group sections.
2213         if (Sec->Type == ELF::SHT_GROUP) {
2214           auto GroupSec = cast<GroupSection>(Sec.get());
2215           return !llvm::all_of(GroupSec->members(), ToRemove);
2216         }
2217         return true;
2218       });
2219   if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2220     SymbolTable = nullptr;
2221   if (SectionNames != nullptr && ToRemove(*SectionNames))
2222     SectionNames = nullptr;
2223   if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2224     SectionIndexTable = nullptr;
2225   // Now make sure there are no remaining references to the sections that will
2226   // be removed. Sometimes it is impossible to remove a reference so we emit
2227   // an error here instead.
2228   std::unordered_set<const SectionBase *> RemoveSections;
2229   RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2230   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2231     for (auto &Segment : Segments)
2232       Segment->removeSection(RemoveSec.get());
2233     RemoveSec->onRemove();
2234     RemoveSections.insert(RemoveSec.get());
2235   }
2236 
2237   // For each section that remains alive, we want to remove the dead references.
2238   // This either might update the content of the section (e.g. remove symbols
2239   // from symbol table that belongs to removed section) or trigger an error if
2240   // a live section critically depends on a section being removed somehow
2241   // (e.g. the removed section is referenced by a relocation).
2242   for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2243     if (Error E = KeepSec->removeSectionReferences(
2244             AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2245               return RemoveSections.find(Sec) != RemoveSections.end();
2246             }))
2247       return E;
2248   }
2249 
2250   // Transfer removed sections into the Object RemovedSections container for use
2251   // later.
2252   std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2253   // Now finally get rid of them all together.
2254   Sections.erase(Iter, std::end(Sections));
2255   return Error::success();
2256 }
2257 
2258 Error Object::replaceSections(
2259     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
2260   auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) {
2261     return Lhs->Index < Rhs->Index;
2262   };
2263   assert(llvm::is_sorted(Sections, SectionIndexLess) &&
2264          "Sections are expected to be sorted by Index");
2265   // Set indices of new sections so that they can be later sorted into positions
2266   // of removed ones.
2267   for (auto &I : FromTo)
2268     I.second->Index = I.first->Index;
2269 
2270   // Notify all sections about the replacement.
2271   for (auto &Sec : Sections)
2272     Sec->replaceSectionReferences(FromTo);
2273 
2274   if (Error E = removeSections(
2275           /*AllowBrokenLinks=*/false,
2276           [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
2277     return E;
2278   llvm::sort(Sections, SectionIndexLess);
2279   return Error::success();
2280 }
2281 
2282 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2283   if (SymbolTable)
2284     for (const SecPtr &Sec : Sections)
2285       if (Error E = Sec->removeSymbols(ToRemove))
2286         return E;
2287   return Error::success();
2288 }
2289 
2290 Error Object::addNewSymbolTable() {
2291   assert(!SymbolTable && "Object must not has a SymbolTable.");
2292 
2293   // Reuse an existing SHT_STRTAB section if it exists.
2294   StringTableSection *StrTab = nullptr;
2295   for (SectionBase &Sec : sections()) {
2296     if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2297       StrTab = static_cast<StringTableSection *>(&Sec);
2298 
2299       // Prefer a string table that is not the section header string table, if
2300       // such a table exists.
2301       if (SectionNames != &Sec)
2302         break;
2303     }
2304   }
2305   if (!StrTab)
2306     StrTab = &addSection<StringTableSection>();
2307 
2308   SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2309   SymTab.Name = ".symtab";
2310   SymTab.Link = StrTab->Index;
2311   if (Error Err = SymTab.initialize(sections()))
2312     return Err;
2313   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2314 
2315   SymbolTable = &SymTab;
2316 
2317   return Error::success();
2318 }
2319 
2320 // Orders segments such that if x = y->ParentSegment then y comes before x.
2321 static void orderSegments(std::vector<Segment *> &Segments) {
2322   llvm::stable_sort(Segments, compareSegmentsByOffset);
2323 }
2324 
2325 // This function finds a consistent layout for a list of segments starting from
2326 // an Offset. It assumes that Segments have been sorted by orderSegments and
2327 // returns an Offset one past the end of the last segment.
2328 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2329                                uint64_t Offset) {
2330   assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
2331   // The only way a segment should move is if a section was between two
2332   // segments and that section was removed. If that section isn't in a segment
2333   // then it's acceptable, but not ideal, to simply move it to after the
2334   // segments. So we can simply layout segments one after the other accounting
2335   // for alignment.
2336   for (Segment *Seg : Segments) {
2337     // We assume that segments have been ordered by OriginalOffset and Index
2338     // such that a parent segment will always come before a child segment in
2339     // OrderedSegments. This means that the Offset of the ParentSegment should
2340     // already be set and we can set our offset relative to it.
2341     if (Seg->ParentSegment != nullptr) {
2342       Segment *Parent = Seg->ParentSegment;
2343       Seg->Offset =
2344           Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2345     } else {
2346       Seg->Offset =
2347           alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2348     }
2349     Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2350   }
2351   return Offset;
2352 }
2353 
2354 // This function finds a consistent layout for a list of sections. It assumes
2355 // that the ->ParentSegment of each section has already been laid out. The
2356 // supplied starting Offset is used for the starting offset of any section that
2357 // does not have a ParentSegment. It returns either the offset given if all
2358 // sections had a ParentSegment or an offset one past the last section if there
2359 // was a section that didn't have a ParentSegment.
2360 template <class Range>
2361 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2362   // Now the offset of every segment has been set we can assign the offsets
2363   // of each section. For sections that are covered by a segment we should use
2364   // the segment's original offset and the section's original offset to compute
2365   // the offset from the start of the segment. Using the offset from the start
2366   // of the segment we can assign a new offset to the section. For sections not
2367   // covered by segments we can just bump Offset to the next valid location.
2368   // While it is not necessary, layout the sections in the order based on their
2369   // original offsets to resemble the input file as close as possible.
2370   std::vector<SectionBase *> OutOfSegmentSections;
2371   uint32_t Index = 1;
2372   for (auto &Sec : Sections) {
2373     Sec.Index = Index++;
2374     if (Sec.ParentSegment != nullptr) {
2375       const Segment &Segment = *Sec.ParentSegment;
2376       Sec.Offset =
2377           Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2378     } else
2379       OutOfSegmentSections.push_back(&Sec);
2380   }
2381 
2382   llvm::stable_sort(OutOfSegmentSections,
2383                     [](const SectionBase *Lhs, const SectionBase *Rhs) {
2384                       return Lhs->OriginalOffset < Rhs->OriginalOffset;
2385                     });
2386   for (auto *Sec : OutOfSegmentSections) {
2387     Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align);
2388     Sec->Offset = Offset;
2389     if (Sec->Type != SHT_NOBITS)
2390       Offset += Sec->Size;
2391   }
2392   return Offset;
2393 }
2394 
2395 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2396 // occupy no space in the file.
2397 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2398   // The layout algorithm requires the sections to be handled in the order of
2399   // their offsets in the input file, at least inside segments.
2400   std::vector<SectionBase *> Sections;
2401   Sections.reserve(Obj.sections().size());
2402   uint32_t Index = 1;
2403   for (auto &Sec : Obj.sections()) {
2404     Sec.Index = Index++;
2405     Sections.push_back(&Sec);
2406   }
2407   llvm::stable_sort(Sections,
2408                     [](const SectionBase *Lhs, const SectionBase *Rhs) {
2409                       return Lhs->OriginalOffset < Rhs->OriginalOffset;
2410                     });
2411 
2412   for (auto *Sec : Sections) {
2413     auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD
2414                          ? Sec->ParentSegment->firstSection()
2415                          : nullptr;
2416 
2417     // The first section in a PT_LOAD has to have congruent offset and address
2418     // modulo the alignment, which usually equals the maximum page size.
2419     if (FirstSec && FirstSec == Sec)
2420       Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr);
2421 
2422     // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2423     // rule must be followed if it is the first section in a PT_LOAD. Do not
2424     // advance Off.
2425     if (Sec->Type == SHT_NOBITS) {
2426       Sec->Offset = Off;
2427       continue;
2428     }
2429 
2430     if (!FirstSec) {
2431       // FirstSec being nullptr generally means that Sec does not have the
2432       // SHF_ALLOC flag.
2433       Off = Sec->Align ? alignTo(Off, Sec->Align) : Off;
2434     } else if (FirstSec != Sec) {
2435       // The offset is relative to the first section in the PT_LOAD segment. Use
2436       // sh_offset for non-SHF_ALLOC sections.
2437       Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2438     }
2439     Sec->Offset = Off;
2440     Off += Sec->Size;
2441   }
2442   return Off;
2443 }
2444 
2445 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2446 // have been updated.
2447 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2448                                                uint64_t HdrEnd) {
2449   uint64_t MaxOffset = 0;
2450   for (Segment *Seg : Segments) {
2451     if (Seg->Type == PT_PHDR)
2452       continue;
2453 
2454     // The segment offset is generally the offset of the first section.
2455     //
2456     // For a segment containing no section (see sectionWithinSegment), if it has
2457     // a parent segment, copy the parent segment's offset field. This works for
2458     // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2459     // debugging anyway.
2460     const SectionBase *FirstSec = Seg->firstSection();
2461     uint64_t Offset =
2462         FirstSec ? FirstSec->Offset
2463                  : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2464     uint64_t FileSize = 0;
2465     for (const SectionBase *Sec : Seg->Sections) {
2466       uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2467       if (Sec->Offset + Size > Offset)
2468         FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2469     }
2470 
2471     // If the segment includes EHDR and program headers, don't make it smaller
2472     // than the headers.
2473     if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2474       FileSize += Offset - Seg->Offset;
2475       Offset = Seg->Offset;
2476       FileSize = std::max(FileSize, HdrEnd - Offset);
2477     }
2478 
2479     Seg->Offset = Offset;
2480     Seg->FileSize = FileSize;
2481     MaxOffset = std::max(MaxOffset, Offset + FileSize);
2482   }
2483   return MaxOffset;
2484 }
2485 
2486 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2487   Segment &ElfHdr = Obj.ElfHdrSegment;
2488   ElfHdr.Type = PT_PHDR;
2489   ElfHdr.Flags = 0;
2490   ElfHdr.VAddr = 0;
2491   ElfHdr.PAddr = 0;
2492   ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2493   ElfHdr.Align = 0;
2494 }
2495 
2496 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2497   // We need a temporary list of segments that has a special order to it
2498   // so that we know that anytime ->ParentSegment is set that segment has
2499   // already had its offset properly set.
2500   std::vector<Segment *> OrderedSegments;
2501   for (Segment &Segment : Obj.segments())
2502     OrderedSegments.push_back(&Segment);
2503   OrderedSegments.push_back(&Obj.ElfHdrSegment);
2504   OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2505   orderSegments(OrderedSegments);
2506 
2507   uint64_t Offset;
2508   if (OnlyKeepDebug) {
2509     // For --only-keep-debug, the sections that did not preserve contents were
2510     // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2511     // then rewrite p_offset/p_filesz of program headers.
2512     uint64_t HdrEnd =
2513         sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2514     Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2515     Offset = std::max(Offset,
2516                       layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2517   } else {
2518     // Offset is used as the start offset of the first segment to be laid out.
2519     // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2520     // we start at offset 0.
2521     Offset = layoutSegments(OrderedSegments, 0);
2522     Offset = layoutSections(Obj.sections(), Offset);
2523   }
2524   // If we need to write the section header table out then we need to align the
2525   // Offset so that SHOffset is valid.
2526   if (WriteSectionHeaders)
2527     Offset = alignTo(Offset, sizeof(Elf_Addr));
2528   Obj.SHOff = Offset;
2529 }
2530 
2531 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2532   // We already have the section header offset so we can calculate the total
2533   // size by just adding up the size of each section header.
2534   if (!WriteSectionHeaders)
2535     return Obj.SHOff;
2536   size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2537   return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2538 }
2539 
2540 template <class ELFT> Error ELFWriter<ELFT>::write() {
2541   // Segment data must be written first, so that the ELF header and program
2542   // header tables can overwrite it, if covered by a segment.
2543   writeSegmentData();
2544   writeEhdr();
2545   writePhdrs();
2546   if (Error E = writeSectionData())
2547     return E;
2548   if (WriteSectionHeaders)
2549     writeShdrs();
2550 
2551   // TODO: Implement direct writing to the output stream (without intermediate
2552   // memory buffer Buf).
2553   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2554   return Error::success();
2555 }
2556 
2557 static Error removeUnneededSections(Object &Obj) {
2558   // We can remove an empty symbol table from non-relocatable objects.
2559   // Relocatable objects typically have relocation sections whose
2560   // sh_link field points to .symtab, so we can't remove .symtab
2561   // even if it is empty.
2562   if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2563       !Obj.SymbolTable->empty())
2564     return Error::success();
2565 
2566   // .strtab can be used for section names. In such a case we shouldn't
2567   // remove it.
2568   auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2569                      ? nullptr
2570                      : Obj.SymbolTable->getStrTab();
2571   return Obj.removeSections(false, [&](const SectionBase &Sec) {
2572     return &Sec == Obj.SymbolTable || &Sec == StrTab;
2573   });
2574 }
2575 
2576 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2577   // It could happen that SectionNames has been removed and yet the user wants
2578   // a section header table output. We need to throw an error if a user tries
2579   // to do that.
2580   if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2581     return createStringError(llvm::errc::invalid_argument,
2582                              "cannot write section header table because "
2583                              "section header string table was removed");
2584 
2585   if (Error E = removeUnneededSections(Obj))
2586     return E;
2587 
2588   // If the .symtab indices have not been changed, restore the sh_link to
2589   // .symtab for sections that were linked to .symtab.
2590   if (Obj.SymbolTable && !Obj.SymbolTable->indicesChanged())
2591     for (SectionBase &Sec : Obj.sections())
2592       Sec.restoreSymTabLink(*Obj.SymbolTable);
2593 
2594   // We need to assign indexes before we perform layout because we need to know
2595   // if we need large indexes or not. We can assign indexes first and check as
2596   // we go to see if we will actully need large indexes.
2597   bool NeedsLargeIndexes = false;
2598   if (Obj.sections().size() >= SHN_LORESERVE) {
2599     SectionTableRef Sections = Obj.sections();
2600     // Sections doesn't include the null section header, so account for this
2601     // when skipping the first N sections.
2602     NeedsLargeIndexes =
2603         any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2604                [](const SectionBase &Sec) { return Sec.HasSymbol; });
2605     // TODO: handle case where only one section needs the large index table but
2606     // only needs it because the large index table hasn't been removed yet.
2607   }
2608 
2609   if (NeedsLargeIndexes) {
2610     // This means we definitely need to have a section index table but if we
2611     // already have one then we should use it instead of making a new one.
2612     if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2613       // Addition of a section to the end does not invalidate the indexes of
2614       // other sections and assigns the correct index to the new section.
2615       auto &Shndx = Obj.addSection<SectionIndexSection>();
2616       Obj.SymbolTable->setShndxTable(&Shndx);
2617       Shndx.setSymTab(Obj.SymbolTable);
2618     }
2619   } else {
2620     // Since we don't need SectionIndexTable we should remove it and all
2621     // references to it.
2622     if (Obj.SectionIndexTable != nullptr) {
2623       // We do not support sections referring to the section index table.
2624       if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2625                                        [this](const SectionBase &Sec) {
2626                                          return &Sec == Obj.SectionIndexTable;
2627                                        }))
2628         return E;
2629     }
2630   }
2631 
2632   // Make sure we add the names of all the sections. Importantly this must be
2633   // done after we decide to add or remove SectionIndexes.
2634   if (Obj.SectionNames != nullptr)
2635     for (const SectionBase &Sec : Obj.sections())
2636       Obj.SectionNames->addString(Sec.Name);
2637 
2638   initEhdrSegment();
2639 
2640   // Before we can prepare for layout the indexes need to be finalized.
2641   // Also, the output arch may not be the same as the input arch, so fix up
2642   // size-related fields before doing layout calculations.
2643   uint64_t Index = 0;
2644   auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2645   for (SectionBase &Sec : Obj.sections()) {
2646     Sec.Index = Index++;
2647     if (Error Err = Sec.accept(*SecSizer))
2648       return Err;
2649   }
2650 
2651   // The symbol table does not update all other sections on update. For
2652   // instance, symbol names are not added as new symbols are added. This means
2653   // that some sections, like .strtab, don't yet have their final size.
2654   if (Obj.SymbolTable != nullptr)
2655     Obj.SymbolTable->prepareForLayout();
2656 
2657   // Now that all strings are added we want to finalize string table builders,
2658   // because that affects section sizes which in turn affects section offsets.
2659   for (SectionBase &Sec : Obj.sections())
2660     if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2661       StrTab->prepareForLayout();
2662 
2663   assignOffsets();
2664 
2665   // layoutSections could have modified section indexes, so we need
2666   // to fill the index table after assignOffsets.
2667   if (Obj.SymbolTable != nullptr)
2668     Obj.SymbolTable->fillShndxTable();
2669 
2670   // Finally now that all offsets and indexes have been set we can finalize any
2671   // remaining issues.
2672   uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2673   for (SectionBase &Sec : Obj.sections()) {
2674     Sec.HeaderOffset = Offset;
2675     Offset += sizeof(Elf_Shdr);
2676     if (WriteSectionHeaders)
2677       Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2678     Sec.finalize();
2679   }
2680 
2681   size_t TotalSize = totalSize();
2682   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2683   if (!Buf)
2684     return createStringError(errc::not_enough_memory,
2685                              "failed to allocate memory buffer of " +
2686                                  Twine::utohexstr(TotalSize) + " bytes");
2687 
2688   SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2689   return Error::success();
2690 }
2691 
2692 Error BinaryWriter::write() {
2693   SmallVector<const SectionBase *, 30> SectionsToWrite;
2694   for (const SectionBase &Sec : Obj.allocSections()) {
2695     if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2696       SectionsToWrite.push_back(&Sec);
2697   }
2698 
2699   if (SectionsToWrite.empty())
2700     return Error::success();
2701 
2702   llvm::stable_sort(SectionsToWrite,
2703                     [](const SectionBase *LHS, const SectionBase *RHS) {
2704                       return LHS->Offset < RHS->Offset;
2705                     });
2706 
2707   assert(SectionsToWrite.front()->Offset == 0);
2708 
2709   for (size_t i = 0; i != SectionsToWrite.size(); ++i) {
2710     const SectionBase &Sec = *SectionsToWrite[i];
2711     if (Error Err = Sec.accept(*SecWriter))
2712       return Err;
2713     if (GapFill == 0)
2714       continue;
2715     uint64_t PadOffset = (i < SectionsToWrite.size() - 1)
2716                              ? SectionsToWrite[i + 1]->Offset
2717                              : Buf->getBufferSize();
2718     assert(PadOffset <= Buf->getBufferSize());
2719     assert(Sec.Offset + Sec.Size <= PadOffset);
2720     std::fill(Buf->getBufferStart() + Sec.Offset + Sec.Size,
2721               Buf->getBufferStart() + PadOffset, GapFill);
2722   }
2723 
2724   // TODO: Implement direct writing to the output stream (without intermediate
2725   // memory buffer Buf).
2726   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2727   return Error::success();
2728 }
2729 
2730 Error BinaryWriter::finalize() {
2731   // Compute the section LMA based on its sh_offset and the containing segment's
2732   // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2733   // sections as MinAddr. In the output, the contents between address 0 and
2734   // MinAddr will be skipped.
2735   uint64_t MinAddr = UINT64_MAX;
2736   for (SectionBase &Sec : Obj.allocSections()) {
2737     if (Sec.ParentSegment != nullptr)
2738       Sec.Addr =
2739           Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2740     if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2741       MinAddr = std::min(MinAddr, Sec.Addr);
2742   }
2743 
2744   // Now that every section has been laid out we just need to compute the total
2745   // file size. This might not be the same as the offset returned by
2746   // layoutSections, because we want to truncate the last segment to the end of
2747   // its last non-empty section, to match GNU objcopy's behaviour.
2748   TotalSize = PadTo > MinAddr ? PadTo - MinAddr : 0;
2749   for (SectionBase &Sec : Obj.allocSections())
2750     if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2751       Sec.Offset = Sec.Addr - MinAddr;
2752       TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2753     }
2754 
2755   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2756   if (!Buf)
2757     return createStringError(errc::not_enough_memory,
2758                              "failed to allocate memory buffer of " +
2759                                  Twine::utohexstr(TotalSize) + " bytes");
2760   SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2761   return Error::success();
2762 }
2763 
2764 Error ASCIIHexWriter::checkSection(const SectionBase &S) const {
2765   if (addressOverflows32bit(S.Addr) ||
2766       addressOverflows32bit(S.Addr + S.Size - 1))
2767     return createStringError(
2768         errc::invalid_argument,
2769         "section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2770         S.Name.c_str(), S.Addr, S.Addr + S.Size - 1);
2771   return Error::success();
2772 }
2773 
2774 Error ASCIIHexWriter::finalize() {
2775   // We can't write 64-bit addresses.
2776   if (addressOverflows32bit(Obj.Entry))
2777     return createStringError(errc::invalid_argument,
2778                              "entry point address 0x%llx overflows 32 bits",
2779                              Obj.Entry);
2780 
2781   for (const SectionBase &S : Obj.sections()) {
2782     if ((S.Flags & ELF::SHF_ALLOC) && S.Type != ELF::SHT_NOBITS && S.Size > 0) {
2783       if (Error E = checkSection(S))
2784         return E;
2785       Sections.push_back(&S);
2786     }
2787   }
2788 
2789   llvm::sort(Sections, [](const SectionBase *A, const SectionBase *B) {
2790     return sectionPhysicalAddr(A) < sectionPhysicalAddr(B);
2791   });
2792 
2793   std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2794       WritableMemoryBuffer::getNewMemBuffer(0);
2795   if (!EmptyBuffer)
2796     return createStringError(errc::not_enough_memory,
2797                              "failed to allocate memory buffer of 0 bytes");
2798 
2799   Expected<size_t> ExpTotalSize = getTotalSize(*EmptyBuffer);
2800   if (!ExpTotalSize)
2801     return ExpTotalSize.takeError();
2802   TotalSize = *ExpTotalSize;
2803 
2804   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2805   if (!Buf)
2806     return createStringError(errc::not_enough_memory,
2807                              "failed to allocate memory buffer of 0x" +
2808                                  Twine::utohexstr(TotalSize) + " bytes");
2809   return Error::success();
2810 }
2811 
2812 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2813   IHexLineData HexData;
2814   uint8_t Data[4] = {};
2815   // We don't write entry point record if entry is zero.
2816   if (Obj.Entry == 0)
2817     return 0;
2818 
2819   if (Obj.Entry <= 0xFFFFFU) {
2820     Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2821     support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2822                            llvm::endianness::big);
2823     HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2824   } else {
2825     support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2826                            llvm::endianness::big);
2827     HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2828   }
2829   memcpy(Buf, HexData.data(), HexData.size());
2830   return HexData.size();
2831 }
2832 
2833 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2834   IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2835   memcpy(Buf, HexData.data(), HexData.size());
2836   return HexData.size();
2837 }
2838 
2839 Expected<size_t>
2840 IHexWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const {
2841   IHexSectionWriterBase LengthCalc(EmptyBuffer);
2842   for (const SectionBase *Sec : Sections)
2843     if (Error Err = Sec->accept(LengthCalc))
2844       return std::move(Err);
2845 
2846   // We need space to write section records + StartAddress record
2847   // (if start adress is not zero) + EndOfFile record.
2848   return LengthCalc.getBufferOffset() +
2849          (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2850          IHexRecord::getLineLength(0);
2851 }
2852 
2853 Error IHexWriter::write() {
2854   IHexSectionWriter Writer(*Buf);
2855   // Write sections.
2856   for (const SectionBase *Sec : Sections)
2857     if (Error Err = Sec->accept(Writer))
2858       return Err;
2859 
2860   uint64_t Offset = Writer.getBufferOffset();
2861   // Write entry point address.
2862   Offset += writeEntryPointRecord(
2863       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2864   // Write EOF.
2865   Offset += writeEndOfFileRecord(
2866       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2867   assert(Offset == TotalSize);
2868 
2869   // TODO: Implement direct writing to the output stream (without intermediate
2870   // memory buffer Buf).
2871   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2872   return Error::success();
2873 }
2874 
2875 Error SRECSectionWriterBase::visit(const StringTableSection &Sec) {
2876   // Check that the sizer has already done its work.
2877   assert(Sec.Size == Sec.StrTabBuilder.getSize() &&
2878          "Expected section size to have been finalized");
2879   // We don't need to write anything here because the real writer has already
2880   // done it.
2881   return Error::success();
2882 }
2883 
2884 Error SRECSectionWriterBase::visit(const Section &Sec) {
2885   writeSection(Sec, Sec.Contents);
2886   return Error::success();
2887 }
2888 
2889 Error SRECSectionWriterBase::visit(const OwnedDataSection &Sec) {
2890   writeSection(Sec, Sec.Data);
2891   return Error::success();
2892 }
2893 
2894 Error SRECSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
2895   writeSection(Sec, Sec.Contents);
2896   return Error::success();
2897 }
2898 
2899 void SRECSectionWriter::writeRecord(SRecord &Record, uint64_t Off) {
2900   SRecLineData Data = Record.toString();
2901   memcpy(Out.getBufferStart() + Off, Data.data(), Data.size());
2902 }
2903 
2904 void SRECSectionWriterBase::writeRecords(uint32_t Entry) {
2905   // The ELF header could contain an entry point outside of the sections we have
2906   // seen that does not fit the current record Type.
2907   Type = std::max(Type, SRecord::getType(Entry));
2908   uint64_t Off = HeaderSize;
2909   for (SRecord &Record : Records) {
2910     Record.Type = Type;
2911     writeRecord(Record, Off);
2912     Off += Record.getSize();
2913   }
2914   Offset = Off;
2915 }
2916 
2917 void SRECSectionWriterBase::writeSection(const SectionBase &S,
2918                                          ArrayRef<uint8_t> Data) {
2919   const uint32_t ChunkSize = 16;
2920   uint32_t Address = sectionPhysicalAddr(&S);
2921   uint32_t EndAddr = Address + S.Size - 1;
2922   Type = std::max(SRecord::getType(EndAddr), Type);
2923   while (!Data.empty()) {
2924     uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
2925     SRecord Record{Type, Address, Data.take_front(DataSize)};
2926     Records.push_back(Record);
2927     Data = Data.drop_front(DataSize);
2928     Address += DataSize;
2929   }
2930 }
2931 
2932 Error SRECSectionWriter::visit(const StringTableSection &Sec) {
2933   assert(Sec.Size == Sec.StrTabBuilder.getSize() &&
2934          "Section size does not match the section's string table builder size");
2935   std::vector<uint8_t> Data(Sec.Size);
2936   Sec.StrTabBuilder.write(Data.data());
2937   writeSection(Sec, Data);
2938   return Error::success();
2939 }
2940 
2941 SRecLineData SRecord::toString() const {
2942   SRecLineData Line(getSize());
2943   auto *Iter = Line.begin();
2944   *Iter++ = 'S';
2945   *Iter++ = '0' + Type;
2946   // Write 1 byte (2 hex characters) record count.
2947   Iter = toHexStr(getCount(), Iter, 2);
2948   // Write the address field with length depending on record type.
2949   Iter = toHexStr(Address, Iter, getAddressSize());
2950   // Write data byte by byte.
2951   for (uint8_t X : Data)
2952     Iter = toHexStr(X, Iter, 2);
2953   // Write the 1 byte checksum.
2954   Iter = toHexStr(getChecksum(), Iter, 2);
2955   *Iter++ = '\r';
2956   *Iter++ = '\n';
2957   assert(Iter == Line.end());
2958   return Line;
2959 }
2960 
2961 uint8_t SRecord::getChecksum() const {
2962   uint32_t Sum = getCount();
2963   Sum += (Address >> 24) & 0xFF;
2964   Sum += (Address >> 16) & 0xFF;
2965   Sum += (Address >> 8) & 0xFF;
2966   Sum += Address & 0xFF;
2967   for (uint8_t Byte : Data)
2968     Sum += Byte;
2969   return 0xFF - (Sum & 0xFF);
2970 }
2971 
2972 size_t SRecord::getSize() const {
2973   // Type, Count, Checksum, and CRLF are two characters each.
2974   return 2 + 2 + getAddressSize() + Data.size() * 2 + 2 + 2;
2975 }
2976 
2977 uint8_t SRecord::getAddressSize() const {
2978   switch (Type) {
2979   case Type::S2:
2980     return 6;
2981   case Type::S3:
2982     return 8;
2983   case Type::S7:
2984     return 8;
2985   case Type::S8:
2986     return 6;
2987   default:
2988     return 4;
2989   }
2990 }
2991 
2992 uint8_t SRecord::getCount() const {
2993   uint8_t DataSize = Data.size();
2994   uint8_t ChecksumSize = 1;
2995   return getAddressSize() / 2 + DataSize + ChecksumSize;
2996 }
2997 
2998 uint8_t SRecord::getType(uint32_t Address) {
2999   if (isUInt<16>(Address))
3000     return SRecord::S1;
3001   if (isUInt<24>(Address))
3002     return SRecord::S2;
3003   return SRecord::S3;
3004 }
3005 
3006 SRecord SRecord::getHeader(StringRef FileName) {
3007   // Header is a record with Type S0, Address 0, and Data that is a
3008   // vendor-specific text comment. For the comment we will use the output file
3009   // name truncated to 40 characters to match the behavior of GNU objcopy.
3010   StringRef HeaderContents = FileName.slice(0, 40);
3011   ArrayRef<uint8_t> Data(
3012       reinterpret_cast<const uint8_t *>(HeaderContents.data()),
3013       HeaderContents.size());
3014   return {SRecord::S0, 0, Data};
3015 }
3016 
3017 size_t SRECWriter::writeHeader(uint8_t *Buf) {
3018   SRecLineData Record = SRecord::getHeader(OutputFileName).toString();
3019   memcpy(Buf, Record.data(), Record.size());
3020   return Record.size();
3021 }
3022 
3023 size_t SRECWriter::writeTerminator(uint8_t *Buf, uint8_t Type) {
3024   assert(Type >= SRecord::S7 && Type <= SRecord::S9 &&
3025          "Invalid record type for terminator");
3026   uint32_t Entry = Obj.Entry;
3027   SRecLineData Data = SRecord{Type, Entry, {}}.toString();
3028   memcpy(Buf, Data.data(), Data.size());
3029   return Data.size();
3030 }
3031 
3032 Expected<size_t>
3033 SRECWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const {
3034   SRECSizeCalculator SizeCalc(EmptyBuffer, 0);
3035   for (const SectionBase *Sec : Sections)
3036     if (Error Err = Sec->accept(SizeCalc))
3037       return std::move(Err);
3038 
3039   SizeCalc.writeRecords(Obj.Entry);
3040   // We need to add the size of the Header and Terminator records.
3041   SRecord Header = SRecord::getHeader(OutputFileName);
3042   uint8_t TerminatorType = 10 - SizeCalc.getType();
3043   SRecord Terminator = {TerminatorType, static_cast<uint32_t>(Obj.Entry), {}};
3044   return Header.getSize() + SizeCalc.getBufferOffset() + Terminator.getSize();
3045 }
3046 
3047 Error SRECWriter::write() {
3048   uint32_t HeaderSize =
3049       writeHeader(reinterpret_cast<uint8_t *>(Buf->getBufferStart()));
3050   SRECSectionWriter Writer(*Buf, HeaderSize);
3051   for (const SectionBase *S : Sections) {
3052     if (Error E = S->accept(Writer))
3053       return E;
3054   }
3055   Writer.writeRecords(Obj.Entry);
3056   uint64_t Offset = Writer.getBufferOffset();
3057 
3058   // An S1 record terminates with an S9 record, S2 with S8, and S3 with S7.
3059   uint8_t TerminatorType = 10 - Writer.getType();
3060   Offset += writeTerminator(
3061       reinterpret_cast<uint8_t *>(Buf->getBufferStart() + Offset),
3062       TerminatorType);
3063   assert(Offset == TotalSize);
3064   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
3065   return Error::success();
3066 }
3067 
3068 namespace llvm {
3069 namespace objcopy {
3070 namespace elf {
3071 
3072 template class ELFBuilder<ELF64LE>;
3073 template class ELFBuilder<ELF64BE>;
3074 template class ELFBuilder<ELF32LE>;
3075 template class ELFBuilder<ELF32BE>;
3076 
3077 template class ELFWriter<ELF64LE>;
3078 template class ELFWriter<ELF64BE>;
3079 template class ELFWriter<ELF32LE>;
3080 template class ELFWriter<ELF32BE>;
3081 
3082 } // end namespace elf
3083 } // end namespace objcopy
3084 } // end namespace llvm
3085