xref: /llvm-project/llvm/lib/MC/MCAssembler.cpp (revision 219d80bcb734bc4cbe3846fc49c5f21c31ba11be)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCCodeView.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDwarf.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCFixupKindInfo.h"
25 #include "llvm/MC/MCFragment.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCSection.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <tuple>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 namespace llvm {
46 class MCSubtargetInfo;
47 }
48 
49 #define DEBUG_TYPE "assembler"
50 
51 namespace {
52 namespace stats {
53 
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56           "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58           "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedCompactEncodedInstFragments,
60           "Number of emitted assembler fragments - compact encoded inst");
61 STATISTIC(EmittedAlignFragments,
62           "Number of emitted assembler fragments - align");
63 STATISTIC(EmittedFillFragments,
64           "Number of emitted assembler fragments - fill");
65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
67 STATISTIC(evaluateFixup, "Number of evaluated fixups");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 
72 } // end namespace stats
73 } // end anonymous namespace
74 
75 // FIXME FIXME FIXME: There are number of places in this file where we convert
76 // what is a 64-bit assembler value used for computation into a value in the
77 // object file, which may truncate it. We should detect that truncation where
78 // invalid and report errors back.
79 
80 /* *** */
81 
82 MCAssembler::MCAssembler(MCContext &Context,
83                          std::unique_ptr<MCAsmBackend> Backend,
84                          std::unique_ptr<MCCodeEmitter> Emitter,
85                          std::unique_ptr<MCObjectWriter> Writer)
86     : Context(Context), Backend(std::move(Backend)),
87       Emitter(std::move(Emitter)), Writer(std::move(Writer)) {}
88 
89 MCAssembler::~MCAssembler() = default;
90 
91 void MCAssembler::reset() {
92   RelaxAll = false;
93   SubsectionsViaSymbols = false;
94   Sections.clear();
95   Symbols.clear();
96   LinkerOptions.clear();
97   ThumbFuncs.clear();
98   BundleAlignSize = 0;
99 
100   // reset objects owned by us
101   if (getBackendPtr())
102     getBackendPtr()->reset();
103   if (getEmitterPtr())
104     getEmitterPtr()->reset();
105   if (getWriterPtr())
106     getWriterPtr()->reset();
107 }
108 
109 bool MCAssembler::registerSection(MCSection &Section) {
110   if (Section.isRegistered())
111     return false;
112   assert(Section.curFragList()->Head && "allocInitialFragment not called");
113   Sections.push_back(&Section);
114   Section.setIsRegistered(true);
115   return true;
116 }
117 
118 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
119   if (ThumbFuncs.count(Symbol))
120     return true;
121 
122   if (!Symbol->isVariable())
123     return false;
124 
125   const MCExpr *Expr = Symbol->getVariableValue();
126 
127   MCValue V;
128   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
129     return false;
130 
131   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
132     return false;
133 
134   const MCSymbolRefExpr *Ref = V.getSymA();
135   if (!Ref)
136     return false;
137 
138   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
139     return false;
140 
141   const MCSymbol &Sym = Ref->getSymbol();
142   if (!isThumbFunc(&Sym))
143     return false;
144 
145   ThumbFuncs.insert(Symbol); // Cache it.
146   return true;
147 }
148 
149 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF,
150                                 MCValue &Target, const MCSubtargetInfo *STI,
151                                 uint64_t &Value, bool &WasForced) const {
152   ++stats::evaluateFixup;
153 
154   // FIXME: This code has some duplication with recordRelocation. We should
155   // probably merge the two into a single callback that tries to evaluate a
156   // fixup and records a relocation if one is needed.
157 
158   // On error claim to have completely evaluated the fixup, to prevent any
159   // further processing from being done.
160   const MCExpr *Expr = Fixup.getValue();
161   MCContext &Ctx = getContext();
162   Value = 0;
163   WasForced = false;
164   if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) {
165     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
166     return true;
167   }
168   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
169     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
170       Ctx.reportError(Fixup.getLoc(),
171                       "unsupported subtraction of qualified symbol");
172       return true;
173     }
174   }
175 
176   assert(getBackendPtr() && "Expected assembler backend");
177   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
178                   MCFixupKindInfo::FKF_IsTarget;
179 
180   if (IsTarget)
181     return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI,
182                                             Value, WasForced);
183 
184   unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
185   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
186                  MCFixupKindInfo::FKF_IsPCRel;
187 
188   bool IsResolved = false;
189   if (IsPCRel) {
190     if (Target.getSymB()) {
191       IsResolved = false;
192     } else if (!Target.getSymA()) {
193       IsResolved = false;
194     } else {
195       const MCSymbolRefExpr *A = Target.getSymA();
196       const MCSymbol &SA = A->getSymbol();
197       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
198         IsResolved = false;
199       } else if (auto *Writer = getWriterPtr()) {
200         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
201                      Writer->isSymbolRefDifferenceFullyResolvedImpl(
202                          *this, SA, *DF, false, true);
203       }
204     }
205   } else {
206     IsResolved = Target.isAbsolute();
207   }
208 
209   Value = Target.getConstant();
210 
211   if (const MCSymbolRefExpr *A = Target.getSymA()) {
212     const MCSymbol &Sym = A->getSymbol();
213     if (Sym.isDefined())
214       Value += getSymbolOffset(Sym);
215   }
216   if (const MCSymbolRefExpr *B = Target.getSymB()) {
217     const MCSymbol &Sym = B->getSymbol();
218     if (Sym.isDefined())
219       Value -= getSymbolOffset(Sym);
220   }
221 
222   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
223                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
224   assert((ShouldAlignPC ? IsPCRel : true) &&
225     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
226 
227   if (IsPCRel) {
228     uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset();
229 
230     // A number of ARM fixups in Thumb mode require that the effective PC
231     // address be determined as the 32-bit aligned version of the actual offset.
232     if (ShouldAlignPC) Offset &= ~0x3;
233     Value -= Offset;
234   }
235 
236   // Let the backend force a relocation if needed.
237   if (IsResolved &&
238       getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) {
239     IsResolved = false;
240     WasForced = true;
241   }
242 
243   // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
244   // recordRelocation handle non-VK_None cases like A@plt-B+C.
245   if (!IsResolved && Target.getSymA() && Target.getSymB() &&
246       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None &&
247       getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value))
248     return true;
249 
250   return IsResolved;
251 }
252 
253 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const {
254   assert(getBackendPtr() && "Requires assembler backend");
255   switch (F.getKind()) {
256   case MCFragment::FT_Data:
257     return cast<MCDataFragment>(F).getContents().size();
258   case MCFragment::FT_Relaxable:
259     return cast<MCRelaxableFragment>(F).getContents().size();
260   case MCFragment::FT_CompactEncodedInst:
261     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
262   case MCFragment::FT_Fill: {
263     auto &FF = cast<MCFillFragment>(F);
264     int64_t NumValues = 0;
265     if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) {
266       getContext().reportError(FF.getLoc(),
267                                "expected assembly-time absolute expression");
268       return 0;
269     }
270     int64_t Size = NumValues * FF.getValueSize();
271     if (Size < 0) {
272       getContext().reportError(FF.getLoc(), "invalid number of bytes");
273       return 0;
274     }
275     return Size;
276   }
277 
278   case MCFragment::FT_Nops:
279     return cast<MCNopsFragment>(F).getNumBytes();
280 
281   case MCFragment::FT_LEB:
282     return cast<MCLEBFragment>(F).getContents().size();
283 
284   case MCFragment::FT_BoundaryAlign:
285     return cast<MCBoundaryAlignFragment>(F).getSize();
286 
287   case MCFragment::FT_SymbolId:
288     return 4;
289 
290   case MCFragment::FT_Align: {
291     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
292     unsigned Offset = getFragmentOffset(AF);
293     unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
294 
295     // Insert extra Nops for code alignment if the target define
296     // shouldInsertExtraNopBytesForCodeAlign target hook.
297     if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
298         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
299       return Size;
300 
301     // If we are padding with nops, force the padding to be larger than the
302     // minimum nop size.
303     if (Size > 0 && AF.hasEmitNops()) {
304       while (Size % getBackend().getMinimumNopSize())
305         Size += AF.getAlignment().value();
306     }
307     if (Size > AF.getMaxBytesToEmit())
308       return 0;
309     return Size;
310   }
311 
312   case MCFragment::FT_Org: {
313     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
314     MCValue Value;
315     if (!OF.getOffset().evaluateAsValue(Value, *this)) {
316       getContext().reportError(OF.getLoc(),
317                                "expected assembly-time absolute expression");
318         return 0;
319     }
320 
321     uint64_t FragmentOffset = getFragmentOffset(OF);
322     int64_t TargetLocation = Value.getConstant();
323     if (const MCSymbolRefExpr *A = Value.getSymA()) {
324       uint64_t Val;
325       if (!getSymbolOffset(A->getSymbol(), Val)) {
326         getContext().reportError(OF.getLoc(), "expected absolute expression");
327         return 0;
328       }
329       TargetLocation += Val;
330     }
331     int64_t Size = TargetLocation - FragmentOffset;
332     if (Size < 0 || Size >= 0x40000000) {
333       getContext().reportError(
334           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
335                            "' (at offset '" + Twine(FragmentOffset) + "')");
336       return 0;
337     }
338     return Size;
339   }
340 
341   case MCFragment::FT_Dwarf:
342     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
343   case MCFragment::FT_DwarfFrame:
344     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
345   case MCFragment::FT_CVInlineLines:
346     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
347   case MCFragment::FT_CVDefRange:
348     return cast<MCCVDefRangeFragment>(F).getContents().size();
349   case MCFragment::FT_PseudoProbe:
350     return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
351   case MCFragment::FT_Dummy:
352     llvm_unreachable("Should not have been added");
353   }
354 
355   llvm_unreachable("invalid fragment kind");
356 }
357 
358 // Compute the amount of padding required before the fragment \p F to
359 // obey bundling restrictions, where \p FOffset is the fragment's offset in
360 // its section and \p FSize is the fragment's size.
361 static uint64_t computeBundlePadding(unsigned BundleSize,
362                                      const MCEncodedFragment *F,
363                                      uint64_t FOffset, uint64_t FSize) {
364   uint64_t OffsetInBundle = FOffset & (BundleSize - 1);
365   uint64_t EndOfFragment = OffsetInBundle + FSize;
366 
367   // There are two kinds of bundling restrictions:
368   //
369   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
370   //    *end* on a bundle boundary.
371   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
372   //    would, add padding until the end of the bundle so that the fragment
373   //    will start in a new one.
374   if (F->alignToBundleEnd()) {
375     // Three possibilities here:
376     //
377     // A) The fragment just happens to end at a bundle boundary, so we're good.
378     // B) The fragment ends before the current bundle boundary: pad it just
379     //    enough to reach the boundary.
380     // C) The fragment ends after the current bundle boundary: pad it until it
381     //    reaches the end of the next bundle boundary.
382     //
383     // Note: this code could be made shorter with some modulo trickery, but it's
384     // intentionally kept in its more explicit form for simplicity.
385     if (EndOfFragment == BundleSize)
386       return 0;
387     else if (EndOfFragment < BundleSize)
388       return BundleSize - EndOfFragment;
389     else { // EndOfFragment > BundleSize
390       return 2 * BundleSize - EndOfFragment;
391     }
392   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
393     return BundleSize - OffsetInBundle;
394   else
395     return 0;
396 }
397 
398 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const {
399   // If bundling is enabled and this fragment has instructions in it, it has to
400   // obey the bundling restrictions. With padding, we'll have:
401   //
402   //
403   //        BundlePadding
404   //             |||
405   // -------------------------------------
406   //   Prev  |##########|       F        |
407   // -------------------------------------
408   //                    ^
409   //                    |
410   //                    F->Offset
411   //
412   // The fragment's offset will point to after the padding, and its computed
413   // size won't include the padding.
414   //
415   // ".align N" is an example of a directive that introduces multiple
416   // fragments. We could add a special case to handle ".align N" by emitting
417   // within-fragment padding (which would produce less padding when N is less
418   // than the bundle size), but for now we don't.
419   //
420   assert(isa<MCEncodedFragment>(F) &&
421          "Only MCEncodedFragment implementations have instructions");
422   MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
423   uint64_t FSize = computeFragmentSize(*EF);
424 
425   if (FSize > getBundleAlignSize())
426     report_fatal_error("Fragment can't be larger than a bundle size");
427 
428   uint64_t RequiredBundlePadding =
429       computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize);
430   if (RequiredBundlePadding > UINT8_MAX)
431     report_fatal_error("Padding cannot exceed 255 bytes");
432   EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
433   EF->Offset += RequiredBundlePadding;
434   if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev))
435     if (DF->getContents().empty())
436       DF->Offset = EF->Offset;
437 }
438 
439 // Simple getSymbolOffset helper for the non-variable case.
440 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S,
441                            bool ReportError, uint64_t &Val) {
442   if (!S.getFragment()) {
443     if (ReportError)
444       report_fatal_error("unable to evaluate offset to undefined symbol '" +
445                          S.getName() + "'");
446     return false;
447   }
448   Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset();
449   return true;
450 }
451 
452 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S,
453                                 bool ReportError, uint64_t &Val) {
454   if (!S.isVariable())
455     return getLabelOffset(Asm, S, ReportError, Val);
456 
457   // If SD is a variable, evaluate it.
458   MCValue Target;
459   if (!S.getVariableValue()->evaluateAsValue(Target, Asm))
460     report_fatal_error("unable to evaluate offset for variable '" +
461                        S.getName() + "'");
462 
463   uint64_t Offset = Target.getConstant();
464 
465   const MCSymbolRefExpr *A = Target.getSymA();
466   if (A) {
467     uint64_t ValA;
468     // FIXME: On most platforms, `Target`'s component symbols are labels from
469     // having been simplified during evaluation, but on Mach-O they can be
470     // variables due to PR19203. This, and the line below for `B` can be
471     // restored to call `getLabelOffset` when PR19203 is fixed.
472     if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA))
473       return false;
474     Offset += ValA;
475   }
476 
477   const MCSymbolRefExpr *B = Target.getSymB();
478   if (B) {
479     uint64_t ValB;
480     if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB))
481       return false;
482     Offset -= ValB;
483   }
484 
485   Val = Offset;
486   return true;
487 }
488 
489 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
490   return getSymbolOffsetImpl(*this, S, false, Val);
491 }
492 
493 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const {
494   uint64_t Val;
495   getSymbolOffsetImpl(*this, S, true, Val);
496   return Val;
497 }
498 
499 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const {
500   assert(HasLayout);
501   if (!Symbol.isVariable())
502     return &Symbol;
503 
504   const MCExpr *Expr = Symbol.getVariableValue();
505   MCValue Value;
506   if (!Expr->evaluateAsValue(Value, *this)) {
507     getContext().reportError(Expr->getLoc(),
508                              "expression could not be evaluated");
509     return nullptr;
510   }
511 
512   const MCSymbolRefExpr *RefB = Value.getSymB();
513   if (RefB) {
514     getContext().reportError(
515         Expr->getLoc(),
516         Twine("symbol '") + RefB->getSymbol().getName() +
517             "' could not be evaluated in a subtraction expression");
518     return nullptr;
519   }
520 
521   const MCSymbolRefExpr *A = Value.getSymA();
522   if (!A)
523     return nullptr;
524 
525   const MCSymbol &ASym = A->getSymbol();
526   if (ASym.isCommon()) {
527     getContext().reportError(Expr->getLoc(),
528                              "Common symbol '" + ASym.getName() +
529                                  "' cannot be used in assignment expr");
530     return nullptr;
531   }
532 
533   return &ASym;
534 }
535 
536 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const {
537   assert(HasLayout);
538   // The size is the last fragment's end offset.
539   const MCFragment &F = *Sec.curFragList()->Tail;
540   return getFragmentOffset(F) + computeFragmentSize(F);
541 }
542 
543 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const {
544   // Virtual sections have no file size.
545   if (Sec.isVirtualSection())
546     return 0;
547   return getSectionAddressSize(Sec);
548 }
549 
550 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
551   bool Changed = !Symbol.isRegistered();
552   if (Changed) {
553     Symbol.setIsRegistered(true);
554     Symbols.push_back(&Symbol);
555   }
556   return Changed;
557 }
558 
559 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
560                                        const MCEncodedFragment &EF,
561                                        uint64_t FSize) const {
562   assert(getBackendPtr() && "Expected assembler backend");
563   // Should NOP padding be written out before this fragment?
564   unsigned BundlePadding = EF.getBundlePadding();
565   if (BundlePadding > 0) {
566     assert(isBundlingEnabled() &&
567            "Writing bundle padding with disabled bundling");
568     assert(EF.hasInstructions() &&
569            "Writing bundle padding for a fragment without instructions");
570 
571     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
572     const MCSubtargetInfo *STI = EF.getSubtargetInfo();
573     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
574       // If the padding itself crosses a bundle boundary, it must be emitted
575       // in 2 pieces, since even nop instructions must not cross boundaries.
576       //             v--------------v   <- BundleAlignSize
577       //        v---------v             <- BundlePadding
578       // ----------------------------
579       // | Prev |####|####|    F    |
580       // ----------------------------
581       //        ^-------------------^   <- TotalLength
582       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
583       if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
584         report_fatal_error("unable to write NOP sequence of " +
585                            Twine(DistanceToBoundary) + " bytes");
586       BundlePadding -= DistanceToBoundary;
587     }
588     if (!getBackend().writeNopData(OS, BundlePadding, STI))
589       report_fatal_error("unable to write NOP sequence of " +
590                          Twine(BundlePadding) + " bytes");
591   }
592 }
593 
594 /// Write the fragment \p F to the output file.
595 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
596                           const MCFragment &F) {
597   // FIXME: Embed in fragments instead?
598   uint64_t FragmentSize = Asm.computeFragmentSize(F);
599 
600   llvm::endianness Endian = Asm.getBackend().Endian;
601 
602   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
603     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
604 
605   // This variable (and its dummy usage) is to participate in the assert at
606   // the end of the function.
607   uint64_t Start = OS.tell();
608   (void) Start;
609 
610   ++stats::EmittedFragments;
611 
612   switch (F.getKind()) {
613   case MCFragment::FT_Align: {
614     ++stats::EmittedAlignFragments;
615     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
616     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
617 
618     uint64_t Count = FragmentSize / AF.getValueSize();
619 
620     // FIXME: This error shouldn't actually occur (the front end should emit
621     // multiple .align directives to enforce the semantics it wants), but is
622     // severe enough that we want to report it. How to handle this?
623     if (Count * AF.getValueSize() != FragmentSize)
624       report_fatal_error("undefined .align directive, value size '" +
625                         Twine(AF.getValueSize()) +
626                         "' is not a divisor of padding size '" +
627                         Twine(FragmentSize) + "'");
628 
629     // See if we are aligning with nops, and if so do that first to try to fill
630     // the Count bytes.  Then if that did not fill any bytes or there are any
631     // bytes left to fill use the Value and ValueSize to fill the rest.
632     // If we are aligning with nops, ask that target to emit the right data.
633     if (AF.hasEmitNops()) {
634       if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
635         report_fatal_error("unable to write nop sequence of " +
636                           Twine(Count) + " bytes");
637       break;
638     }
639 
640     // Otherwise, write out in multiples of the value size.
641     for (uint64_t i = 0; i != Count; ++i) {
642       switch (AF.getValueSize()) {
643       default: llvm_unreachable("Invalid size!");
644       case 1: OS << char(AF.getValue()); break;
645       case 2:
646         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
647         break;
648       case 4:
649         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
650         break;
651       case 8:
652         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
653         break;
654       }
655     }
656     break;
657   }
658 
659   case MCFragment::FT_Data:
660     ++stats::EmittedDataFragments;
661     OS << cast<MCDataFragment>(F).getContents();
662     break;
663 
664   case MCFragment::FT_Relaxable:
665     ++stats::EmittedRelaxableFragments;
666     OS << cast<MCRelaxableFragment>(F).getContents();
667     break;
668 
669   case MCFragment::FT_CompactEncodedInst:
670     ++stats::EmittedCompactEncodedInstFragments;
671     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
672     break;
673 
674   case MCFragment::FT_Fill: {
675     ++stats::EmittedFillFragments;
676     const MCFillFragment &FF = cast<MCFillFragment>(F);
677     uint64_t V = FF.getValue();
678     unsigned VSize = FF.getValueSize();
679     const unsigned MaxChunkSize = 16;
680     char Data[MaxChunkSize];
681     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
682     // Duplicate V into Data as byte vector to reduce number of
683     // writes done. As such, do endian conversion here.
684     for (unsigned I = 0; I != VSize; ++I) {
685       unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
686       Data[I] = uint8_t(V >> (index * 8));
687     }
688     for (unsigned I = VSize; I < MaxChunkSize; ++I)
689       Data[I] = Data[I - VSize];
690 
691     // Set to largest multiple of VSize in Data.
692     const unsigned NumPerChunk = MaxChunkSize / VSize;
693     // Set ChunkSize to largest multiple of VSize in Data
694     const unsigned ChunkSize = VSize * NumPerChunk;
695 
696     // Do copies by chunk.
697     StringRef Ref(Data, ChunkSize);
698     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
699       OS << Ref;
700 
701     // do remainder if needed.
702     unsigned TrailingCount = FragmentSize % ChunkSize;
703     if (TrailingCount)
704       OS.write(Data, TrailingCount);
705     break;
706   }
707 
708   case MCFragment::FT_Nops: {
709     ++stats::EmittedNopsFragments;
710     const MCNopsFragment &NF = cast<MCNopsFragment>(F);
711 
712     int64_t NumBytes = NF.getNumBytes();
713     int64_t ControlledNopLength = NF.getControlledNopLength();
714     int64_t MaximumNopLength =
715         Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
716 
717     assert(NumBytes > 0 && "Expected positive NOPs fragment size");
718     assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
719 
720     if (ControlledNopLength > MaximumNopLength) {
721       Asm.getContext().reportError(NF.getLoc(),
722                                    "illegal NOP size " +
723                                        std::to_string(ControlledNopLength) +
724                                        ". (expected within [0, " +
725                                        std::to_string(MaximumNopLength) + "])");
726       // Clamp the NOP length as reportError does not stop the execution
727       // immediately.
728       ControlledNopLength = MaximumNopLength;
729     }
730 
731     // Use maximum value if the size of each NOP is not specified
732     if (!ControlledNopLength)
733       ControlledNopLength = MaximumNopLength;
734 
735     while (NumBytes) {
736       uint64_t NumBytesToEmit =
737           (uint64_t)std::min(NumBytes, ControlledNopLength);
738       assert(NumBytesToEmit && "try to emit empty NOP instruction");
739       if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
740                                          NF.getSubtargetInfo())) {
741         report_fatal_error("unable to write nop sequence of the remaining " +
742                            Twine(NumBytesToEmit) + " bytes");
743         break;
744       }
745       NumBytes -= NumBytesToEmit;
746     }
747     break;
748   }
749 
750   case MCFragment::FT_LEB: {
751     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
752     OS << LF.getContents();
753     break;
754   }
755 
756   case MCFragment::FT_BoundaryAlign: {
757     const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
758     if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
759       report_fatal_error("unable to write nop sequence of " +
760                          Twine(FragmentSize) + " bytes");
761     break;
762   }
763 
764   case MCFragment::FT_SymbolId: {
765     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
766     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
767     break;
768   }
769 
770   case MCFragment::FT_Org: {
771     ++stats::EmittedOrgFragments;
772     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
773 
774     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
775       OS << char(OF.getValue());
776 
777     break;
778   }
779 
780   case MCFragment::FT_Dwarf: {
781     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
782     OS << OF.getContents();
783     break;
784   }
785   case MCFragment::FT_DwarfFrame: {
786     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
787     OS << CF.getContents();
788     break;
789   }
790   case MCFragment::FT_CVInlineLines: {
791     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
792     OS << OF.getContents();
793     break;
794   }
795   case MCFragment::FT_CVDefRange: {
796     const auto &DRF = cast<MCCVDefRangeFragment>(F);
797     OS << DRF.getContents();
798     break;
799   }
800   case MCFragment::FT_PseudoProbe: {
801     const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
802     OS << PF.getContents();
803     break;
804   }
805   case MCFragment::FT_Dummy:
806     llvm_unreachable("Should not have been added");
807   }
808 
809   assert(OS.tell() - Start == FragmentSize &&
810          "The stream should advance by fragment size");
811 }
812 
813 void MCAssembler::writeSectionData(raw_ostream &OS,
814                                    const MCSection *Sec) const {
815   assert(getBackendPtr() && "Expected assembler backend");
816 
817   // Ignore virtual sections.
818   if (Sec->isVirtualSection()) {
819     assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!");
820 
821     // Check that contents are only things legal inside a virtual section.
822     for (const MCFragment &F : *Sec) {
823       switch (F.getKind()) {
824       default: llvm_unreachable("Invalid fragment in virtual section!");
825       case MCFragment::FT_Data: {
826         // Check that we aren't trying to write a non-zero contents (or fixups)
827         // into a virtual section. This is to support clients which use standard
828         // directives to fill the contents of virtual sections.
829         const MCDataFragment &DF = cast<MCDataFragment>(F);
830         if (DF.fixup_begin() != DF.fixup_end())
831           getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
832                                                 " section '" + Sec->getName() +
833                                                 "' cannot have fixups");
834         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
835           if (DF.getContents()[i]) {
836             getContext().reportError(SMLoc(),
837                                      Sec->getVirtualSectionKind() +
838                                          " section '" + Sec->getName() +
839                                          "' cannot have non-zero initializers");
840             break;
841           }
842         break;
843       }
844       case MCFragment::FT_Align:
845         // Check that we aren't trying to write a non-zero value into a virtual
846         // section.
847         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
848                 cast<MCAlignFragment>(F).getValue() == 0) &&
849                "Invalid align in virtual section!");
850         break;
851       case MCFragment::FT_Fill:
852         assert((cast<MCFillFragment>(F).getValue() == 0) &&
853                "Invalid fill in virtual section!");
854         break;
855       case MCFragment::FT_Org:
856         break;
857       }
858     }
859 
860     return;
861   }
862 
863   uint64_t Start = OS.tell();
864   (void)Start;
865 
866   for (const MCFragment &F : *Sec)
867     writeFragment(OS, *this, F);
868 
869   assert(getContext().hadError() ||
870          OS.tell() - Start == getSectionAddressSize(*Sec));
871 }
872 
873 std::tuple<MCValue, uint64_t, bool>
874 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup,
875                          const MCSubtargetInfo *STI) {
876   // Evaluate the fixup.
877   MCValue Target;
878   uint64_t FixedValue;
879   bool WasForced;
880   bool IsResolved =
881       evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced);
882   if (!IsResolved) {
883     // The fixup was unresolved, we need a relocation. Inform the object
884     // writer of the relocation, and give it an opportunity to adjust the
885     // fixup value if need be.
886     getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue);
887   }
888   return std::make_tuple(Target, FixedValue, IsResolved);
889 }
890 
891 void MCAssembler::layout() {
892   assert(getBackendPtr() && "Expected assembler backend");
893   DEBUG_WITH_TYPE("mc-dump", {
894       errs() << "assembler backend - pre-layout\n--\n";
895       dump(); });
896 
897   // Assign section ordinals.
898   unsigned SectionIndex = 0;
899   for (MCSection &Sec : *this) {
900     Sec.setOrdinal(SectionIndex++);
901 
902     // Chain together fragments from all subsections.
903     if (Sec.Subsections.size() > 1) {
904       MCDummyFragment Dummy;
905       MCFragment *Tail = &Dummy;
906       for (auto &[_, List] : Sec.Subsections) {
907         assert(List.Head);
908         Tail->Next = List.Head;
909         Tail = List.Tail;
910       }
911       Sec.Subsections.clear();
912       Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}});
913       Sec.CurFragList = &Sec.Subsections[0].second;
914 
915       unsigned FragmentIndex = 0;
916       for (MCFragment &Frag : Sec)
917         Frag.setLayoutOrder(FragmentIndex++);
918     }
919   }
920 
921   // Layout until everything fits.
922   this->HasLayout = true;
923   for (MCSection &Sec : *this)
924     layoutSection(Sec);
925   while (layoutOnce()) {
926   }
927 
928   DEBUG_WITH_TYPE("mc-dump", {
929       errs() << "assembler backend - post-relaxation\n--\n";
930       dump(); });
931 
932   // Some targets might want to adjust fragment offsets. If so, perform another
933   // layout loop.
934   if (getBackend().finishLayout(*this))
935     for (MCSection &Sec : *this)
936       layoutSection(Sec);
937 
938   DEBUG_WITH_TYPE("mc-dump", {
939       errs() << "assembler backend - final-layout\n--\n";
940       dump(); });
941 
942   // Allow the object writer a chance to perform post-layout binding (for
943   // example, to set the index fields in the symbol data).
944   getWriter().executePostLayoutBinding(*this);
945 
946   // Evaluate and apply the fixups, generating relocation entries as necessary.
947   for (MCSection &Sec : *this) {
948     for (MCFragment &Frag : Sec) {
949       ArrayRef<MCFixup> Fixups;
950       MutableArrayRef<char> Contents;
951       const MCSubtargetInfo *STI = nullptr;
952 
953       // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
954       switch (Frag.getKind()) {
955       default:
956         continue;
957       case MCFragment::FT_Align: {
958         MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
959         // Insert fixup type for code alignment if the target define
960         // shouldInsertFixupForCodeAlign target hook.
961         if (Sec.useCodeAlign() && AF.hasEmitNops())
962           getBackend().shouldInsertFixupForCodeAlign(*this, AF);
963         continue;
964       }
965       case MCFragment::FT_Data: {
966         MCDataFragment &DF = cast<MCDataFragment>(Frag);
967         Fixups = DF.getFixups();
968         Contents = DF.getContents();
969         STI = DF.getSubtargetInfo();
970         assert(!DF.hasInstructions() || STI != nullptr);
971         break;
972       }
973       case MCFragment::FT_Relaxable: {
974         MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
975         Fixups = RF.getFixups();
976         Contents = RF.getContents();
977         STI = RF.getSubtargetInfo();
978         assert(!RF.hasInstructions() || STI != nullptr);
979         break;
980       }
981       case MCFragment::FT_CVDefRange: {
982         MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
983         Fixups = CF.getFixups();
984         Contents = CF.getContents();
985         break;
986       }
987       case MCFragment::FT_Dwarf: {
988         MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
989         Fixups = DF.getFixups();
990         Contents = DF.getContents();
991         break;
992       }
993       case MCFragment::FT_DwarfFrame: {
994         MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
995         Fixups = DF.getFixups();
996         Contents = DF.getContents();
997         break;
998       }
999       case MCFragment::FT_LEB: {
1000         auto &LF = cast<MCLEBFragment>(Frag);
1001         Fixups = LF.getFixups();
1002         Contents = LF.getContents();
1003         break;
1004       }
1005       case MCFragment::FT_PseudoProbe: {
1006         MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
1007         Fixups = PF.getFixups();
1008         Contents = PF.getContents();
1009         break;
1010       }
1011       }
1012       for (const MCFixup &Fixup : Fixups) {
1013         uint64_t FixedValue;
1014         bool IsResolved;
1015         MCValue Target;
1016         std::tie(Target, FixedValue, IsResolved) =
1017             handleFixup(Frag, Fixup, STI);
1018         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
1019                                 IsResolved, STI);
1020       }
1021     }
1022   }
1023 }
1024 
1025 void MCAssembler::Finish() {
1026   layout();
1027 
1028   // Write the object file.
1029   stats::ObjectBytes += getWriter().writeObject(*this);
1030 
1031   HasLayout = false;
1032 }
1033 
1034 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
1035                                        const MCRelaxableFragment *DF) const {
1036   assert(getBackendPtr() && "Expected assembler backend");
1037   MCValue Target;
1038   uint64_t Value;
1039   bool WasForced;
1040   bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(),
1041                                 Value, WasForced);
1042   if (Target.getSymA() &&
1043       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
1044       Fixup.getKind() == FK_Data_1)
1045     return false;
1046   return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved,
1047                                                    Value, DF, WasForced);
1048 }
1049 
1050 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const {
1051   assert(getBackendPtr() && "Expected assembler backend");
1052   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
1053   // are intentionally pushing out inst fragments, or because we relaxed a
1054   // previous instruction to one that doesn't need relaxation.
1055   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
1056     return false;
1057 
1058   for (const MCFixup &Fixup : F->getFixups())
1059     if (fixupNeedsRelaxation(Fixup, F))
1060       return true;
1061 
1062   return false;
1063 }
1064 
1065 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) {
1066   assert(getEmitterPtr() &&
1067          "Expected CodeEmitter defined for relaxInstruction");
1068   if (!fragmentNeedsRelaxation(&F))
1069     return false;
1070 
1071   ++stats::RelaxedInstructions;
1072 
1073   // FIXME-PERF: We could immediately lower out instructions if we can tell
1074   // they are fully resolved, to avoid retesting on later passes.
1075 
1076   // Relax the fragment.
1077 
1078   MCInst Relaxed = F.getInst();
1079   getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
1080 
1081   // Encode the new instruction.
1082   F.setInst(Relaxed);
1083   F.getFixups().clear();
1084   F.getContents().clear();
1085   getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(),
1086                                  *F.getSubtargetInfo());
1087   return true;
1088 }
1089 
1090 bool MCAssembler::relaxLEB(MCLEBFragment &LF) {
1091   const unsigned OldSize = static_cast<unsigned>(LF.getContents().size());
1092   unsigned PadTo = OldSize;
1093   int64_t Value;
1094   SmallVectorImpl<char> &Data = LF.getContents();
1095   LF.getFixups().clear();
1096   // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1097   // requires that .uleb128 A-B is foldable where A and B reside in different
1098   // fragments. This is used by __gcc_except_table.
1099   bool Abs = getSubsectionsViaSymbols()
1100                  ? LF.getValue().evaluateKnownAbsolute(Value, *this)
1101                  : LF.getValue().evaluateAsAbsolute(Value, *this);
1102   if (!Abs) {
1103     bool Relaxed, UseZeroPad;
1104     std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value);
1105     if (!Relaxed) {
1106       getContext().reportError(LF.getValue().getLoc(),
1107                                Twine(LF.isSigned() ? ".s" : ".u") +
1108                                    "leb128 expression is not absolute");
1109       LF.setValue(MCConstantExpr::create(0, Context));
1110     }
1111     uint8_t Tmp[10]; // maximum size: ceil(64/7)
1112     PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
1113     if (UseZeroPad)
1114       Value = 0;
1115   }
1116   Data.clear();
1117   raw_svector_ostream OSE(Data);
1118   // The compiler can generate EH table assembly that is impossible to assemble
1119   // without either adding padding to an LEB fragment or adding extra padding
1120   // to a later alignment fragment. To accommodate such tables, relaxation can
1121   // only increase an LEB fragment size here, not decrease it. See PR35809.
1122   if (LF.isSigned())
1123     encodeSLEB128(Value, OSE, PadTo);
1124   else
1125     encodeULEB128(Value, OSE, PadTo);
1126   return OldSize != LF.getContents().size();
1127 }
1128 
1129 /// Check if the branch crosses the boundary.
1130 ///
1131 /// \param StartAddr start address of the fused/unfused branch.
1132 /// \param Size size of the fused/unfused branch.
1133 /// \param BoundaryAlignment alignment requirement of the branch.
1134 /// \returns true if the branch cross the boundary.
1135 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1136                              Align BoundaryAlignment) {
1137   uint64_t EndAddr = StartAddr + Size;
1138   return (StartAddr >> Log2(BoundaryAlignment)) !=
1139          ((EndAddr - 1) >> Log2(BoundaryAlignment));
1140 }
1141 
1142 /// Check if the branch is against the boundary.
1143 ///
1144 /// \param StartAddr start address of the fused/unfused branch.
1145 /// \param Size size of the fused/unfused branch.
1146 /// \param BoundaryAlignment alignment requirement of the branch.
1147 /// \returns true if the branch is against the boundary.
1148 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1149                               Align BoundaryAlignment) {
1150   uint64_t EndAddr = StartAddr + Size;
1151   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1152 }
1153 
1154 /// Check if the branch needs padding.
1155 ///
1156 /// \param StartAddr start address of the fused/unfused branch.
1157 /// \param Size size of the fused/unfused branch.
1158 /// \param BoundaryAlignment alignment requirement of the branch.
1159 /// \returns true if the branch needs padding.
1160 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1161                         Align BoundaryAlignment) {
1162   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1163          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1164 }
1165 
1166 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) {
1167   // BoundaryAlignFragment that doesn't need to align any fragment should not be
1168   // relaxed.
1169   if (!BF.getLastFragment())
1170     return false;
1171 
1172   uint64_t AlignedOffset = getFragmentOffset(BF);
1173   uint64_t AlignedSize = 0;
1174   for (const MCFragment *F = BF.getNext();; F = F->getNext()) {
1175     AlignedSize += computeFragmentSize(*F);
1176     if (F == BF.getLastFragment())
1177       break;
1178   }
1179 
1180   Align BoundaryAlignment = BF.getAlignment();
1181   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1182                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1183                          : 0U;
1184   if (NewSize == BF.getSize())
1185     return false;
1186   BF.setSize(NewSize);
1187   return true;
1188 }
1189 
1190 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) {
1191   bool WasRelaxed;
1192   if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed))
1193     return WasRelaxed;
1194 
1195   MCContext &Context = getContext();
1196   uint64_t OldSize = DF.getContents().size();
1197   int64_t AddrDelta;
1198   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1199   assert(Abs && "We created a line delta with an invalid expression");
1200   (void)Abs;
1201   int64_t LineDelta;
1202   LineDelta = DF.getLineDelta();
1203   SmallVectorImpl<char> &Data = DF.getContents();
1204   Data.clear();
1205   DF.getFixups().clear();
1206 
1207   MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta,
1208                           AddrDelta, Data);
1209   return OldSize != Data.size();
1210 }
1211 
1212 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) {
1213   bool WasRelaxed;
1214   if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed))
1215     return WasRelaxed;
1216 
1217   MCContext &Context = getContext();
1218   int64_t Value;
1219   bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this);
1220   if (!Abs) {
1221     getContext().reportError(DF.getAddrDelta().getLoc(),
1222                              "invalid CFI advance_loc expression");
1223     DF.setAddrDelta(MCConstantExpr::create(0, Context));
1224     return false;
1225   }
1226 
1227   SmallVectorImpl<char> &Data = DF.getContents();
1228   uint64_t OldSize = Data.size();
1229   Data.clear();
1230   DF.getFixups().clear();
1231 
1232   MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
1233   return OldSize != Data.size();
1234 }
1235 
1236 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) {
1237   unsigned OldSize = F.getContents().size();
1238   getContext().getCVContext().encodeInlineLineTable(*this, F);
1239   return OldSize != F.getContents().size();
1240 }
1241 
1242 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) {
1243   unsigned OldSize = F.getContents().size();
1244   getContext().getCVContext().encodeDefRange(*this, F);
1245   return OldSize != F.getContents().size();
1246 }
1247 
1248 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) {
1249   uint64_t OldSize = PF.getContents().size();
1250   int64_t AddrDelta;
1251   bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1252   assert(Abs && "We created a pseudo probe with an invalid expression");
1253   (void)Abs;
1254   SmallVectorImpl<char> &Data = PF.getContents();
1255   Data.clear();
1256   raw_svector_ostream OSE(Data);
1257   PF.getFixups().clear();
1258 
1259   // AddrDelta is a signed integer
1260   encodeSLEB128(AddrDelta, OSE, OldSize);
1261   return OldSize != Data.size();
1262 }
1263 
1264 bool MCAssembler::relaxFragment(MCFragment &F) {
1265   switch(F.getKind()) {
1266   default:
1267     return false;
1268   case MCFragment::FT_Relaxable:
1269     assert(!getRelaxAll() &&
1270            "Did not expect a MCRelaxableFragment in RelaxAll mode");
1271     return relaxInstruction(cast<MCRelaxableFragment>(F));
1272   case MCFragment::FT_Dwarf:
1273     return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F));
1274   case MCFragment::FT_DwarfFrame:
1275     return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F));
1276   case MCFragment::FT_LEB:
1277     return relaxLEB(cast<MCLEBFragment>(F));
1278   case MCFragment::FT_BoundaryAlign:
1279     return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F));
1280   case MCFragment::FT_CVInlineLines:
1281     return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F));
1282   case MCFragment::FT_CVDefRange:
1283     return relaxCVDefRange(cast<MCCVDefRangeFragment>(F));
1284   case MCFragment::FT_PseudoProbe:
1285     return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F));
1286   }
1287 }
1288 
1289 void MCAssembler::layoutSection(MCSection &Sec) {
1290   MCFragment *Prev = nullptr;
1291   uint64_t Offset = 0;
1292   for (MCFragment &F : Sec) {
1293     F.Offset = Offset;
1294     if (LLVM_UNLIKELY(isBundlingEnabled())) {
1295       if (F.hasInstructions()) {
1296         layoutBundle(Prev, &F);
1297         Offset = F.Offset;
1298       }
1299       Prev = &F;
1300     }
1301     Offset += computeFragmentSize(F);
1302   }
1303 }
1304 
1305 bool MCAssembler::layoutOnce() {
1306   ++stats::RelaxationSteps;
1307 
1308   // Size of fragments in one section can depend on the size of fragments in
1309   // another. If any fragment has changed size, we have to re-layout (and
1310   // as a result possibly further relax) all.
1311   bool ChangedAny = false;
1312   for (MCSection &Sec : *this) {
1313     for (;;) {
1314       bool Changed = false;
1315       for (MCFragment &F : Sec)
1316         if (relaxFragment(F))
1317           Changed = true;
1318       ChangedAny |= Changed;
1319       if (!Changed)
1320         break;
1321       layoutSection(Sec);
1322     }
1323   }
1324   return ChangedAny;
1325 }
1326 
1327 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1328 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1329   raw_ostream &OS = errs();
1330 
1331   OS << "<MCAssembler\n";
1332   OS << "  Sections:[\n    ";
1333   bool First = true;
1334   for (const MCSection &Sec : *this) {
1335     if (First)
1336       First = false;
1337     else
1338       OS << ",\n    ";
1339     Sec.dump();
1340   }
1341   OS << "],\n";
1342   OS << "  Symbols:[";
1343 
1344   First = true;
1345   for (const MCSymbol &Sym : symbols()) {
1346     if (First)
1347       First = false;
1348     else
1349       OS << ",\n           ";
1350     OS << "(";
1351     Sym.dump();
1352     OS << ", Index:" << Sym.getIndex() << ", ";
1353     OS << ")";
1354   }
1355   OS << "]>\n";
1356 }
1357 #endif
1358