xref: /llvm-project/llvm/lib/MC/MCAssembler.cpp (revision 814b34f31e163e76b816194004689985f5b9fd7b)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCCodeView.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDwarf.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCFixupKindInfo.h"
25 #include "llvm/MC/MCFragment.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCSection.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <tuple>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 namespace llvm {
46 class MCSubtargetInfo;
47 }
48 
49 #define DEBUG_TYPE "assembler"
50 
51 namespace {
52 namespace stats {
53 
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56           "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58           "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedAlignFragments,
60           "Number of emitted assembler fragments - align");
61 STATISTIC(EmittedFillFragments,
62           "Number of emitted assembler fragments - fill");
63 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
64 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
65 STATISTIC(evaluateFixup, "Number of evaluated fixups");
66 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
67 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
68 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
69 
70 } // end namespace stats
71 } // end anonymous namespace
72 
73 // FIXME FIXME FIXME: There are number of places in this file where we convert
74 // what is a 64-bit assembler value used for computation into a value in the
75 // object file, which may truncate it. We should detect that truncation where
76 // invalid and report errors back.
77 
78 /* *** */
79 
80 MCAssembler::MCAssembler(MCContext &Context,
81                          std::unique_ptr<MCAsmBackend> Backend,
82                          std::unique_ptr<MCCodeEmitter> Emitter,
83                          std::unique_ptr<MCObjectWriter> Writer)
84     : Context(Context), Backend(std::move(Backend)),
85       Emitter(std::move(Emitter)), Writer(std::move(Writer)) {}
86 
87 void MCAssembler::reset() {
88   RelaxAll = false;
89   Sections.clear();
90   Symbols.clear();
91   ThumbFuncs.clear();
92   BundleAlignSize = 0;
93 
94   // reset objects owned by us
95   if (getBackendPtr())
96     getBackendPtr()->reset();
97   if (getEmitterPtr())
98     getEmitterPtr()->reset();
99   if (Writer)
100     Writer->reset();
101 }
102 
103 bool MCAssembler::registerSection(MCSection &Section) {
104   if (Section.isRegistered())
105     return false;
106   assert(Section.curFragList()->Head && "allocInitialFragment not called");
107   Sections.push_back(&Section);
108   Section.setIsRegistered(true);
109   return true;
110 }
111 
112 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
113   if (ThumbFuncs.count(Symbol))
114     return true;
115 
116   if (!Symbol->isVariable())
117     return false;
118 
119   const MCExpr *Expr = Symbol->getVariableValue();
120 
121   MCValue V;
122   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
123     return false;
124 
125   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
126     return false;
127 
128   const MCSymbolRefExpr *Ref = V.getSymA();
129   if (!Ref)
130     return false;
131 
132   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
133     return false;
134 
135   const MCSymbol &Sym = Ref->getSymbol();
136   if (!isThumbFunc(&Sym))
137     return false;
138 
139   ThumbFuncs.insert(Symbol); // Cache it.
140   return true;
141 }
142 
143 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF,
144                                 MCValue &Target, const MCSubtargetInfo *STI,
145                                 uint64_t &Value, bool &WasForced) const {
146   ++stats::evaluateFixup;
147 
148   // FIXME: This code has some duplication with recordRelocation. We should
149   // probably merge the two into a single callback that tries to evaluate a
150   // fixup and records a relocation if one is needed.
151 
152   // On error claim to have completely evaluated the fixup, to prevent any
153   // further processing from being done.
154   const MCExpr *Expr = Fixup.getValue();
155   MCContext &Ctx = getContext();
156   Value = 0;
157   WasForced = false;
158   if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) {
159     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
160     return true;
161   }
162   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
163     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
164       Ctx.reportError(Fixup.getLoc(),
165                       "unsupported subtraction of qualified symbol");
166       return true;
167     }
168   }
169 
170   unsigned FixupFlags = getBackend().getFixupKindInfo(Fixup.getKind()).Flags;
171   if (FixupFlags & MCFixupKindInfo::FKF_IsTarget)
172     return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI,
173                                             Value, WasForced);
174 
175   bool IsPCRel = FixupFlags & MCFixupKindInfo::FKF_IsPCRel;
176   bool IsResolved = false;
177   if (IsPCRel) {
178     if (Target.getSymB()) {
179       IsResolved = false;
180     } else if (!Target.getSymA()) {
181       IsResolved = false;
182     } else {
183       const MCSymbolRefExpr *A = Target.getSymA();
184       const MCSymbol &SA = A->getSymbol();
185       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
186         IsResolved = false;
187       } else {
188         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
189                      getWriter().isSymbolRefDifferenceFullyResolvedImpl(
190                          *this, SA, *DF, false, true);
191       }
192     }
193   } else {
194     IsResolved = Target.isAbsolute();
195   }
196 
197   Value = Target.getConstant();
198 
199   if (const MCSymbolRefExpr *A = Target.getSymA()) {
200     const MCSymbol &Sym = A->getSymbol();
201     if (Sym.isDefined())
202       Value += getSymbolOffset(Sym);
203   }
204   if (const MCSymbolRefExpr *B = Target.getSymB()) {
205     const MCSymbol &Sym = B->getSymbol();
206     if (Sym.isDefined())
207       Value -= getSymbolOffset(Sym);
208   }
209 
210   bool ShouldAlignPC = FixupFlags & MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
211   assert((ShouldAlignPC ? IsPCRel : true) &&
212     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
213 
214   if (IsPCRel) {
215     uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset();
216 
217     // A number of ARM fixups in Thumb mode require that the effective PC
218     // address be determined as the 32-bit aligned version of the actual offset.
219     if (ShouldAlignPC) Offset &= ~0x3;
220     Value -= Offset;
221   }
222 
223   // Let the backend force a relocation if needed.
224   if (IsResolved &&
225       getBackend().shouldForceRelocation(*this, Fixup, Target, Value, STI)) {
226     IsResolved = false;
227     WasForced = true;
228   }
229 
230   // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
231   // recordRelocation handle non-VK_None cases like A@plt-B+C.
232   if (!IsResolved && Target.getSymA() && Target.getSymB() &&
233       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None &&
234       getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value))
235     return true;
236 
237   return IsResolved;
238 }
239 
240 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const {
241   assert(getBackendPtr() && "Requires assembler backend");
242   switch (F.getKind()) {
243   case MCFragment::FT_Data:
244     return cast<MCDataFragment>(F).getContents().size();
245   case MCFragment::FT_Relaxable:
246     return cast<MCRelaxableFragment>(F).getContents().size();
247   case MCFragment::FT_Fill: {
248     auto &FF = cast<MCFillFragment>(F);
249     int64_t NumValues = 0;
250     if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) {
251       getContext().reportError(FF.getLoc(),
252                                "expected assembly-time absolute expression");
253       return 0;
254     }
255     int64_t Size = NumValues * FF.getValueSize();
256     if (Size < 0) {
257       getContext().reportError(FF.getLoc(), "invalid number of bytes");
258       return 0;
259     }
260     return Size;
261   }
262 
263   case MCFragment::FT_Nops:
264     return cast<MCNopsFragment>(F).getNumBytes();
265 
266   case MCFragment::FT_LEB:
267     return cast<MCLEBFragment>(F).getContents().size();
268 
269   case MCFragment::FT_BoundaryAlign:
270     return cast<MCBoundaryAlignFragment>(F).getSize();
271 
272   case MCFragment::FT_SymbolId:
273     return 4;
274 
275   case MCFragment::FT_Align: {
276     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
277     unsigned Offset = getFragmentOffset(AF);
278     unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
279 
280     // Insert extra Nops for code alignment if the target define
281     // shouldInsertExtraNopBytesForCodeAlign target hook.
282     if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
283         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
284       return Size;
285 
286     // If we are padding with nops, force the padding to be larger than the
287     // minimum nop size.
288     if (Size > 0 && AF.hasEmitNops()) {
289       while (Size % getBackend().getMinimumNopSize())
290         Size += AF.getAlignment().value();
291     }
292     if (Size > AF.getMaxBytesToEmit())
293       return 0;
294     return Size;
295   }
296 
297   case MCFragment::FT_Org: {
298     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
299     MCValue Value;
300     if (!OF.getOffset().evaluateAsValue(Value, *this)) {
301       getContext().reportError(OF.getLoc(),
302                                "expected assembly-time absolute expression");
303         return 0;
304     }
305 
306     uint64_t FragmentOffset = getFragmentOffset(OF);
307     int64_t TargetLocation = Value.getConstant();
308     if (const MCSymbolRefExpr *A = Value.getSymA()) {
309       uint64_t Val;
310       if (!getSymbolOffset(A->getSymbol(), Val)) {
311         getContext().reportError(OF.getLoc(), "expected absolute expression");
312         return 0;
313       }
314       TargetLocation += Val;
315     }
316     int64_t Size = TargetLocation - FragmentOffset;
317     if (Size < 0 || Size >= 0x40000000) {
318       getContext().reportError(
319           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
320                            "' (at offset '" + Twine(FragmentOffset) + "')");
321       return 0;
322     }
323     return Size;
324   }
325 
326   case MCFragment::FT_Dwarf:
327     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
328   case MCFragment::FT_DwarfFrame:
329     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
330   case MCFragment::FT_CVInlineLines:
331     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
332   case MCFragment::FT_CVDefRange:
333     return cast<MCCVDefRangeFragment>(F).getContents().size();
334   case MCFragment::FT_PseudoProbe:
335     return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
336   case MCFragment::FT_Dummy:
337     llvm_unreachable("Should not have been added");
338   }
339 
340   llvm_unreachable("invalid fragment kind");
341 }
342 
343 // Compute the amount of padding required before the fragment \p F to
344 // obey bundling restrictions, where \p FOffset is the fragment's offset in
345 // its section and \p FSize is the fragment's size.
346 static uint64_t computeBundlePadding(unsigned BundleSize,
347                                      const MCEncodedFragment *F,
348                                      uint64_t FOffset, uint64_t FSize) {
349   uint64_t OffsetInBundle = FOffset & (BundleSize - 1);
350   uint64_t EndOfFragment = OffsetInBundle + FSize;
351 
352   // There are two kinds of bundling restrictions:
353   //
354   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
355   //    *end* on a bundle boundary.
356   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
357   //    would, add padding until the end of the bundle so that the fragment
358   //    will start in a new one.
359   if (F->alignToBundleEnd()) {
360     // Three possibilities here:
361     //
362     // A) The fragment just happens to end at a bundle boundary, so we're good.
363     // B) The fragment ends before the current bundle boundary: pad it just
364     //    enough to reach the boundary.
365     // C) The fragment ends after the current bundle boundary: pad it until it
366     //    reaches the end of the next bundle boundary.
367     //
368     // Note: this code could be made shorter with some modulo trickery, but it's
369     // intentionally kept in its more explicit form for simplicity.
370     if (EndOfFragment == BundleSize)
371       return 0;
372     else if (EndOfFragment < BundleSize)
373       return BundleSize - EndOfFragment;
374     else { // EndOfFragment > BundleSize
375       return 2 * BundleSize - EndOfFragment;
376     }
377   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
378     return BundleSize - OffsetInBundle;
379   else
380     return 0;
381 }
382 
383 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const {
384   // If bundling is enabled and this fragment has instructions in it, it has to
385   // obey the bundling restrictions. With padding, we'll have:
386   //
387   //
388   //        BundlePadding
389   //             |||
390   // -------------------------------------
391   //   Prev  |##########|       F        |
392   // -------------------------------------
393   //                    ^
394   //                    |
395   //                    F->Offset
396   //
397   // The fragment's offset will point to after the padding, and its computed
398   // size won't include the padding.
399   //
400   // ".align N" is an example of a directive that introduces multiple
401   // fragments. We could add a special case to handle ".align N" by emitting
402   // within-fragment padding (which would produce less padding when N is less
403   // than the bundle size), but for now we don't.
404   //
405   assert(isa<MCEncodedFragment>(F) &&
406          "Only MCEncodedFragment implementations have instructions");
407   MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
408   uint64_t FSize = computeFragmentSize(*EF);
409 
410   if (FSize > getBundleAlignSize())
411     report_fatal_error("Fragment can't be larger than a bundle size");
412 
413   uint64_t RequiredBundlePadding =
414       computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize);
415   if (RequiredBundlePadding > UINT8_MAX)
416     report_fatal_error("Padding cannot exceed 255 bytes");
417   EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
418   EF->Offset += RequiredBundlePadding;
419   if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev))
420     if (DF->getContents().empty())
421       DF->Offset = EF->Offset;
422 }
423 
424 void MCAssembler::ensureValid(MCSection &Sec) const {
425   if (Sec.hasLayout())
426     return;
427   Sec.setHasLayout(true);
428   MCFragment *Prev = nullptr;
429   uint64_t Offset = 0;
430   for (MCFragment &F : Sec) {
431     F.Offset = Offset;
432     if (isBundlingEnabled() && F.hasInstructions()) {
433       layoutBundle(Prev, &F);
434       Offset = F.Offset;
435     }
436     Offset += computeFragmentSize(F);
437     Prev = &F;
438   }
439 }
440 
441 uint64_t MCAssembler::getFragmentOffset(const MCFragment &F) const {
442   ensureValid(*F.getParent());
443   return F.Offset;
444 }
445 
446 // Simple getSymbolOffset helper for the non-variable case.
447 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S,
448                            bool ReportError, uint64_t &Val) {
449   if (!S.getFragment()) {
450     if (ReportError)
451       report_fatal_error("unable to evaluate offset to undefined symbol '" +
452                          S.getName() + "'");
453     return false;
454   }
455   Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset();
456   return true;
457 }
458 
459 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S,
460                                 bool ReportError, uint64_t &Val) {
461   if (!S.isVariable())
462     return getLabelOffset(Asm, S, ReportError, Val);
463 
464   // If SD is a variable, evaluate it.
465   MCValue Target;
466   if (!S.getVariableValue()->evaluateAsValue(Target, Asm))
467     report_fatal_error("unable to evaluate offset for variable '" +
468                        S.getName() + "'");
469 
470   uint64_t Offset = Target.getConstant();
471 
472   const MCSymbolRefExpr *A = Target.getSymA();
473   if (A) {
474     uint64_t ValA;
475     // FIXME: On most platforms, `Target`'s component symbols are labels from
476     // having been simplified during evaluation, but on Mach-O they can be
477     // variables due to PR19203. This, and the line below for `B` can be
478     // restored to call `getLabelOffset` when PR19203 is fixed.
479     if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA))
480       return false;
481     Offset += ValA;
482   }
483 
484   const MCSymbolRefExpr *B = Target.getSymB();
485   if (B) {
486     uint64_t ValB;
487     if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB))
488       return false;
489     Offset -= ValB;
490   }
491 
492   Val = Offset;
493   return true;
494 }
495 
496 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
497   return getSymbolOffsetImpl(*this, S, false, Val);
498 }
499 
500 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const {
501   uint64_t Val;
502   getSymbolOffsetImpl(*this, S, true, Val);
503   return Val;
504 }
505 
506 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const {
507   assert(HasLayout);
508   if (!Symbol.isVariable())
509     return &Symbol;
510 
511   const MCExpr *Expr = Symbol.getVariableValue();
512   MCValue Value;
513   if (!Expr->evaluateAsValue(Value, *this)) {
514     getContext().reportError(Expr->getLoc(),
515                              "expression could not be evaluated");
516     return nullptr;
517   }
518 
519   const MCSymbolRefExpr *RefB = Value.getSymB();
520   if (RefB) {
521     getContext().reportError(
522         Expr->getLoc(),
523         Twine("symbol '") + RefB->getSymbol().getName() +
524             "' could not be evaluated in a subtraction expression");
525     return nullptr;
526   }
527 
528   const MCSymbolRefExpr *A = Value.getSymA();
529   if (!A)
530     return nullptr;
531 
532   const MCSymbol &ASym = A->getSymbol();
533   if (ASym.isCommon()) {
534     getContext().reportError(Expr->getLoc(),
535                              "Common symbol '" + ASym.getName() +
536                                  "' cannot be used in assignment expr");
537     return nullptr;
538   }
539 
540   return &ASym;
541 }
542 
543 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const {
544   assert(HasLayout);
545   // The size is the last fragment's end offset.
546   const MCFragment &F = *Sec.curFragList()->Tail;
547   return getFragmentOffset(F) + computeFragmentSize(F);
548 }
549 
550 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const {
551   // Virtual sections have no file size.
552   if (Sec.isVirtualSection())
553     return 0;
554   return getSectionAddressSize(Sec);
555 }
556 
557 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
558   bool Changed = !Symbol.isRegistered();
559   if (Changed) {
560     Symbol.setIsRegistered(true);
561     Symbols.push_back(&Symbol);
562   }
563   return Changed;
564 }
565 
566 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
567                                        const MCEncodedFragment &EF,
568                                        uint64_t FSize) const {
569   assert(getBackendPtr() && "Expected assembler backend");
570   // Should NOP padding be written out before this fragment?
571   unsigned BundlePadding = EF.getBundlePadding();
572   if (BundlePadding > 0) {
573     assert(isBundlingEnabled() &&
574            "Writing bundle padding with disabled bundling");
575     assert(EF.hasInstructions() &&
576            "Writing bundle padding for a fragment without instructions");
577 
578     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
579     const MCSubtargetInfo *STI = EF.getSubtargetInfo();
580     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
581       // If the padding itself crosses a bundle boundary, it must be emitted
582       // in 2 pieces, since even nop instructions must not cross boundaries.
583       //             v--------------v   <- BundleAlignSize
584       //        v---------v             <- BundlePadding
585       // ----------------------------
586       // | Prev |####|####|    F    |
587       // ----------------------------
588       //        ^-------------------^   <- TotalLength
589       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
590       if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
591         report_fatal_error("unable to write NOP sequence of " +
592                            Twine(DistanceToBoundary) + " bytes");
593       BundlePadding -= DistanceToBoundary;
594     }
595     if (!getBackend().writeNopData(OS, BundlePadding, STI))
596       report_fatal_error("unable to write NOP sequence of " +
597                          Twine(BundlePadding) + " bytes");
598   }
599 }
600 
601 /// Write the fragment \p F to the output file.
602 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
603                           const MCFragment &F) {
604   // FIXME: Embed in fragments instead?
605   uint64_t FragmentSize = Asm.computeFragmentSize(F);
606 
607   llvm::endianness Endian = Asm.getBackend().Endian;
608 
609   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
610     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
611 
612   // This variable (and its dummy usage) is to participate in the assert at
613   // the end of the function.
614   uint64_t Start = OS.tell();
615   (void) Start;
616 
617   ++stats::EmittedFragments;
618 
619   switch (F.getKind()) {
620   case MCFragment::FT_Align: {
621     ++stats::EmittedAlignFragments;
622     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
623     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
624 
625     uint64_t Count = FragmentSize / AF.getValueSize();
626 
627     // FIXME: This error shouldn't actually occur (the front end should emit
628     // multiple .align directives to enforce the semantics it wants), but is
629     // severe enough that we want to report it. How to handle this?
630     if (Count * AF.getValueSize() != FragmentSize)
631       report_fatal_error("undefined .align directive, value size '" +
632                         Twine(AF.getValueSize()) +
633                         "' is not a divisor of padding size '" +
634                         Twine(FragmentSize) + "'");
635 
636     // See if we are aligning with nops, and if so do that first to try to fill
637     // the Count bytes.  Then if that did not fill any bytes or there are any
638     // bytes left to fill use the Value and ValueSize to fill the rest.
639     // If we are aligning with nops, ask that target to emit the right data.
640     if (AF.hasEmitNops()) {
641       if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
642         report_fatal_error("unable to write nop sequence of " +
643                           Twine(Count) + " bytes");
644       break;
645     }
646 
647     // Otherwise, write out in multiples of the value size.
648     for (uint64_t i = 0; i != Count; ++i) {
649       switch (AF.getValueSize()) {
650       default: llvm_unreachable("Invalid size!");
651       case 1: OS << char(AF.getValue()); break;
652       case 2:
653         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
654         break;
655       case 4:
656         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
657         break;
658       case 8:
659         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
660         break;
661       }
662     }
663     break;
664   }
665 
666   case MCFragment::FT_Data:
667     ++stats::EmittedDataFragments;
668     OS << cast<MCDataFragment>(F).getContents();
669     break;
670 
671   case MCFragment::FT_Relaxable:
672     ++stats::EmittedRelaxableFragments;
673     OS << cast<MCRelaxableFragment>(F).getContents();
674     break;
675 
676   case MCFragment::FT_Fill: {
677     ++stats::EmittedFillFragments;
678     const MCFillFragment &FF = cast<MCFillFragment>(F);
679     uint64_t V = FF.getValue();
680     unsigned VSize = FF.getValueSize();
681     const unsigned MaxChunkSize = 16;
682     char Data[MaxChunkSize];
683     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
684     // Duplicate V into Data as byte vector to reduce number of
685     // writes done. As such, do endian conversion here.
686     for (unsigned I = 0; I != VSize; ++I) {
687       unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
688       Data[I] = uint8_t(V >> (index * 8));
689     }
690     for (unsigned I = VSize; I < MaxChunkSize; ++I)
691       Data[I] = Data[I - VSize];
692 
693     // Set to largest multiple of VSize in Data.
694     const unsigned NumPerChunk = MaxChunkSize / VSize;
695     // Set ChunkSize to largest multiple of VSize in Data
696     const unsigned ChunkSize = VSize * NumPerChunk;
697 
698     // Do copies by chunk.
699     StringRef Ref(Data, ChunkSize);
700     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
701       OS << Ref;
702 
703     // do remainder if needed.
704     unsigned TrailingCount = FragmentSize % ChunkSize;
705     if (TrailingCount)
706       OS.write(Data, TrailingCount);
707     break;
708   }
709 
710   case MCFragment::FT_Nops: {
711     ++stats::EmittedNopsFragments;
712     const MCNopsFragment &NF = cast<MCNopsFragment>(F);
713 
714     int64_t NumBytes = NF.getNumBytes();
715     int64_t ControlledNopLength = NF.getControlledNopLength();
716     int64_t MaximumNopLength =
717         Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
718 
719     assert(NumBytes > 0 && "Expected positive NOPs fragment size");
720     assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
721 
722     if (ControlledNopLength > MaximumNopLength) {
723       Asm.getContext().reportError(NF.getLoc(),
724                                    "illegal NOP size " +
725                                        std::to_string(ControlledNopLength) +
726                                        ". (expected within [0, " +
727                                        std::to_string(MaximumNopLength) + "])");
728       // Clamp the NOP length as reportError does not stop the execution
729       // immediately.
730       ControlledNopLength = MaximumNopLength;
731     }
732 
733     // Use maximum value if the size of each NOP is not specified
734     if (!ControlledNopLength)
735       ControlledNopLength = MaximumNopLength;
736 
737     while (NumBytes) {
738       uint64_t NumBytesToEmit =
739           (uint64_t)std::min(NumBytes, ControlledNopLength);
740       assert(NumBytesToEmit && "try to emit empty NOP instruction");
741       if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
742                                          NF.getSubtargetInfo())) {
743         report_fatal_error("unable to write nop sequence of the remaining " +
744                            Twine(NumBytesToEmit) + " bytes");
745         break;
746       }
747       NumBytes -= NumBytesToEmit;
748     }
749     break;
750   }
751 
752   case MCFragment::FT_LEB: {
753     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
754     OS << LF.getContents();
755     break;
756   }
757 
758   case MCFragment::FT_BoundaryAlign: {
759     const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
760     if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
761       report_fatal_error("unable to write nop sequence of " +
762                          Twine(FragmentSize) + " bytes");
763     break;
764   }
765 
766   case MCFragment::FT_SymbolId: {
767     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
768     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
769     break;
770   }
771 
772   case MCFragment::FT_Org: {
773     ++stats::EmittedOrgFragments;
774     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
775 
776     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
777       OS << char(OF.getValue());
778 
779     break;
780   }
781 
782   case MCFragment::FT_Dwarf: {
783     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
784     OS << OF.getContents();
785     break;
786   }
787   case MCFragment::FT_DwarfFrame: {
788     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
789     OS << CF.getContents();
790     break;
791   }
792   case MCFragment::FT_CVInlineLines: {
793     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
794     OS << OF.getContents();
795     break;
796   }
797   case MCFragment::FT_CVDefRange: {
798     const auto &DRF = cast<MCCVDefRangeFragment>(F);
799     OS << DRF.getContents();
800     break;
801   }
802   case MCFragment::FT_PseudoProbe: {
803     const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
804     OS << PF.getContents();
805     break;
806   }
807   case MCFragment::FT_Dummy:
808     llvm_unreachable("Should not have been added");
809   }
810 
811   assert(OS.tell() - Start == FragmentSize &&
812          "The stream should advance by fragment size");
813 }
814 
815 void MCAssembler::writeSectionData(raw_ostream &OS,
816                                    const MCSection *Sec) const {
817   assert(getBackendPtr() && "Expected assembler backend");
818 
819   // Ignore virtual sections.
820   if (Sec->isVirtualSection()) {
821     assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!");
822 
823     // Check that contents are only things legal inside a virtual section.
824     for (const MCFragment &F : *Sec) {
825       switch (F.getKind()) {
826       default: llvm_unreachable("Invalid fragment in virtual section!");
827       case MCFragment::FT_Data: {
828         // Check that we aren't trying to write a non-zero contents (or fixups)
829         // into a virtual section. This is to support clients which use standard
830         // directives to fill the contents of virtual sections.
831         const MCDataFragment &DF = cast<MCDataFragment>(F);
832         if (DF.getFixups().size())
833           getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
834                                                 " section '" + Sec->getName() +
835                                                 "' cannot have fixups");
836         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
837           if (DF.getContents()[i]) {
838             getContext().reportError(SMLoc(),
839                                      Sec->getVirtualSectionKind() +
840                                          " section '" + Sec->getName() +
841                                          "' cannot have non-zero initializers");
842             break;
843           }
844         break;
845       }
846       case MCFragment::FT_Align:
847         // Check that we aren't trying to write a non-zero value into a virtual
848         // section.
849         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
850                 cast<MCAlignFragment>(F).getValue() == 0) &&
851                "Invalid align in virtual section!");
852         break;
853       case MCFragment::FT_Fill:
854         assert((cast<MCFillFragment>(F).getValue() == 0) &&
855                "Invalid fill in virtual section!");
856         break;
857       case MCFragment::FT_Org:
858         break;
859       }
860     }
861 
862     return;
863   }
864 
865   uint64_t Start = OS.tell();
866   (void)Start;
867 
868   for (const MCFragment &F : *Sec)
869     writeFragment(OS, *this, F);
870 
871   assert(getContext().hadError() ||
872          OS.tell() - Start == getSectionAddressSize(*Sec));
873 }
874 
875 std::tuple<MCValue, uint64_t, bool>
876 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup,
877                          const MCSubtargetInfo *STI) {
878   // Evaluate the fixup.
879   MCValue Target;
880   uint64_t FixedValue;
881   bool WasForced;
882   bool IsResolved =
883       evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced);
884   if (!IsResolved) {
885     // The fixup was unresolved, we need a relocation. Inform the object
886     // writer of the relocation, and give it an opportunity to adjust the
887     // fixup value if need be.
888     getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue);
889   }
890   return std::make_tuple(Target, FixedValue, IsResolved);
891 }
892 
893 void MCAssembler::layout() {
894   assert(getBackendPtr() && "Expected assembler backend");
895   DEBUG_WITH_TYPE("mc-dump", {
896       errs() << "assembler backend - pre-layout\n--\n";
897       dump(); });
898 
899   // Assign section ordinals.
900   unsigned SectionIndex = 0;
901   for (MCSection &Sec : *this) {
902     Sec.setOrdinal(SectionIndex++);
903 
904     // Chain together fragments from all subsections.
905     if (Sec.Subsections.size() > 1) {
906       MCDummyFragment Dummy;
907       MCFragment *Tail = &Dummy;
908       for (auto &[_, List] : Sec.Subsections) {
909         assert(List.Head);
910         Tail->Next = List.Head;
911         Tail = List.Tail;
912       }
913       Sec.Subsections.clear();
914       Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}});
915       Sec.CurFragList = &Sec.Subsections[0].second;
916 
917       unsigned FragmentIndex = 0;
918       for (MCFragment &Frag : Sec)
919         Frag.setLayoutOrder(FragmentIndex++);
920     }
921   }
922 
923   // Layout until everything fits.
924   this->HasLayout = true;
925   while (layoutOnce()) {
926     if (getContext().hadError())
927       return;
928     // Size of fragments in one section can depend on the size of fragments in
929     // another. If any fragment has changed size, we have to re-layout (and
930     // as a result possibly further relax) all.
931     for (MCSection &Sec : *this)
932       Sec.setHasLayout(false);
933   }
934 
935   DEBUG_WITH_TYPE("mc-dump", {
936       errs() << "assembler backend - post-relaxation\n--\n";
937       dump(); });
938 
939   // Finalize the layout, including fragment lowering.
940   getBackend().finishLayout(*this);
941 
942   DEBUG_WITH_TYPE("mc-dump", {
943       errs() << "assembler backend - final-layout\n--\n";
944       dump(); });
945 
946   // Allow the object writer a chance to perform post-layout binding (for
947   // example, to set the index fields in the symbol data).
948   getWriter().executePostLayoutBinding(*this);
949 
950   // Evaluate and apply the fixups, generating relocation entries as necessary.
951   for (MCSection &Sec : *this) {
952     for (MCFragment &Frag : Sec) {
953       ArrayRef<MCFixup> Fixups;
954       MutableArrayRef<char> Contents;
955       const MCSubtargetInfo *STI = nullptr;
956 
957       // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
958       switch (Frag.getKind()) {
959       default:
960         continue;
961       case MCFragment::FT_Align: {
962         MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
963         // Insert fixup type for code alignment if the target define
964         // shouldInsertFixupForCodeAlign target hook.
965         if (Sec.useCodeAlign() && AF.hasEmitNops())
966           getBackend().shouldInsertFixupForCodeAlign(*this, AF);
967         continue;
968       }
969       case MCFragment::FT_Data: {
970         MCDataFragment &DF = cast<MCDataFragment>(Frag);
971         Fixups = DF.getFixups();
972         Contents = DF.getContents();
973         STI = DF.getSubtargetInfo();
974         assert(!DF.hasInstructions() || STI != nullptr);
975         break;
976       }
977       case MCFragment::FT_Relaxable: {
978         MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
979         Fixups = RF.getFixups();
980         Contents = RF.getContents();
981         STI = RF.getSubtargetInfo();
982         assert(!RF.hasInstructions() || STI != nullptr);
983         break;
984       }
985       case MCFragment::FT_CVDefRange: {
986         MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
987         Fixups = CF.getFixups();
988         Contents = CF.getContents();
989         break;
990       }
991       case MCFragment::FT_Dwarf: {
992         MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
993         Fixups = DF.getFixups();
994         Contents = DF.getContents();
995         break;
996       }
997       case MCFragment::FT_DwarfFrame: {
998         MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
999         Fixups = DF.getFixups();
1000         Contents = DF.getContents();
1001         break;
1002       }
1003       case MCFragment::FT_LEB: {
1004         auto &LF = cast<MCLEBFragment>(Frag);
1005         Fixups = LF.getFixups();
1006         Contents = LF.getContents();
1007         break;
1008       }
1009       case MCFragment::FT_PseudoProbe: {
1010         MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
1011         Fixups = PF.getFixups();
1012         Contents = PF.getContents();
1013         break;
1014       }
1015       }
1016       for (const MCFixup &Fixup : Fixups) {
1017         uint64_t FixedValue;
1018         bool IsResolved;
1019         MCValue Target;
1020         std::tie(Target, FixedValue, IsResolved) =
1021             handleFixup(Frag, Fixup, STI);
1022         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
1023                                 IsResolved, STI);
1024       }
1025     }
1026   }
1027 }
1028 
1029 void MCAssembler::Finish() {
1030   layout();
1031 
1032   // Write the object file.
1033   stats::ObjectBytes += getWriter().writeObject(*this);
1034 
1035   HasLayout = false;
1036 }
1037 
1038 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
1039                                        const MCRelaxableFragment *DF) const {
1040   assert(getBackendPtr() && "Expected assembler backend");
1041   MCValue Target;
1042   uint64_t Value;
1043   bool WasForced;
1044   bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(),
1045                                 Value, WasForced);
1046   if (Target.getSymA() &&
1047       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
1048       Fixup.getKind() == FK_Data_1)
1049     return false;
1050   return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved,
1051                                                    Value, DF, WasForced);
1052 }
1053 
1054 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const {
1055   assert(getBackendPtr() && "Expected assembler backend");
1056   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
1057   // are intentionally pushing out inst fragments, or because we relaxed a
1058   // previous instruction to one that doesn't need relaxation.
1059   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
1060     return false;
1061 
1062   for (const MCFixup &Fixup : F->getFixups())
1063     if (fixupNeedsRelaxation(Fixup, F))
1064       return true;
1065 
1066   return false;
1067 }
1068 
1069 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) {
1070   assert(getEmitterPtr() &&
1071          "Expected CodeEmitter defined for relaxInstruction");
1072   if (!fragmentNeedsRelaxation(&F))
1073     return false;
1074 
1075   ++stats::RelaxedInstructions;
1076 
1077   // FIXME-PERF: We could immediately lower out instructions if we can tell
1078   // they are fully resolved, to avoid retesting on later passes.
1079 
1080   // Relax the fragment.
1081 
1082   MCInst Relaxed = F.getInst();
1083   getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
1084 
1085   // Encode the new instruction.
1086   F.setInst(Relaxed);
1087   F.getFixups().clear();
1088   F.getContents().clear();
1089   getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(),
1090                                  *F.getSubtargetInfo());
1091   return true;
1092 }
1093 
1094 bool MCAssembler::relaxLEB(MCLEBFragment &LF) {
1095   const unsigned OldSize = static_cast<unsigned>(LF.getContents().size());
1096   unsigned PadTo = OldSize;
1097   int64_t Value;
1098   SmallVectorImpl<char> &Data = LF.getContents();
1099   LF.getFixups().clear();
1100   // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1101   // requires that .uleb128 A-B is foldable where A and B reside in different
1102   // fragments. This is used by __gcc_except_table.
1103   bool Abs = getWriter().getSubsectionsViaSymbols()
1104                  ? LF.getValue().evaluateKnownAbsolute(Value, *this)
1105                  : LF.getValue().evaluateAsAbsolute(Value, *this);
1106   if (!Abs) {
1107     bool Relaxed, UseZeroPad;
1108     std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value);
1109     if (!Relaxed) {
1110       getContext().reportError(LF.getValue().getLoc(),
1111                                Twine(LF.isSigned() ? ".s" : ".u") +
1112                                    "leb128 expression is not absolute");
1113       LF.setValue(MCConstantExpr::create(0, Context));
1114     }
1115     uint8_t Tmp[10]; // maximum size: ceil(64/7)
1116     PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
1117     if (UseZeroPad)
1118       Value = 0;
1119   }
1120   Data.clear();
1121   raw_svector_ostream OSE(Data);
1122   // The compiler can generate EH table assembly that is impossible to assemble
1123   // without either adding padding to an LEB fragment or adding extra padding
1124   // to a later alignment fragment. To accommodate such tables, relaxation can
1125   // only increase an LEB fragment size here, not decrease it. See PR35809.
1126   if (LF.isSigned())
1127     encodeSLEB128(Value, OSE, PadTo);
1128   else
1129     encodeULEB128(Value, OSE, PadTo);
1130   return OldSize != LF.getContents().size();
1131 }
1132 
1133 /// Check if the branch crosses the boundary.
1134 ///
1135 /// \param StartAddr start address of the fused/unfused branch.
1136 /// \param Size size of the fused/unfused branch.
1137 /// \param BoundaryAlignment alignment requirement of the branch.
1138 /// \returns true if the branch cross the boundary.
1139 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1140                              Align BoundaryAlignment) {
1141   uint64_t EndAddr = StartAddr + Size;
1142   return (StartAddr >> Log2(BoundaryAlignment)) !=
1143          ((EndAddr - 1) >> Log2(BoundaryAlignment));
1144 }
1145 
1146 /// Check if the branch is against the boundary.
1147 ///
1148 /// \param StartAddr start address of the fused/unfused branch.
1149 /// \param Size size of the fused/unfused branch.
1150 /// \param BoundaryAlignment alignment requirement of the branch.
1151 /// \returns true if the branch is against the boundary.
1152 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1153                               Align BoundaryAlignment) {
1154   uint64_t EndAddr = StartAddr + Size;
1155   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1156 }
1157 
1158 /// Check if the branch needs padding.
1159 ///
1160 /// \param StartAddr start address of the fused/unfused branch.
1161 /// \param Size size of the fused/unfused branch.
1162 /// \param BoundaryAlignment alignment requirement of the branch.
1163 /// \returns true if the branch needs padding.
1164 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1165                         Align BoundaryAlignment) {
1166   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1167          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1168 }
1169 
1170 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) {
1171   // BoundaryAlignFragment that doesn't need to align any fragment should not be
1172   // relaxed.
1173   if (!BF.getLastFragment())
1174     return false;
1175 
1176   uint64_t AlignedOffset = getFragmentOffset(BF);
1177   uint64_t AlignedSize = 0;
1178   for (const MCFragment *F = BF.getNext();; F = F->getNext()) {
1179     AlignedSize += computeFragmentSize(*F);
1180     if (F == BF.getLastFragment())
1181       break;
1182   }
1183 
1184   Align BoundaryAlignment = BF.getAlignment();
1185   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1186                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1187                          : 0U;
1188   if (NewSize == BF.getSize())
1189     return false;
1190   BF.setSize(NewSize);
1191   return true;
1192 }
1193 
1194 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) {
1195   bool WasRelaxed;
1196   if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed))
1197     return WasRelaxed;
1198 
1199   MCContext &Context = getContext();
1200   uint64_t OldSize = DF.getContents().size();
1201   int64_t AddrDelta;
1202   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1203   assert(Abs && "We created a line delta with an invalid expression");
1204   (void)Abs;
1205   int64_t LineDelta;
1206   LineDelta = DF.getLineDelta();
1207   SmallVectorImpl<char> &Data = DF.getContents();
1208   Data.clear();
1209   DF.getFixups().clear();
1210 
1211   MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta,
1212                           AddrDelta, Data);
1213   return OldSize != Data.size();
1214 }
1215 
1216 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) {
1217   bool WasRelaxed;
1218   if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed))
1219     return WasRelaxed;
1220 
1221   MCContext &Context = getContext();
1222   int64_t Value;
1223   bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this);
1224   if (!Abs) {
1225     getContext().reportError(DF.getAddrDelta().getLoc(),
1226                              "invalid CFI advance_loc expression");
1227     DF.setAddrDelta(MCConstantExpr::create(0, Context));
1228     return false;
1229   }
1230 
1231   SmallVectorImpl<char> &Data = DF.getContents();
1232   uint64_t OldSize = Data.size();
1233   Data.clear();
1234   DF.getFixups().clear();
1235 
1236   MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
1237   return OldSize != Data.size();
1238 }
1239 
1240 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) {
1241   unsigned OldSize = F.getContents().size();
1242   getContext().getCVContext().encodeInlineLineTable(*this, F);
1243   return OldSize != F.getContents().size();
1244 }
1245 
1246 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) {
1247   unsigned OldSize = F.getContents().size();
1248   getContext().getCVContext().encodeDefRange(*this, F);
1249   return OldSize != F.getContents().size();
1250 }
1251 
1252 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) {
1253   uint64_t OldSize = PF.getContents().size();
1254   int64_t AddrDelta;
1255   bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1256   assert(Abs && "We created a pseudo probe with an invalid expression");
1257   (void)Abs;
1258   SmallVectorImpl<char> &Data = PF.getContents();
1259   Data.clear();
1260   raw_svector_ostream OSE(Data);
1261   PF.getFixups().clear();
1262 
1263   // AddrDelta is a signed integer
1264   encodeSLEB128(AddrDelta, OSE, OldSize);
1265   return OldSize != Data.size();
1266 }
1267 
1268 bool MCAssembler::relaxFragment(MCFragment &F) {
1269   switch(F.getKind()) {
1270   default:
1271     return false;
1272   case MCFragment::FT_Relaxable:
1273     assert(!getRelaxAll() &&
1274            "Did not expect a MCRelaxableFragment in RelaxAll mode");
1275     return relaxInstruction(cast<MCRelaxableFragment>(F));
1276   case MCFragment::FT_Dwarf:
1277     return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F));
1278   case MCFragment::FT_DwarfFrame:
1279     return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F));
1280   case MCFragment::FT_LEB:
1281     return relaxLEB(cast<MCLEBFragment>(F));
1282   case MCFragment::FT_BoundaryAlign:
1283     return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F));
1284   case MCFragment::FT_CVInlineLines:
1285     return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F));
1286   case MCFragment::FT_CVDefRange:
1287     return relaxCVDefRange(cast<MCCVDefRangeFragment>(F));
1288   case MCFragment::FT_PseudoProbe:
1289     return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F));
1290   }
1291 }
1292 
1293 bool MCAssembler::layoutOnce() {
1294   ++stats::RelaxationSteps;
1295 
1296   bool Changed = false;
1297   for (MCSection &Sec : *this)
1298     for (MCFragment &Frag : Sec)
1299       if (relaxFragment(Frag))
1300         Changed = true;
1301   return Changed;
1302 }
1303 
1304 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1305 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1306   raw_ostream &OS = errs();
1307 
1308   OS << "<MCAssembler\n";
1309   OS << "  Sections:[\n    ";
1310   bool First = true;
1311   for (const MCSection &Sec : *this) {
1312     if (First)
1313       First = false;
1314     else
1315       OS << ",\n    ";
1316     Sec.dump();
1317   }
1318   OS << "],\n";
1319   OS << "  Symbols:[";
1320 
1321   First = true;
1322   for (const MCSymbol &Sym : symbols()) {
1323     if (First)
1324       First = false;
1325     else
1326       OS << ",\n           ";
1327     OS << "(";
1328     Sym.dump();
1329     OS << ", Index:" << Sym.getIndex() << ", ";
1330     OS << ")";
1331   }
1332   OS << "]>\n";
1333 }
1334 #endif
1335