1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/MC/MCAssembler.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Statistic.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCAsmBackend.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCCodeEmitter.h" 19 #include "llvm/MC/MCCodeView.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCDwarf.h" 22 #include "llvm/MC/MCExpr.h" 23 #include "llvm/MC/MCFixup.h" 24 #include "llvm/MC/MCFixupKindInfo.h" 25 #include "llvm/MC/MCFragment.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCSection.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/MC/MCValue.h" 31 #include "llvm/Support/Alignment.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/EndianStream.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <tuple> 41 #include <utility> 42 43 using namespace llvm; 44 45 namespace llvm { 46 class MCSubtargetInfo; 47 } 48 49 #define DEBUG_TYPE "assembler" 50 51 namespace { 52 namespace stats { 53 54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); 55 STATISTIC(EmittedRelaxableFragments, 56 "Number of emitted assembler fragments - relaxable"); 57 STATISTIC(EmittedDataFragments, 58 "Number of emitted assembler fragments - data"); 59 STATISTIC(EmittedCompactEncodedInstFragments, 60 "Number of emitted assembler fragments - compact encoded inst"); 61 STATISTIC(EmittedAlignFragments, 62 "Number of emitted assembler fragments - align"); 63 STATISTIC(EmittedFillFragments, 64 "Number of emitted assembler fragments - fill"); 65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops"); 66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org"); 67 STATISTIC(evaluateFixup, "Number of evaluated fixups"); 68 STATISTIC(ObjectBytes, "Number of emitted object file bytes"); 69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); 70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); 71 72 } // end namespace stats 73 } // end anonymous namespace 74 75 // FIXME FIXME FIXME: There are number of places in this file where we convert 76 // what is a 64-bit assembler value used for computation into a value in the 77 // object file, which may truncate it. We should detect that truncation where 78 // invalid and report errors back. 79 80 /* *** */ 81 82 MCAssembler::MCAssembler(MCContext &Context, 83 std::unique_ptr<MCAsmBackend> Backend, 84 std::unique_ptr<MCCodeEmitter> Emitter, 85 std::unique_ptr<MCObjectWriter> Writer) 86 : Context(Context), Backend(std::move(Backend)), 87 Emitter(std::move(Emitter)), Writer(std::move(Writer)) {} 88 89 MCAssembler::~MCAssembler() = default; 90 91 void MCAssembler::reset() { 92 RelaxAll = false; 93 SubsectionsViaSymbols = false; 94 Sections.clear(); 95 Symbols.clear(); 96 LinkerOptions.clear(); 97 FileNames.clear(); 98 ThumbFuncs.clear(); 99 BundleAlignSize = 0; 100 ELFHeaderEFlags = 0; 101 102 // reset objects owned by us 103 if (getBackendPtr()) 104 getBackendPtr()->reset(); 105 if (getEmitterPtr()) 106 getEmitterPtr()->reset(); 107 if (getWriterPtr()) 108 getWriterPtr()->reset(); 109 } 110 111 bool MCAssembler::registerSection(MCSection &Section) { 112 if (Section.isRegistered()) 113 return false; 114 assert(Section.curFragList()->Head && "allocInitialFragment not called"); 115 Sections.push_back(&Section); 116 Section.setIsRegistered(true); 117 return true; 118 } 119 120 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { 121 if (ThumbFuncs.count(Symbol)) 122 return true; 123 124 if (!Symbol->isVariable()) 125 return false; 126 127 const MCExpr *Expr = Symbol->getVariableValue(); 128 129 MCValue V; 130 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) 131 return false; 132 133 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) 134 return false; 135 136 const MCSymbolRefExpr *Ref = V.getSymA(); 137 if (!Ref) 138 return false; 139 140 if (Ref->getKind() != MCSymbolRefExpr::VK_None) 141 return false; 142 143 const MCSymbol &Sym = Ref->getSymbol(); 144 if (!isThumbFunc(&Sym)) 145 return false; 146 147 ThumbFuncs.insert(Symbol); // Cache it. 148 return true; 149 } 150 151 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF, 152 MCValue &Target, const MCSubtargetInfo *STI, 153 uint64_t &Value, bool &WasForced) const { 154 ++stats::evaluateFixup; 155 156 // FIXME: This code has some duplication with recordRelocation. We should 157 // probably merge the two into a single callback that tries to evaluate a 158 // fixup and records a relocation if one is needed. 159 160 // On error claim to have completely evaluated the fixup, to prevent any 161 // further processing from being done. 162 const MCExpr *Expr = Fixup.getValue(); 163 MCContext &Ctx = getContext(); 164 Value = 0; 165 WasForced = false; 166 if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) { 167 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); 168 return true; 169 } 170 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 171 if (RefB->getKind() != MCSymbolRefExpr::VK_None) { 172 Ctx.reportError(Fixup.getLoc(), 173 "unsupported subtraction of qualified symbol"); 174 return true; 175 } 176 } 177 178 assert(getBackendPtr() && "Expected assembler backend"); 179 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 180 MCFixupKindInfo::FKF_IsTarget; 181 182 if (IsTarget) 183 return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI, 184 Value, WasForced); 185 186 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags; 187 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & 188 MCFixupKindInfo::FKF_IsPCRel; 189 190 bool IsResolved = false; 191 if (IsPCRel) { 192 if (Target.getSymB()) { 193 IsResolved = false; 194 } else if (!Target.getSymA()) { 195 IsResolved = false; 196 } else { 197 const MCSymbolRefExpr *A = Target.getSymA(); 198 const MCSymbol &SA = A->getSymbol(); 199 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { 200 IsResolved = false; 201 } else if (auto *Writer = getWriterPtr()) { 202 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) || 203 Writer->isSymbolRefDifferenceFullyResolvedImpl( 204 *this, SA, *DF, false, true); 205 } 206 } 207 } else { 208 IsResolved = Target.isAbsolute(); 209 } 210 211 Value = Target.getConstant(); 212 213 if (const MCSymbolRefExpr *A = Target.getSymA()) { 214 const MCSymbol &Sym = A->getSymbol(); 215 if (Sym.isDefined()) 216 Value += getSymbolOffset(Sym); 217 } 218 if (const MCSymbolRefExpr *B = Target.getSymB()) { 219 const MCSymbol &Sym = B->getSymbol(); 220 if (Sym.isDefined()) 221 Value -= getSymbolOffset(Sym); 222 } 223 224 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 225 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; 226 assert((ShouldAlignPC ? IsPCRel : true) && 227 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); 228 229 if (IsPCRel) { 230 uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset(); 231 232 // A number of ARM fixups in Thumb mode require that the effective PC 233 // address be determined as the 32-bit aligned version of the actual offset. 234 if (ShouldAlignPC) Offset &= ~0x3; 235 Value -= Offset; 236 } 237 238 // Let the backend force a relocation if needed. 239 if (IsResolved && 240 getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) { 241 IsResolved = false; 242 WasForced = true; 243 } 244 245 // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let 246 // recordRelocation handle non-VK_None cases like A@plt-B+C. 247 if (!IsResolved && Target.getSymA() && Target.getSymB() && 248 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None && 249 getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value)) 250 return true; 251 252 return IsResolved; 253 } 254 255 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const { 256 assert(getBackendPtr() && "Requires assembler backend"); 257 switch (F.getKind()) { 258 case MCFragment::FT_Data: 259 return cast<MCDataFragment>(F).getContents().size(); 260 case MCFragment::FT_Relaxable: 261 return cast<MCRelaxableFragment>(F).getContents().size(); 262 case MCFragment::FT_CompactEncodedInst: 263 return cast<MCCompactEncodedInstFragment>(F).getContents().size(); 264 case MCFragment::FT_Fill: { 265 auto &FF = cast<MCFillFragment>(F); 266 int64_t NumValues = 0; 267 if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) { 268 getContext().reportError(FF.getLoc(), 269 "expected assembly-time absolute expression"); 270 return 0; 271 } 272 int64_t Size = NumValues * FF.getValueSize(); 273 if (Size < 0) { 274 getContext().reportError(FF.getLoc(), "invalid number of bytes"); 275 return 0; 276 } 277 return Size; 278 } 279 280 case MCFragment::FT_Nops: 281 return cast<MCNopsFragment>(F).getNumBytes(); 282 283 case MCFragment::FT_LEB: 284 return cast<MCLEBFragment>(F).getContents().size(); 285 286 case MCFragment::FT_BoundaryAlign: 287 return cast<MCBoundaryAlignFragment>(F).getSize(); 288 289 case MCFragment::FT_SymbolId: 290 return 4; 291 292 case MCFragment::FT_Align: { 293 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 294 unsigned Offset = getFragmentOffset(AF); 295 unsigned Size = offsetToAlignment(Offset, AF.getAlignment()); 296 297 // Insert extra Nops for code alignment if the target define 298 // shouldInsertExtraNopBytesForCodeAlign target hook. 299 if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() && 300 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size)) 301 return Size; 302 303 // If we are padding with nops, force the padding to be larger than the 304 // minimum nop size. 305 if (Size > 0 && AF.hasEmitNops()) { 306 while (Size % getBackend().getMinimumNopSize()) 307 Size += AF.getAlignment().value(); 308 } 309 if (Size > AF.getMaxBytesToEmit()) 310 return 0; 311 return Size; 312 } 313 314 case MCFragment::FT_Org: { 315 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 316 MCValue Value; 317 if (!OF.getOffset().evaluateAsValue(Value, *this)) { 318 getContext().reportError(OF.getLoc(), 319 "expected assembly-time absolute expression"); 320 return 0; 321 } 322 323 uint64_t FragmentOffset = getFragmentOffset(OF); 324 int64_t TargetLocation = Value.getConstant(); 325 if (const MCSymbolRefExpr *A = Value.getSymA()) { 326 uint64_t Val; 327 if (!getSymbolOffset(A->getSymbol(), Val)) { 328 getContext().reportError(OF.getLoc(), "expected absolute expression"); 329 return 0; 330 } 331 TargetLocation += Val; 332 } 333 int64_t Size = TargetLocation - FragmentOffset; 334 if (Size < 0 || Size >= 0x40000000) { 335 getContext().reportError( 336 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + 337 "' (at offset '" + Twine(FragmentOffset) + "')"); 338 return 0; 339 } 340 return Size; 341 } 342 343 case MCFragment::FT_Dwarf: 344 return cast<MCDwarfLineAddrFragment>(F).getContents().size(); 345 case MCFragment::FT_DwarfFrame: 346 return cast<MCDwarfCallFrameFragment>(F).getContents().size(); 347 case MCFragment::FT_CVInlineLines: 348 return cast<MCCVInlineLineTableFragment>(F).getContents().size(); 349 case MCFragment::FT_CVDefRange: 350 return cast<MCCVDefRangeFragment>(F).getContents().size(); 351 case MCFragment::FT_PseudoProbe: 352 return cast<MCPseudoProbeAddrFragment>(F).getContents().size(); 353 case MCFragment::FT_Dummy: 354 llvm_unreachable("Should not have been added"); 355 } 356 357 llvm_unreachable("invalid fragment kind"); 358 } 359 360 // Compute the amount of padding required before the fragment \p F to 361 // obey bundling restrictions, where \p FOffset is the fragment's offset in 362 // its section and \p FSize is the fragment's size. 363 static uint64_t computeBundlePadding(unsigned BundleSize, 364 const MCEncodedFragment *F, 365 uint64_t FOffset, uint64_t FSize) { 366 uint64_t OffsetInBundle = FOffset & (BundleSize - 1); 367 uint64_t EndOfFragment = OffsetInBundle + FSize; 368 369 // There are two kinds of bundling restrictions: 370 // 371 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will 372 // *end* on a bundle boundary. 373 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it 374 // would, add padding until the end of the bundle so that the fragment 375 // will start in a new one. 376 if (F->alignToBundleEnd()) { 377 // Three possibilities here: 378 // 379 // A) The fragment just happens to end at a bundle boundary, so we're good. 380 // B) The fragment ends before the current bundle boundary: pad it just 381 // enough to reach the boundary. 382 // C) The fragment ends after the current bundle boundary: pad it until it 383 // reaches the end of the next bundle boundary. 384 // 385 // Note: this code could be made shorter with some modulo trickery, but it's 386 // intentionally kept in its more explicit form for simplicity. 387 if (EndOfFragment == BundleSize) 388 return 0; 389 else if (EndOfFragment < BundleSize) 390 return BundleSize - EndOfFragment; 391 else { // EndOfFragment > BundleSize 392 return 2 * BundleSize - EndOfFragment; 393 } 394 } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize) 395 return BundleSize - OffsetInBundle; 396 else 397 return 0; 398 } 399 400 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const { 401 // If bundling is enabled and this fragment has instructions in it, it has to 402 // obey the bundling restrictions. With padding, we'll have: 403 // 404 // 405 // BundlePadding 406 // ||| 407 // ------------------------------------- 408 // Prev |##########| F | 409 // ------------------------------------- 410 // ^ 411 // | 412 // F->Offset 413 // 414 // The fragment's offset will point to after the padding, and its computed 415 // size won't include the padding. 416 // 417 // ".align N" is an example of a directive that introduces multiple 418 // fragments. We could add a special case to handle ".align N" by emitting 419 // within-fragment padding (which would produce less padding when N is less 420 // than the bundle size), but for now we don't. 421 // 422 assert(isa<MCEncodedFragment>(F) && 423 "Only MCEncodedFragment implementations have instructions"); 424 MCEncodedFragment *EF = cast<MCEncodedFragment>(F); 425 uint64_t FSize = computeFragmentSize(*EF); 426 427 if (FSize > getBundleAlignSize()) 428 report_fatal_error("Fragment can't be larger than a bundle size"); 429 430 uint64_t RequiredBundlePadding = 431 computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize); 432 if (RequiredBundlePadding > UINT8_MAX) 433 report_fatal_error("Padding cannot exceed 255 bytes"); 434 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); 435 EF->Offset += RequiredBundlePadding; 436 if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev)) 437 if (DF->getContents().empty()) 438 DF->Offset = EF->Offset; 439 } 440 441 void MCAssembler::ensureValid(MCSection &Sec) const { 442 if (Sec.hasLayout()) 443 return; 444 Sec.setHasLayout(true); 445 MCFragment *Prev = nullptr; 446 uint64_t Offset = 0; 447 for (MCFragment &F : Sec) { 448 F.Offset = Offset; 449 if (isBundlingEnabled() && F.hasInstructions()) { 450 layoutBundle(Prev, &F); 451 Offset = F.Offset; 452 } 453 Offset += computeFragmentSize(F); 454 Prev = &F; 455 } 456 } 457 458 uint64_t MCAssembler::getFragmentOffset(const MCFragment &F) const { 459 ensureValid(*F.getParent()); 460 return F.Offset; 461 } 462 463 // Simple getSymbolOffset helper for the non-variable case. 464 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S, 465 bool ReportError, uint64_t &Val) { 466 if (!S.getFragment()) { 467 if (ReportError) 468 report_fatal_error("unable to evaluate offset to undefined symbol '" + 469 S.getName() + "'"); 470 return false; 471 } 472 Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset(); 473 return true; 474 } 475 476 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S, 477 bool ReportError, uint64_t &Val) { 478 if (!S.isVariable()) 479 return getLabelOffset(Asm, S, ReportError, Val); 480 481 // If SD is a variable, evaluate it. 482 MCValue Target; 483 if (!S.getVariableValue()->evaluateAsValue(Target, Asm)) 484 report_fatal_error("unable to evaluate offset for variable '" + 485 S.getName() + "'"); 486 487 uint64_t Offset = Target.getConstant(); 488 489 const MCSymbolRefExpr *A = Target.getSymA(); 490 if (A) { 491 uint64_t ValA; 492 // FIXME: On most platforms, `Target`'s component symbols are labels from 493 // having been simplified during evaluation, but on Mach-O they can be 494 // variables due to PR19203. This, and the line below for `B` can be 495 // restored to call `getLabelOffset` when PR19203 is fixed. 496 if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA)) 497 return false; 498 Offset += ValA; 499 } 500 501 const MCSymbolRefExpr *B = Target.getSymB(); 502 if (B) { 503 uint64_t ValB; 504 if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB)) 505 return false; 506 Offset -= ValB; 507 } 508 509 Val = Offset; 510 return true; 511 } 512 513 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const { 514 return getSymbolOffsetImpl(*this, S, false, Val); 515 } 516 517 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const { 518 uint64_t Val; 519 getSymbolOffsetImpl(*this, S, true, Val); 520 return Val; 521 } 522 523 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const { 524 assert(HasLayout); 525 if (!Symbol.isVariable()) 526 return &Symbol; 527 528 const MCExpr *Expr = Symbol.getVariableValue(); 529 MCValue Value; 530 if (!Expr->evaluateAsValue(Value, *this)) { 531 getContext().reportError(Expr->getLoc(), 532 "expression could not be evaluated"); 533 return nullptr; 534 } 535 536 const MCSymbolRefExpr *RefB = Value.getSymB(); 537 if (RefB) { 538 getContext().reportError( 539 Expr->getLoc(), 540 Twine("symbol '") + RefB->getSymbol().getName() + 541 "' could not be evaluated in a subtraction expression"); 542 return nullptr; 543 } 544 545 const MCSymbolRefExpr *A = Value.getSymA(); 546 if (!A) 547 return nullptr; 548 549 const MCSymbol &ASym = A->getSymbol(); 550 if (ASym.isCommon()) { 551 getContext().reportError(Expr->getLoc(), 552 "Common symbol '" + ASym.getName() + 553 "' cannot be used in assignment expr"); 554 return nullptr; 555 } 556 557 return &ASym; 558 } 559 560 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const { 561 assert(HasLayout); 562 // The size is the last fragment's end offset. 563 const MCFragment &F = *Sec.curFragList()->Tail; 564 return getFragmentOffset(F) + computeFragmentSize(F); 565 } 566 567 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const { 568 // Virtual sections have no file size. 569 if (Sec.isVirtualSection()) 570 return 0; 571 return getSectionAddressSize(Sec); 572 } 573 574 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) { 575 bool Changed = !Symbol.isRegistered(); 576 if (Changed) { 577 Symbol.setIsRegistered(true); 578 Symbols.push_back(&Symbol); 579 } 580 return Changed; 581 } 582 583 void MCAssembler::writeFragmentPadding(raw_ostream &OS, 584 const MCEncodedFragment &EF, 585 uint64_t FSize) const { 586 assert(getBackendPtr() && "Expected assembler backend"); 587 // Should NOP padding be written out before this fragment? 588 unsigned BundlePadding = EF.getBundlePadding(); 589 if (BundlePadding > 0) { 590 assert(isBundlingEnabled() && 591 "Writing bundle padding with disabled bundling"); 592 assert(EF.hasInstructions() && 593 "Writing bundle padding for a fragment without instructions"); 594 595 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); 596 const MCSubtargetInfo *STI = EF.getSubtargetInfo(); 597 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { 598 // If the padding itself crosses a bundle boundary, it must be emitted 599 // in 2 pieces, since even nop instructions must not cross boundaries. 600 // v--------------v <- BundleAlignSize 601 // v---------v <- BundlePadding 602 // ---------------------------- 603 // | Prev |####|####| F | 604 // ---------------------------- 605 // ^-------------------^ <- TotalLength 606 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); 607 if (!getBackend().writeNopData(OS, DistanceToBoundary, STI)) 608 report_fatal_error("unable to write NOP sequence of " + 609 Twine(DistanceToBoundary) + " bytes"); 610 BundlePadding -= DistanceToBoundary; 611 } 612 if (!getBackend().writeNopData(OS, BundlePadding, STI)) 613 report_fatal_error("unable to write NOP sequence of " + 614 Twine(BundlePadding) + " bytes"); 615 } 616 } 617 618 /// Write the fragment \p F to the output file. 619 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, 620 const MCFragment &F) { 621 // FIXME: Embed in fragments instead? 622 uint64_t FragmentSize = Asm.computeFragmentSize(F); 623 624 llvm::endianness Endian = Asm.getBackend().Endian; 625 626 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) 627 Asm.writeFragmentPadding(OS, *EF, FragmentSize); 628 629 // This variable (and its dummy usage) is to participate in the assert at 630 // the end of the function. 631 uint64_t Start = OS.tell(); 632 (void) Start; 633 634 ++stats::EmittedFragments; 635 636 switch (F.getKind()) { 637 case MCFragment::FT_Align: { 638 ++stats::EmittedAlignFragments; 639 const MCAlignFragment &AF = cast<MCAlignFragment>(F); 640 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); 641 642 uint64_t Count = FragmentSize / AF.getValueSize(); 643 644 // FIXME: This error shouldn't actually occur (the front end should emit 645 // multiple .align directives to enforce the semantics it wants), but is 646 // severe enough that we want to report it. How to handle this? 647 if (Count * AF.getValueSize() != FragmentSize) 648 report_fatal_error("undefined .align directive, value size '" + 649 Twine(AF.getValueSize()) + 650 "' is not a divisor of padding size '" + 651 Twine(FragmentSize) + "'"); 652 653 // See if we are aligning with nops, and if so do that first to try to fill 654 // the Count bytes. Then if that did not fill any bytes or there are any 655 // bytes left to fill use the Value and ValueSize to fill the rest. 656 // If we are aligning with nops, ask that target to emit the right data. 657 if (AF.hasEmitNops()) { 658 if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo())) 659 report_fatal_error("unable to write nop sequence of " + 660 Twine(Count) + " bytes"); 661 break; 662 } 663 664 // Otherwise, write out in multiples of the value size. 665 for (uint64_t i = 0; i != Count; ++i) { 666 switch (AF.getValueSize()) { 667 default: llvm_unreachable("Invalid size!"); 668 case 1: OS << char(AF.getValue()); break; 669 case 2: 670 support::endian::write<uint16_t>(OS, AF.getValue(), Endian); 671 break; 672 case 4: 673 support::endian::write<uint32_t>(OS, AF.getValue(), Endian); 674 break; 675 case 8: 676 support::endian::write<uint64_t>(OS, AF.getValue(), Endian); 677 break; 678 } 679 } 680 break; 681 } 682 683 case MCFragment::FT_Data: 684 ++stats::EmittedDataFragments; 685 OS << cast<MCDataFragment>(F).getContents(); 686 break; 687 688 case MCFragment::FT_Relaxable: 689 ++stats::EmittedRelaxableFragments; 690 OS << cast<MCRelaxableFragment>(F).getContents(); 691 break; 692 693 case MCFragment::FT_CompactEncodedInst: 694 ++stats::EmittedCompactEncodedInstFragments; 695 OS << cast<MCCompactEncodedInstFragment>(F).getContents(); 696 break; 697 698 case MCFragment::FT_Fill: { 699 ++stats::EmittedFillFragments; 700 const MCFillFragment &FF = cast<MCFillFragment>(F); 701 uint64_t V = FF.getValue(); 702 unsigned VSize = FF.getValueSize(); 703 const unsigned MaxChunkSize = 16; 704 char Data[MaxChunkSize]; 705 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size"); 706 // Duplicate V into Data as byte vector to reduce number of 707 // writes done. As such, do endian conversion here. 708 for (unsigned I = 0; I != VSize; ++I) { 709 unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1); 710 Data[I] = uint8_t(V >> (index * 8)); 711 } 712 for (unsigned I = VSize; I < MaxChunkSize; ++I) 713 Data[I] = Data[I - VSize]; 714 715 // Set to largest multiple of VSize in Data. 716 const unsigned NumPerChunk = MaxChunkSize / VSize; 717 // Set ChunkSize to largest multiple of VSize in Data 718 const unsigned ChunkSize = VSize * NumPerChunk; 719 720 // Do copies by chunk. 721 StringRef Ref(Data, ChunkSize); 722 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) 723 OS << Ref; 724 725 // do remainder if needed. 726 unsigned TrailingCount = FragmentSize % ChunkSize; 727 if (TrailingCount) 728 OS.write(Data, TrailingCount); 729 break; 730 } 731 732 case MCFragment::FT_Nops: { 733 ++stats::EmittedNopsFragments; 734 const MCNopsFragment &NF = cast<MCNopsFragment>(F); 735 736 int64_t NumBytes = NF.getNumBytes(); 737 int64_t ControlledNopLength = NF.getControlledNopLength(); 738 int64_t MaximumNopLength = 739 Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo()); 740 741 assert(NumBytes > 0 && "Expected positive NOPs fragment size"); 742 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size"); 743 744 if (ControlledNopLength > MaximumNopLength) { 745 Asm.getContext().reportError(NF.getLoc(), 746 "illegal NOP size " + 747 std::to_string(ControlledNopLength) + 748 ". (expected within [0, " + 749 std::to_string(MaximumNopLength) + "])"); 750 // Clamp the NOP length as reportError does not stop the execution 751 // immediately. 752 ControlledNopLength = MaximumNopLength; 753 } 754 755 // Use maximum value if the size of each NOP is not specified 756 if (!ControlledNopLength) 757 ControlledNopLength = MaximumNopLength; 758 759 while (NumBytes) { 760 uint64_t NumBytesToEmit = 761 (uint64_t)std::min(NumBytes, ControlledNopLength); 762 assert(NumBytesToEmit && "try to emit empty NOP instruction"); 763 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit, 764 NF.getSubtargetInfo())) { 765 report_fatal_error("unable to write nop sequence of the remaining " + 766 Twine(NumBytesToEmit) + " bytes"); 767 break; 768 } 769 NumBytes -= NumBytesToEmit; 770 } 771 break; 772 } 773 774 case MCFragment::FT_LEB: { 775 const MCLEBFragment &LF = cast<MCLEBFragment>(F); 776 OS << LF.getContents(); 777 break; 778 } 779 780 case MCFragment::FT_BoundaryAlign: { 781 const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F); 782 if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo())) 783 report_fatal_error("unable to write nop sequence of " + 784 Twine(FragmentSize) + " bytes"); 785 break; 786 } 787 788 case MCFragment::FT_SymbolId: { 789 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); 790 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); 791 break; 792 } 793 794 case MCFragment::FT_Org: { 795 ++stats::EmittedOrgFragments; 796 const MCOrgFragment &OF = cast<MCOrgFragment>(F); 797 798 for (uint64_t i = 0, e = FragmentSize; i != e; ++i) 799 OS << char(OF.getValue()); 800 801 break; 802 } 803 804 case MCFragment::FT_Dwarf: { 805 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); 806 OS << OF.getContents(); 807 break; 808 } 809 case MCFragment::FT_DwarfFrame: { 810 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); 811 OS << CF.getContents(); 812 break; 813 } 814 case MCFragment::FT_CVInlineLines: { 815 const auto &OF = cast<MCCVInlineLineTableFragment>(F); 816 OS << OF.getContents(); 817 break; 818 } 819 case MCFragment::FT_CVDefRange: { 820 const auto &DRF = cast<MCCVDefRangeFragment>(F); 821 OS << DRF.getContents(); 822 break; 823 } 824 case MCFragment::FT_PseudoProbe: { 825 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F); 826 OS << PF.getContents(); 827 break; 828 } 829 case MCFragment::FT_Dummy: 830 llvm_unreachable("Should not have been added"); 831 } 832 833 assert(OS.tell() - Start == FragmentSize && 834 "The stream should advance by fragment size"); 835 } 836 837 void MCAssembler::writeSectionData(raw_ostream &OS, 838 const MCSection *Sec) const { 839 assert(getBackendPtr() && "Expected assembler backend"); 840 841 // Ignore virtual sections. 842 if (Sec->isVirtualSection()) { 843 assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!"); 844 845 // Check that contents are only things legal inside a virtual section. 846 for (const MCFragment &F : *Sec) { 847 switch (F.getKind()) { 848 default: llvm_unreachable("Invalid fragment in virtual section!"); 849 case MCFragment::FT_Data: { 850 // Check that we aren't trying to write a non-zero contents (or fixups) 851 // into a virtual section. This is to support clients which use standard 852 // directives to fill the contents of virtual sections. 853 const MCDataFragment &DF = cast<MCDataFragment>(F); 854 if (DF.fixup_begin() != DF.fixup_end()) 855 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() + 856 " section '" + Sec->getName() + 857 "' cannot have fixups"); 858 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) 859 if (DF.getContents()[i]) { 860 getContext().reportError(SMLoc(), 861 Sec->getVirtualSectionKind() + 862 " section '" + Sec->getName() + 863 "' cannot have non-zero initializers"); 864 break; 865 } 866 break; 867 } 868 case MCFragment::FT_Align: 869 // Check that we aren't trying to write a non-zero value into a virtual 870 // section. 871 assert((cast<MCAlignFragment>(F).getValueSize() == 0 || 872 cast<MCAlignFragment>(F).getValue() == 0) && 873 "Invalid align in virtual section!"); 874 break; 875 case MCFragment::FT_Fill: 876 assert((cast<MCFillFragment>(F).getValue() == 0) && 877 "Invalid fill in virtual section!"); 878 break; 879 case MCFragment::FT_Org: 880 break; 881 } 882 } 883 884 return; 885 } 886 887 uint64_t Start = OS.tell(); 888 (void)Start; 889 890 for (const MCFragment &F : *Sec) 891 writeFragment(OS, *this, F); 892 893 assert(getContext().hadError() || 894 OS.tell() - Start == getSectionAddressSize(*Sec)); 895 } 896 897 std::tuple<MCValue, uint64_t, bool> 898 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup, 899 const MCSubtargetInfo *STI) { 900 // Evaluate the fixup. 901 MCValue Target; 902 uint64_t FixedValue; 903 bool WasForced; 904 bool IsResolved = 905 evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced); 906 if (!IsResolved) { 907 // The fixup was unresolved, we need a relocation. Inform the object 908 // writer of the relocation, and give it an opportunity to adjust the 909 // fixup value if need be. 910 getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue); 911 } 912 return std::make_tuple(Target, FixedValue, IsResolved); 913 } 914 915 void MCAssembler::layout() { 916 assert(getBackendPtr() && "Expected assembler backend"); 917 DEBUG_WITH_TYPE("mc-dump", { 918 errs() << "assembler backend - pre-layout\n--\n"; 919 dump(); }); 920 921 // Assign section ordinals. 922 unsigned SectionIndex = 0; 923 for (MCSection &Sec : *this) { 924 Sec.setOrdinal(SectionIndex++); 925 926 // Chain together fragments from all subsections. 927 if (Sec.Subsections.size() > 1) { 928 MCDummyFragment Dummy; 929 MCFragment *Tail = &Dummy; 930 for (auto &[_, List] : Sec.Subsections) { 931 assert(List.Head); 932 Tail->Next = List.Head; 933 Tail = List.Tail; 934 } 935 Sec.Subsections.clear(); 936 Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}}); 937 Sec.CurFragList = &Sec.Subsections[0].second; 938 939 unsigned FragmentIndex = 0; 940 for (MCFragment &Frag : Sec) 941 Frag.setLayoutOrder(FragmentIndex++); 942 } 943 } 944 945 // Layout until everything fits. 946 this->HasLayout = true; 947 while (layoutOnce()) { 948 if (getContext().hadError()) 949 return; 950 // Size of fragments in one section can depend on the size of fragments in 951 // another. If any fragment has changed size, we have to re-layout (and 952 // as a result possibly further relax) all. 953 for (MCSection &Sec : *this) 954 Sec.setHasLayout(false); 955 } 956 957 DEBUG_WITH_TYPE("mc-dump", { 958 errs() << "assembler backend - post-relaxation\n--\n"; 959 dump(); }); 960 961 // Finalize the layout, including fragment lowering. 962 getBackend().finishLayout(*this); 963 964 DEBUG_WITH_TYPE("mc-dump", { 965 errs() << "assembler backend - final-layout\n--\n"; 966 dump(); }); 967 968 // Allow the object writer a chance to perform post-layout binding (for 969 // example, to set the index fields in the symbol data). 970 getWriter().executePostLayoutBinding(*this); 971 972 // Evaluate and apply the fixups, generating relocation entries as necessary. 973 for (MCSection &Sec : *this) { 974 for (MCFragment &Frag : Sec) { 975 ArrayRef<MCFixup> Fixups; 976 MutableArrayRef<char> Contents; 977 const MCSubtargetInfo *STI = nullptr; 978 979 // Process MCAlignFragment and MCEncodedFragmentWithFixups here. 980 switch (Frag.getKind()) { 981 default: 982 continue; 983 case MCFragment::FT_Align: { 984 MCAlignFragment &AF = cast<MCAlignFragment>(Frag); 985 // Insert fixup type for code alignment if the target define 986 // shouldInsertFixupForCodeAlign target hook. 987 if (Sec.useCodeAlign() && AF.hasEmitNops()) 988 getBackend().shouldInsertFixupForCodeAlign(*this, AF); 989 continue; 990 } 991 case MCFragment::FT_Data: { 992 MCDataFragment &DF = cast<MCDataFragment>(Frag); 993 Fixups = DF.getFixups(); 994 Contents = DF.getContents(); 995 STI = DF.getSubtargetInfo(); 996 assert(!DF.hasInstructions() || STI != nullptr); 997 break; 998 } 999 case MCFragment::FT_Relaxable: { 1000 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag); 1001 Fixups = RF.getFixups(); 1002 Contents = RF.getContents(); 1003 STI = RF.getSubtargetInfo(); 1004 assert(!RF.hasInstructions() || STI != nullptr); 1005 break; 1006 } 1007 case MCFragment::FT_CVDefRange: { 1008 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag); 1009 Fixups = CF.getFixups(); 1010 Contents = CF.getContents(); 1011 break; 1012 } 1013 case MCFragment::FT_Dwarf: { 1014 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag); 1015 Fixups = DF.getFixups(); 1016 Contents = DF.getContents(); 1017 break; 1018 } 1019 case MCFragment::FT_DwarfFrame: { 1020 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag); 1021 Fixups = DF.getFixups(); 1022 Contents = DF.getContents(); 1023 break; 1024 } 1025 case MCFragment::FT_LEB: { 1026 auto &LF = cast<MCLEBFragment>(Frag); 1027 Fixups = LF.getFixups(); 1028 Contents = LF.getContents(); 1029 break; 1030 } 1031 case MCFragment::FT_PseudoProbe: { 1032 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag); 1033 Fixups = PF.getFixups(); 1034 Contents = PF.getContents(); 1035 break; 1036 } 1037 } 1038 for (const MCFixup &Fixup : Fixups) { 1039 uint64_t FixedValue; 1040 bool IsResolved; 1041 MCValue Target; 1042 std::tie(Target, FixedValue, IsResolved) = 1043 handleFixup(Frag, Fixup, STI); 1044 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, 1045 IsResolved, STI); 1046 } 1047 } 1048 } 1049 } 1050 1051 void MCAssembler::Finish() { 1052 layout(); 1053 1054 // Write the object file. 1055 stats::ObjectBytes += getWriter().writeObject(*this); 1056 1057 HasLayout = false; 1058 } 1059 1060 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, 1061 const MCRelaxableFragment *DF) const { 1062 assert(getBackendPtr() && "Expected assembler backend"); 1063 MCValue Target; 1064 uint64_t Value; 1065 bool WasForced; 1066 bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(), 1067 Value, WasForced); 1068 if (Target.getSymA() && 1069 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && 1070 Fixup.getKind() == FK_Data_1) 1071 return false; 1072 return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved, 1073 Value, DF, WasForced); 1074 } 1075 1076 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const { 1077 assert(getBackendPtr() && "Expected assembler backend"); 1078 // If this inst doesn't ever need relaxation, ignore it. This occurs when we 1079 // are intentionally pushing out inst fragments, or because we relaxed a 1080 // previous instruction to one that doesn't need relaxation. 1081 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) 1082 return false; 1083 1084 for (const MCFixup &Fixup : F->getFixups()) 1085 if (fixupNeedsRelaxation(Fixup, F)) 1086 return true; 1087 1088 return false; 1089 } 1090 1091 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) { 1092 assert(getEmitterPtr() && 1093 "Expected CodeEmitter defined for relaxInstruction"); 1094 if (!fragmentNeedsRelaxation(&F)) 1095 return false; 1096 1097 ++stats::RelaxedInstructions; 1098 1099 // FIXME-PERF: We could immediately lower out instructions if we can tell 1100 // they are fully resolved, to avoid retesting on later passes. 1101 1102 // Relax the fragment. 1103 1104 MCInst Relaxed = F.getInst(); 1105 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo()); 1106 1107 // Encode the new instruction. 1108 F.setInst(Relaxed); 1109 F.getFixups().clear(); 1110 F.getContents().clear(); 1111 getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(), 1112 *F.getSubtargetInfo()); 1113 return true; 1114 } 1115 1116 bool MCAssembler::relaxLEB(MCLEBFragment &LF) { 1117 const unsigned OldSize = static_cast<unsigned>(LF.getContents().size()); 1118 unsigned PadTo = OldSize; 1119 int64_t Value; 1120 SmallVectorImpl<char> &Data = LF.getContents(); 1121 LF.getFixups().clear(); 1122 // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols 1123 // requires that .uleb128 A-B is foldable where A and B reside in different 1124 // fragments. This is used by __gcc_except_table. 1125 bool Abs = getSubsectionsViaSymbols() 1126 ? LF.getValue().evaluateKnownAbsolute(Value, *this) 1127 : LF.getValue().evaluateAsAbsolute(Value, *this); 1128 if (!Abs) { 1129 bool Relaxed, UseZeroPad; 1130 std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value); 1131 if (!Relaxed) { 1132 getContext().reportError(LF.getValue().getLoc(), 1133 Twine(LF.isSigned() ? ".s" : ".u") + 1134 "leb128 expression is not absolute"); 1135 LF.setValue(MCConstantExpr::create(0, Context)); 1136 } 1137 uint8_t Tmp[10]; // maximum size: ceil(64/7) 1138 PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp)); 1139 if (UseZeroPad) 1140 Value = 0; 1141 } 1142 Data.clear(); 1143 raw_svector_ostream OSE(Data); 1144 // The compiler can generate EH table assembly that is impossible to assemble 1145 // without either adding padding to an LEB fragment or adding extra padding 1146 // to a later alignment fragment. To accommodate such tables, relaxation can 1147 // only increase an LEB fragment size here, not decrease it. See PR35809. 1148 if (LF.isSigned()) 1149 encodeSLEB128(Value, OSE, PadTo); 1150 else 1151 encodeULEB128(Value, OSE, PadTo); 1152 return OldSize != LF.getContents().size(); 1153 } 1154 1155 /// Check if the branch crosses the boundary. 1156 /// 1157 /// \param StartAddr start address of the fused/unfused branch. 1158 /// \param Size size of the fused/unfused branch. 1159 /// \param BoundaryAlignment alignment requirement of the branch. 1160 /// \returns true if the branch cross the boundary. 1161 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size, 1162 Align BoundaryAlignment) { 1163 uint64_t EndAddr = StartAddr + Size; 1164 return (StartAddr >> Log2(BoundaryAlignment)) != 1165 ((EndAddr - 1) >> Log2(BoundaryAlignment)); 1166 } 1167 1168 /// Check if the branch is against the boundary. 1169 /// 1170 /// \param StartAddr start address of the fused/unfused branch. 1171 /// \param Size size of the fused/unfused branch. 1172 /// \param BoundaryAlignment alignment requirement of the branch. 1173 /// \returns true if the branch is against the boundary. 1174 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size, 1175 Align BoundaryAlignment) { 1176 uint64_t EndAddr = StartAddr + Size; 1177 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0; 1178 } 1179 1180 /// Check if the branch needs padding. 1181 /// 1182 /// \param StartAddr start address of the fused/unfused branch. 1183 /// \param Size size of the fused/unfused branch. 1184 /// \param BoundaryAlignment alignment requirement of the branch. 1185 /// \returns true if the branch needs padding. 1186 static bool needPadding(uint64_t StartAddr, uint64_t Size, 1187 Align BoundaryAlignment) { 1188 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) || 1189 isAgainstBoundary(StartAddr, Size, BoundaryAlignment); 1190 } 1191 1192 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) { 1193 // BoundaryAlignFragment that doesn't need to align any fragment should not be 1194 // relaxed. 1195 if (!BF.getLastFragment()) 1196 return false; 1197 1198 uint64_t AlignedOffset = getFragmentOffset(BF); 1199 uint64_t AlignedSize = 0; 1200 for (const MCFragment *F = BF.getNext();; F = F->getNext()) { 1201 AlignedSize += computeFragmentSize(*F); 1202 if (F == BF.getLastFragment()) 1203 break; 1204 } 1205 1206 Align BoundaryAlignment = BF.getAlignment(); 1207 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment) 1208 ? offsetToAlignment(AlignedOffset, BoundaryAlignment) 1209 : 0U; 1210 if (NewSize == BF.getSize()) 1211 return false; 1212 BF.setSize(NewSize); 1213 return true; 1214 } 1215 1216 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) { 1217 bool WasRelaxed; 1218 if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed)) 1219 return WasRelaxed; 1220 1221 MCContext &Context = getContext(); 1222 uint64_t OldSize = DF.getContents().size(); 1223 int64_t AddrDelta; 1224 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this); 1225 assert(Abs && "We created a line delta with an invalid expression"); 1226 (void)Abs; 1227 int64_t LineDelta; 1228 LineDelta = DF.getLineDelta(); 1229 SmallVectorImpl<char> &Data = DF.getContents(); 1230 Data.clear(); 1231 DF.getFixups().clear(); 1232 1233 MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta, 1234 AddrDelta, Data); 1235 return OldSize != Data.size(); 1236 } 1237 1238 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) { 1239 bool WasRelaxed; 1240 if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed)) 1241 return WasRelaxed; 1242 1243 MCContext &Context = getContext(); 1244 int64_t Value; 1245 bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this); 1246 if (!Abs) { 1247 getContext().reportError(DF.getAddrDelta().getLoc(), 1248 "invalid CFI advance_loc expression"); 1249 DF.setAddrDelta(MCConstantExpr::create(0, Context)); 1250 return false; 1251 } 1252 1253 SmallVectorImpl<char> &Data = DF.getContents(); 1254 uint64_t OldSize = Data.size(); 1255 Data.clear(); 1256 DF.getFixups().clear(); 1257 1258 MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data); 1259 return OldSize != Data.size(); 1260 } 1261 1262 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) { 1263 unsigned OldSize = F.getContents().size(); 1264 getContext().getCVContext().encodeInlineLineTable(*this, F); 1265 return OldSize != F.getContents().size(); 1266 } 1267 1268 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) { 1269 unsigned OldSize = F.getContents().size(); 1270 getContext().getCVContext().encodeDefRange(*this, F); 1271 return OldSize != F.getContents().size(); 1272 } 1273 1274 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) { 1275 uint64_t OldSize = PF.getContents().size(); 1276 int64_t AddrDelta; 1277 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this); 1278 assert(Abs && "We created a pseudo probe with an invalid expression"); 1279 (void)Abs; 1280 SmallVectorImpl<char> &Data = PF.getContents(); 1281 Data.clear(); 1282 raw_svector_ostream OSE(Data); 1283 PF.getFixups().clear(); 1284 1285 // AddrDelta is a signed integer 1286 encodeSLEB128(AddrDelta, OSE, OldSize); 1287 return OldSize != Data.size(); 1288 } 1289 1290 bool MCAssembler::relaxFragment(MCFragment &F) { 1291 switch(F.getKind()) { 1292 default: 1293 return false; 1294 case MCFragment::FT_Relaxable: 1295 assert(!getRelaxAll() && 1296 "Did not expect a MCRelaxableFragment in RelaxAll mode"); 1297 return relaxInstruction(cast<MCRelaxableFragment>(F)); 1298 case MCFragment::FT_Dwarf: 1299 return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F)); 1300 case MCFragment::FT_DwarfFrame: 1301 return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F)); 1302 case MCFragment::FT_LEB: 1303 return relaxLEB(cast<MCLEBFragment>(F)); 1304 case MCFragment::FT_BoundaryAlign: 1305 return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F)); 1306 case MCFragment::FT_CVInlineLines: 1307 return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F)); 1308 case MCFragment::FT_CVDefRange: 1309 return relaxCVDefRange(cast<MCCVDefRangeFragment>(F)); 1310 case MCFragment::FT_PseudoProbe: 1311 return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F)); 1312 } 1313 } 1314 1315 bool MCAssembler::layoutOnce() { 1316 ++stats::RelaxationSteps; 1317 1318 bool Changed = false; 1319 for (MCSection &Sec : *this) 1320 for (MCFragment &Frag : Sec) 1321 if (relaxFragment(Frag)) 1322 Changed = true; 1323 return Changed; 1324 } 1325 1326 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1327 LLVM_DUMP_METHOD void MCAssembler::dump() const{ 1328 raw_ostream &OS = errs(); 1329 1330 OS << "<MCAssembler\n"; 1331 OS << " Sections:[\n "; 1332 bool First = true; 1333 for (const MCSection &Sec : *this) { 1334 if (First) 1335 First = false; 1336 else 1337 OS << ",\n "; 1338 Sec.dump(); 1339 } 1340 OS << "],\n"; 1341 OS << " Symbols:["; 1342 1343 First = true; 1344 for (const MCSymbol &Sym : symbols()) { 1345 if (First) 1346 First = false; 1347 else 1348 OS << ",\n "; 1349 OS << "("; 1350 Sym.dump(); 1351 OS << ", Index:" << Sym.getIndex() << ", "; 1352 OS << ")"; 1353 } 1354 OS << "]>\n"; 1355 } 1356 #endif 1357