xref: /llvm-project/llvm/lib/MC/MCAssembler.cpp (revision 07d2709a17860a202d91781769a88837e4fb5f2a)
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCCodeView.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCDwarf.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCFixupKindInfo.h"
25 #include "llvm/MC/MCFragment.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCSection.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <tuple>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 namespace llvm {
46 class MCSubtargetInfo;
47 }
48 
49 #define DEBUG_TYPE "assembler"
50 
51 namespace {
52 namespace stats {
53 
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56           "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58           "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedAlignFragments,
60           "Number of emitted assembler fragments - align");
61 STATISTIC(EmittedFillFragments,
62           "Number of emitted assembler fragments - fill");
63 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
64 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
65 STATISTIC(evaluateFixup, "Number of evaluated fixups");
66 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
67 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
68 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
69 
70 } // end namespace stats
71 } // end anonymous namespace
72 
73 // FIXME FIXME FIXME: There are number of places in this file where we convert
74 // what is a 64-bit assembler value used for computation into a value in the
75 // object file, which may truncate it. We should detect that truncation where
76 // invalid and report errors back.
77 
78 /* *** */
79 
80 MCAssembler::MCAssembler(MCContext &Context,
81                          std::unique_ptr<MCAsmBackend> Backend,
82                          std::unique_ptr<MCCodeEmitter> Emitter,
83                          std::unique_ptr<MCObjectWriter> Writer)
84     : Context(Context), Backend(std::move(Backend)),
85       Emitter(std::move(Emitter)), Writer(std::move(Writer)) {}
86 
87 void MCAssembler::reset() {
88   RelaxAll = false;
89   Sections.clear();
90   Symbols.clear();
91   ThumbFuncs.clear();
92   BundleAlignSize = 0;
93 
94   // reset objects owned by us
95   if (getBackendPtr())
96     getBackendPtr()->reset();
97   if (getEmitterPtr())
98     getEmitterPtr()->reset();
99   if (Writer)
100     Writer->reset();
101 }
102 
103 bool MCAssembler::registerSection(MCSection &Section) {
104   if (Section.isRegistered())
105     return false;
106   assert(Section.curFragList()->Head && "allocInitialFragment not called");
107   Sections.push_back(&Section);
108   Section.setIsRegistered(true);
109   return true;
110 }
111 
112 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
113   if (ThumbFuncs.count(Symbol))
114     return true;
115 
116   if (!Symbol->isVariable())
117     return false;
118 
119   const MCExpr *Expr = Symbol->getVariableValue();
120 
121   MCValue V;
122   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
123     return false;
124 
125   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
126     return false;
127 
128   const MCSymbolRefExpr *Ref = V.getSymA();
129   if (!Ref)
130     return false;
131 
132   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
133     return false;
134 
135   const MCSymbol &Sym = Ref->getSymbol();
136   if (!isThumbFunc(&Sym))
137     return false;
138 
139   ThumbFuncs.insert(Symbol); // Cache it.
140   return true;
141 }
142 
143 bool MCAssembler::evaluateFixup(const MCFixup &Fixup, const MCFragment *DF,
144                                 MCValue &Target, const MCSubtargetInfo *STI,
145                                 uint64_t &Value, bool &WasForced) const {
146   ++stats::evaluateFixup;
147 
148   // FIXME: This code has some duplication with recordRelocation. We should
149   // probably merge the two into a single callback that tries to evaluate a
150   // fixup and records a relocation if one is needed.
151 
152   // On error claim to have completely evaluated the fixup, to prevent any
153   // further processing from being done.
154   const MCExpr *Expr = Fixup.getValue();
155   MCContext &Ctx = getContext();
156   Value = 0;
157   WasForced = false;
158   if (!Expr->evaluateAsRelocatable(Target, this, &Fixup)) {
159     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
160     return true;
161   }
162   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
163     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
164       Ctx.reportError(Fixup.getLoc(),
165                       "unsupported subtraction of qualified symbol");
166       return true;
167     }
168   }
169 
170   assert(getBackendPtr() && "Expected assembler backend");
171   bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
172                   MCFixupKindInfo::FKF_IsTarget;
173 
174   if (IsTarget)
175     return getBackend().evaluateTargetFixup(*this, Fixup, DF, Target, STI,
176                                             Value, WasForced);
177 
178   unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
179   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
180                  MCFixupKindInfo::FKF_IsPCRel;
181 
182   bool IsResolved = false;
183   if (IsPCRel) {
184     if (Target.getSymB()) {
185       IsResolved = false;
186     } else if (!Target.getSymA()) {
187       IsResolved = false;
188     } else {
189       const MCSymbolRefExpr *A = Target.getSymA();
190       const MCSymbol &SA = A->getSymbol();
191       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
192         IsResolved = false;
193       } else {
194         IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
195                      getWriter().isSymbolRefDifferenceFullyResolvedImpl(
196                          *this, SA, *DF, false, true);
197       }
198     }
199   } else {
200     IsResolved = Target.isAbsolute();
201   }
202 
203   Value = Target.getConstant();
204 
205   if (const MCSymbolRefExpr *A = Target.getSymA()) {
206     const MCSymbol &Sym = A->getSymbol();
207     if (Sym.isDefined())
208       Value += getSymbolOffset(Sym);
209   }
210   if (const MCSymbolRefExpr *B = Target.getSymB()) {
211     const MCSymbol &Sym = B->getSymbol();
212     if (Sym.isDefined())
213       Value -= getSymbolOffset(Sym);
214   }
215 
216   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
217                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
218   assert((ShouldAlignPC ? IsPCRel : true) &&
219     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
220 
221   if (IsPCRel) {
222     uint64_t Offset = getFragmentOffset(*DF) + Fixup.getOffset();
223 
224     // A number of ARM fixups in Thumb mode require that the effective PC
225     // address be determined as the 32-bit aligned version of the actual offset.
226     if (ShouldAlignPC) Offset &= ~0x3;
227     Value -= Offset;
228   }
229 
230   // Let the backend force a relocation if needed.
231   if (IsResolved &&
232       getBackend().shouldForceRelocation(*this, Fixup, Target, STI)) {
233     IsResolved = false;
234     WasForced = true;
235   }
236 
237   // A linker relaxation target may emit ADD/SUB relocations for A-B+C. Let
238   // recordRelocation handle non-VK_None cases like A@plt-B+C.
239   if (!IsResolved && Target.getSymA() && Target.getSymB() &&
240       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_None &&
241       getBackend().handleAddSubRelocations(*this, *DF, Fixup, Target, Value))
242     return true;
243 
244   return IsResolved;
245 }
246 
247 uint64_t MCAssembler::computeFragmentSize(const MCFragment &F) const {
248   assert(getBackendPtr() && "Requires assembler backend");
249   switch (F.getKind()) {
250   case MCFragment::FT_Data:
251     return cast<MCDataFragment>(F).getContents().size();
252   case MCFragment::FT_Relaxable:
253     return cast<MCRelaxableFragment>(F).getContents().size();
254   case MCFragment::FT_Fill: {
255     auto &FF = cast<MCFillFragment>(F);
256     int64_t NumValues = 0;
257     if (!FF.getNumValues().evaluateKnownAbsolute(NumValues, *this)) {
258       getContext().reportError(FF.getLoc(),
259                                "expected assembly-time absolute expression");
260       return 0;
261     }
262     int64_t Size = NumValues * FF.getValueSize();
263     if (Size < 0) {
264       getContext().reportError(FF.getLoc(), "invalid number of bytes");
265       return 0;
266     }
267     return Size;
268   }
269 
270   case MCFragment::FT_Nops:
271     return cast<MCNopsFragment>(F).getNumBytes();
272 
273   case MCFragment::FT_LEB:
274     return cast<MCLEBFragment>(F).getContents().size();
275 
276   case MCFragment::FT_BoundaryAlign:
277     return cast<MCBoundaryAlignFragment>(F).getSize();
278 
279   case MCFragment::FT_SymbolId:
280     return 4;
281 
282   case MCFragment::FT_Align: {
283     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
284     unsigned Offset = getFragmentOffset(AF);
285     unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
286 
287     // Insert extra Nops for code alignment if the target define
288     // shouldInsertExtraNopBytesForCodeAlign target hook.
289     if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
290         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
291       return Size;
292 
293     // If we are padding with nops, force the padding to be larger than the
294     // minimum nop size.
295     if (Size > 0 && AF.hasEmitNops()) {
296       while (Size % getBackend().getMinimumNopSize())
297         Size += AF.getAlignment().value();
298     }
299     if (Size > AF.getMaxBytesToEmit())
300       return 0;
301     return Size;
302   }
303 
304   case MCFragment::FT_Org: {
305     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
306     MCValue Value;
307     if (!OF.getOffset().evaluateAsValue(Value, *this)) {
308       getContext().reportError(OF.getLoc(),
309                                "expected assembly-time absolute expression");
310         return 0;
311     }
312 
313     uint64_t FragmentOffset = getFragmentOffset(OF);
314     int64_t TargetLocation = Value.getConstant();
315     if (const MCSymbolRefExpr *A = Value.getSymA()) {
316       uint64_t Val;
317       if (!getSymbolOffset(A->getSymbol(), Val)) {
318         getContext().reportError(OF.getLoc(), "expected absolute expression");
319         return 0;
320       }
321       TargetLocation += Val;
322     }
323     int64_t Size = TargetLocation - FragmentOffset;
324     if (Size < 0 || Size >= 0x40000000) {
325       getContext().reportError(
326           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
327                            "' (at offset '" + Twine(FragmentOffset) + "')");
328       return 0;
329     }
330     return Size;
331   }
332 
333   case MCFragment::FT_Dwarf:
334     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
335   case MCFragment::FT_DwarfFrame:
336     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
337   case MCFragment::FT_CVInlineLines:
338     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
339   case MCFragment::FT_CVDefRange:
340     return cast<MCCVDefRangeFragment>(F).getContents().size();
341   case MCFragment::FT_PseudoProbe:
342     return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
343   case MCFragment::FT_Dummy:
344     llvm_unreachable("Should not have been added");
345   }
346 
347   llvm_unreachable("invalid fragment kind");
348 }
349 
350 // Compute the amount of padding required before the fragment \p F to
351 // obey bundling restrictions, where \p FOffset is the fragment's offset in
352 // its section and \p FSize is the fragment's size.
353 static uint64_t computeBundlePadding(unsigned BundleSize,
354                                      const MCEncodedFragment *F,
355                                      uint64_t FOffset, uint64_t FSize) {
356   uint64_t OffsetInBundle = FOffset & (BundleSize - 1);
357   uint64_t EndOfFragment = OffsetInBundle + FSize;
358 
359   // There are two kinds of bundling restrictions:
360   //
361   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
362   //    *end* on a bundle boundary.
363   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
364   //    would, add padding until the end of the bundle so that the fragment
365   //    will start in a new one.
366   if (F->alignToBundleEnd()) {
367     // Three possibilities here:
368     //
369     // A) The fragment just happens to end at a bundle boundary, so we're good.
370     // B) The fragment ends before the current bundle boundary: pad it just
371     //    enough to reach the boundary.
372     // C) The fragment ends after the current bundle boundary: pad it until it
373     //    reaches the end of the next bundle boundary.
374     //
375     // Note: this code could be made shorter with some modulo trickery, but it's
376     // intentionally kept in its more explicit form for simplicity.
377     if (EndOfFragment == BundleSize)
378       return 0;
379     else if (EndOfFragment < BundleSize)
380       return BundleSize - EndOfFragment;
381     else { // EndOfFragment > BundleSize
382       return 2 * BundleSize - EndOfFragment;
383     }
384   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
385     return BundleSize - OffsetInBundle;
386   else
387     return 0;
388 }
389 
390 void MCAssembler::layoutBundle(MCFragment *Prev, MCFragment *F) const {
391   // If bundling is enabled and this fragment has instructions in it, it has to
392   // obey the bundling restrictions. With padding, we'll have:
393   //
394   //
395   //        BundlePadding
396   //             |||
397   // -------------------------------------
398   //   Prev  |##########|       F        |
399   // -------------------------------------
400   //                    ^
401   //                    |
402   //                    F->Offset
403   //
404   // The fragment's offset will point to after the padding, and its computed
405   // size won't include the padding.
406   //
407   // ".align N" is an example of a directive that introduces multiple
408   // fragments. We could add a special case to handle ".align N" by emitting
409   // within-fragment padding (which would produce less padding when N is less
410   // than the bundle size), but for now we don't.
411   //
412   assert(isa<MCEncodedFragment>(F) &&
413          "Only MCEncodedFragment implementations have instructions");
414   MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
415   uint64_t FSize = computeFragmentSize(*EF);
416 
417   if (FSize > getBundleAlignSize())
418     report_fatal_error("Fragment can't be larger than a bundle size");
419 
420   uint64_t RequiredBundlePadding =
421       computeBundlePadding(getBundleAlignSize(), EF, EF->Offset, FSize);
422   if (RequiredBundlePadding > UINT8_MAX)
423     report_fatal_error("Padding cannot exceed 255 bytes");
424   EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
425   EF->Offset += RequiredBundlePadding;
426   if (auto *DF = dyn_cast_or_null<MCDataFragment>(Prev))
427     if (DF->getContents().empty())
428       DF->Offset = EF->Offset;
429 }
430 
431 void MCAssembler::ensureValid(MCSection &Sec) const {
432   if (Sec.hasLayout())
433     return;
434   Sec.setHasLayout(true);
435   MCFragment *Prev = nullptr;
436   uint64_t Offset = 0;
437   for (MCFragment &F : Sec) {
438     F.Offset = Offset;
439     if (isBundlingEnabled() && F.hasInstructions()) {
440       layoutBundle(Prev, &F);
441       Offset = F.Offset;
442     }
443     Offset += computeFragmentSize(F);
444     Prev = &F;
445   }
446 }
447 
448 uint64_t MCAssembler::getFragmentOffset(const MCFragment &F) const {
449   ensureValid(*F.getParent());
450   return F.Offset;
451 }
452 
453 // Simple getSymbolOffset helper for the non-variable case.
454 static bool getLabelOffset(const MCAssembler &Asm, const MCSymbol &S,
455                            bool ReportError, uint64_t &Val) {
456   if (!S.getFragment()) {
457     if (ReportError)
458       report_fatal_error("unable to evaluate offset to undefined symbol '" +
459                          S.getName() + "'");
460     return false;
461   }
462   Val = Asm.getFragmentOffset(*S.getFragment()) + S.getOffset();
463   return true;
464 }
465 
466 static bool getSymbolOffsetImpl(const MCAssembler &Asm, const MCSymbol &S,
467                                 bool ReportError, uint64_t &Val) {
468   if (!S.isVariable())
469     return getLabelOffset(Asm, S, ReportError, Val);
470 
471   // If SD is a variable, evaluate it.
472   MCValue Target;
473   if (!S.getVariableValue()->evaluateAsValue(Target, Asm))
474     report_fatal_error("unable to evaluate offset for variable '" +
475                        S.getName() + "'");
476 
477   uint64_t Offset = Target.getConstant();
478 
479   const MCSymbolRefExpr *A = Target.getSymA();
480   if (A) {
481     uint64_t ValA;
482     // FIXME: On most platforms, `Target`'s component symbols are labels from
483     // having been simplified during evaluation, but on Mach-O they can be
484     // variables due to PR19203. This, and the line below for `B` can be
485     // restored to call `getLabelOffset` when PR19203 is fixed.
486     if (!getSymbolOffsetImpl(Asm, A->getSymbol(), ReportError, ValA))
487       return false;
488     Offset += ValA;
489   }
490 
491   const MCSymbolRefExpr *B = Target.getSymB();
492   if (B) {
493     uint64_t ValB;
494     if (!getSymbolOffsetImpl(Asm, B->getSymbol(), ReportError, ValB))
495       return false;
496     Offset -= ValB;
497   }
498 
499   Val = Offset;
500   return true;
501 }
502 
503 bool MCAssembler::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
504   return getSymbolOffsetImpl(*this, S, false, Val);
505 }
506 
507 uint64_t MCAssembler::getSymbolOffset(const MCSymbol &S) const {
508   uint64_t Val;
509   getSymbolOffsetImpl(*this, S, true, Val);
510   return Val;
511 }
512 
513 const MCSymbol *MCAssembler::getBaseSymbol(const MCSymbol &Symbol) const {
514   assert(HasLayout);
515   if (!Symbol.isVariable())
516     return &Symbol;
517 
518   const MCExpr *Expr = Symbol.getVariableValue();
519   MCValue Value;
520   if (!Expr->evaluateAsValue(Value, *this)) {
521     getContext().reportError(Expr->getLoc(),
522                              "expression could not be evaluated");
523     return nullptr;
524   }
525 
526   const MCSymbolRefExpr *RefB = Value.getSymB();
527   if (RefB) {
528     getContext().reportError(
529         Expr->getLoc(),
530         Twine("symbol '") + RefB->getSymbol().getName() +
531             "' could not be evaluated in a subtraction expression");
532     return nullptr;
533   }
534 
535   const MCSymbolRefExpr *A = Value.getSymA();
536   if (!A)
537     return nullptr;
538 
539   const MCSymbol &ASym = A->getSymbol();
540   if (ASym.isCommon()) {
541     getContext().reportError(Expr->getLoc(),
542                              "Common symbol '" + ASym.getName() +
543                                  "' cannot be used in assignment expr");
544     return nullptr;
545   }
546 
547   return &ASym;
548 }
549 
550 uint64_t MCAssembler::getSectionAddressSize(const MCSection &Sec) const {
551   assert(HasLayout);
552   // The size is the last fragment's end offset.
553   const MCFragment &F = *Sec.curFragList()->Tail;
554   return getFragmentOffset(F) + computeFragmentSize(F);
555 }
556 
557 uint64_t MCAssembler::getSectionFileSize(const MCSection &Sec) const {
558   // Virtual sections have no file size.
559   if (Sec.isVirtualSection())
560     return 0;
561   return getSectionAddressSize(Sec);
562 }
563 
564 bool MCAssembler::registerSymbol(const MCSymbol &Symbol) {
565   bool Changed = !Symbol.isRegistered();
566   if (Changed) {
567     Symbol.setIsRegistered(true);
568     Symbols.push_back(&Symbol);
569   }
570   return Changed;
571 }
572 
573 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
574                                        const MCEncodedFragment &EF,
575                                        uint64_t FSize) const {
576   assert(getBackendPtr() && "Expected assembler backend");
577   // Should NOP padding be written out before this fragment?
578   unsigned BundlePadding = EF.getBundlePadding();
579   if (BundlePadding > 0) {
580     assert(isBundlingEnabled() &&
581            "Writing bundle padding with disabled bundling");
582     assert(EF.hasInstructions() &&
583            "Writing bundle padding for a fragment without instructions");
584 
585     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
586     const MCSubtargetInfo *STI = EF.getSubtargetInfo();
587     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
588       // If the padding itself crosses a bundle boundary, it must be emitted
589       // in 2 pieces, since even nop instructions must not cross boundaries.
590       //             v--------------v   <- BundleAlignSize
591       //        v---------v             <- BundlePadding
592       // ----------------------------
593       // | Prev |####|####|    F    |
594       // ----------------------------
595       //        ^-------------------^   <- TotalLength
596       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
597       if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
598         report_fatal_error("unable to write NOP sequence of " +
599                            Twine(DistanceToBoundary) + " bytes");
600       BundlePadding -= DistanceToBoundary;
601     }
602     if (!getBackend().writeNopData(OS, BundlePadding, STI))
603       report_fatal_error("unable to write NOP sequence of " +
604                          Twine(BundlePadding) + " bytes");
605   }
606 }
607 
608 /// Write the fragment \p F to the output file.
609 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
610                           const MCFragment &F) {
611   // FIXME: Embed in fragments instead?
612   uint64_t FragmentSize = Asm.computeFragmentSize(F);
613 
614   llvm::endianness Endian = Asm.getBackend().Endian;
615 
616   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
617     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
618 
619   // This variable (and its dummy usage) is to participate in the assert at
620   // the end of the function.
621   uint64_t Start = OS.tell();
622   (void) Start;
623 
624   ++stats::EmittedFragments;
625 
626   switch (F.getKind()) {
627   case MCFragment::FT_Align: {
628     ++stats::EmittedAlignFragments;
629     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
630     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
631 
632     uint64_t Count = FragmentSize / AF.getValueSize();
633 
634     // FIXME: This error shouldn't actually occur (the front end should emit
635     // multiple .align directives to enforce the semantics it wants), but is
636     // severe enough that we want to report it. How to handle this?
637     if (Count * AF.getValueSize() != FragmentSize)
638       report_fatal_error("undefined .align directive, value size '" +
639                         Twine(AF.getValueSize()) +
640                         "' is not a divisor of padding size '" +
641                         Twine(FragmentSize) + "'");
642 
643     // See if we are aligning with nops, and if so do that first to try to fill
644     // the Count bytes.  Then if that did not fill any bytes or there are any
645     // bytes left to fill use the Value and ValueSize to fill the rest.
646     // If we are aligning with nops, ask that target to emit the right data.
647     if (AF.hasEmitNops()) {
648       if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
649         report_fatal_error("unable to write nop sequence of " +
650                           Twine(Count) + " bytes");
651       break;
652     }
653 
654     // Otherwise, write out in multiples of the value size.
655     for (uint64_t i = 0; i != Count; ++i) {
656       switch (AF.getValueSize()) {
657       default: llvm_unreachable("Invalid size!");
658       case 1: OS << char(AF.getValue()); break;
659       case 2:
660         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
661         break;
662       case 4:
663         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
664         break;
665       case 8:
666         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
667         break;
668       }
669     }
670     break;
671   }
672 
673   case MCFragment::FT_Data:
674     ++stats::EmittedDataFragments;
675     OS << cast<MCDataFragment>(F).getContents();
676     break;
677 
678   case MCFragment::FT_Relaxable:
679     ++stats::EmittedRelaxableFragments;
680     OS << cast<MCRelaxableFragment>(F).getContents();
681     break;
682 
683   case MCFragment::FT_Fill: {
684     ++stats::EmittedFillFragments;
685     const MCFillFragment &FF = cast<MCFillFragment>(F);
686     uint64_t V = FF.getValue();
687     unsigned VSize = FF.getValueSize();
688     const unsigned MaxChunkSize = 16;
689     char Data[MaxChunkSize];
690     assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
691     // Duplicate V into Data as byte vector to reduce number of
692     // writes done. As such, do endian conversion here.
693     for (unsigned I = 0; I != VSize; ++I) {
694       unsigned index = Endian == llvm::endianness::little ? I : (VSize - I - 1);
695       Data[I] = uint8_t(V >> (index * 8));
696     }
697     for (unsigned I = VSize; I < MaxChunkSize; ++I)
698       Data[I] = Data[I - VSize];
699 
700     // Set to largest multiple of VSize in Data.
701     const unsigned NumPerChunk = MaxChunkSize / VSize;
702     // Set ChunkSize to largest multiple of VSize in Data
703     const unsigned ChunkSize = VSize * NumPerChunk;
704 
705     // Do copies by chunk.
706     StringRef Ref(Data, ChunkSize);
707     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
708       OS << Ref;
709 
710     // do remainder if needed.
711     unsigned TrailingCount = FragmentSize % ChunkSize;
712     if (TrailingCount)
713       OS.write(Data, TrailingCount);
714     break;
715   }
716 
717   case MCFragment::FT_Nops: {
718     ++stats::EmittedNopsFragments;
719     const MCNopsFragment &NF = cast<MCNopsFragment>(F);
720 
721     int64_t NumBytes = NF.getNumBytes();
722     int64_t ControlledNopLength = NF.getControlledNopLength();
723     int64_t MaximumNopLength =
724         Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
725 
726     assert(NumBytes > 0 && "Expected positive NOPs fragment size");
727     assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
728 
729     if (ControlledNopLength > MaximumNopLength) {
730       Asm.getContext().reportError(NF.getLoc(),
731                                    "illegal NOP size " +
732                                        std::to_string(ControlledNopLength) +
733                                        ". (expected within [0, " +
734                                        std::to_string(MaximumNopLength) + "])");
735       // Clamp the NOP length as reportError does not stop the execution
736       // immediately.
737       ControlledNopLength = MaximumNopLength;
738     }
739 
740     // Use maximum value if the size of each NOP is not specified
741     if (!ControlledNopLength)
742       ControlledNopLength = MaximumNopLength;
743 
744     while (NumBytes) {
745       uint64_t NumBytesToEmit =
746           (uint64_t)std::min(NumBytes, ControlledNopLength);
747       assert(NumBytesToEmit && "try to emit empty NOP instruction");
748       if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
749                                          NF.getSubtargetInfo())) {
750         report_fatal_error("unable to write nop sequence of the remaining " +
751                            Twine(NumBytesToEmit) + " bytes");
752         break;
753       }
754       NumBytes -= NumBytesToEmit;
755     }
756     break;
757   }
758 
759   case MCFragment::FT_LEB: {
760     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
761     OS << LF.getContents();
762     break;
763   }
764 
765   case MCFragment::FT_BoundaryAlign: {
766     const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
767     if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
768       report_fatal_error("unable to write nop sequence of " +
769                          Twine(FragmentSize) + " bytes");
770     break;
771   }
772 
773   case MCFragment::FT_SymbolId: {
774     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
775     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
776     break;
777   }
778 
779   case MCFragment::FT_Org: {
780     ++stats::EmittedOrgFragments;
781     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
782 
783     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
784       OS << char(OF.getValue());
785 
786     break;
787   }
788 
789   case MCFragment::FT_Dwarf: {
790     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
791     OS << OF.getContents();
792     break;
793   }
794   case MCFragment::FT_DwarfFrame: {
795     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
796     OS << CF.getContents();
797     break;
798   }
799   case MCFragment::FT_CVInlineLines: {
800     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
801     OS << OF.getContents();
802     break;
803   }
804   case MCFragment::FT_CVDefRange: {
805     const auto &DRF = cast<MCCVDefRangeFragment>(F);
806     OS << DRF.getContents();
807     break;
808   }
809   case MCFragment::FT_PseudoProbe: {
810     const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
811     OS << PF.getContents();
812     break;
813   }
814   case MCFragment::FT_Dummy:
815     llvm_unreachable("Should not have been added");
816   }
817 
818   assert(OS.tell() - Start == FragmentSize &&
819          "The stream should advance by fragment size");
820 }
821 
822 void MCAssembler::writeSectionData(raw_ostream &OS,
823                                    const MCSection *Sec) const {
824   assert(getBackendPtr() && "Expected assembler backend");
825 
826   // Ignore virtual sections.
827   if (Sec->isVirtualSection()) {
828     assert(getSectionFileSize(*Sec) == 0 && "Invalid size for section!");
829 
830     // Check that contents are only things legal inside a virtual section.
831     for (const MCFragment &F : *Sec) {
832       switch (F.getKind()) {
833       default: llvm_unreachable("Invalid fragment in virtual section!");
834       case MCFragment::FT_Data: {
835         // Check that we aren't trying to write a non-zero contents (or fixups)
836         // into a virtual section. This is to support clients which use standard
837         // directives to fill the contents of virtual sections.
838         const MCDataFragment &DF = cast<MCDataFragment>(F);
839         if (DF.fixup_begin() != DF.fixup_end())
840           getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
841                                                 " section '" + Sec->getName() +
842                                                 "' cannot have fixups");
843         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
844           if (DF.getContents()[i]) {
845             getContext().reportError(SMLoc(),
846                                      Sec->getVirtualSectionKind() +
847                                          " section '" + Sec->getName() +
848                                          "' cannot have non-zero initializers");
849             break;
850           }
851         break;
852       }
853       case MCFragment::FT_Align:
854         // Check that we aren't trying to write a non-zero value into a virtual
855         // section.
856         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
857                 cast<MCAlignFragment>(F).getValue() == 0) &&
858                "Invalid align in virtual section!");
859         break;
860       case MCFragment::FT_Fill:
861         assert((cast<MCFillFragment>(F).getValue() == 0) &&
862                "Invalid fill in virtual section!");
863         break;
864       case MCFragment::FT_Org:
865         break;
866       }
867     }
868 
869     return;
870   }
871 
872   uint64_t Start = OS.tell();
873   (void)Start;
874 
875   for (const MCFragment &F : *Sec)
876     writeFragment(OS, *this, F);
877 
878   assert(getContext().hadError() ||
879          OS.tell() - Start == getSectionAddressSize(*Sec));
880 }
881 
882 std::tuple<MCValue, uint64_t, bool>
883 MCAssembler::handleFixup(MCFragment &F, const MCFixup &Fixup,
884                          const MCSubtargetInfo *STI) {
885   // Evaluate the fixup.
886   MCValue Target;
887   uint64_t FixedValue;
888   bool WasForced;
889   bool IsResolved =
890       evaluateFixup(Fixup, &F, Target, STI, FixedValue, WasForced);
891   if (!IsResolved) {
892     // The fixup was unresolved, we need a relocation. Inform the object
893     // writer of the relocation, and give it an opportunity to adjust the
894     // fixup value if need be.
895     getWriter().recordRelocation(*this, &F, Fixup, Target, FixedValue);
896   }
897   return std::make_tuple(Target, FixedValue, IsResolved);
898 }
899 
900 void MCAssembler::layout() {
901   assert(getBackendPtr() && "Expected assembler backend");
902   DEBUG_WITH_TYPE("mc-dump", {
903       errs() << "assembler backend - pre-layout\n--\n";
904       dump(); });
905 
906   // Assign section ordinals.
907   unsigned SectionIndex = 0;
908   for (MCSection &Sec : *this) {
909     Sec.setOrdinal(SectionIndex++);
910 
911     // Chain together fragments from all subsections.
912     if (Sec.Subsections.size() > 1) {
913       MCDummyFragment Dummy;
914       MCFragment *Tail = &Dummy;
915       for (auto &[_, List] : Sec.Subsections) {
916         assert(List.Head);
917         Tail->Next = List.Head;
918         Tail = List.Tail;
919       }
920       Sec.Subsections.clear();
921       Sec.Subsections.push_back({0u, {Dummy.getNext(), Tail}});
922       Sec.CurFragList = &Sec.Subsections[0].second;
923 
924       unsigned FragmentIndex = 0;
925       for (MCFragment &Frag : Sec)
926         Frag.setLayoutOrder(FragmentIndex++);
927     }
928   }
929 
930   // Layout until everything fits.
931   this->HasLayout = true;
932   while (layoutOnce()) {
933     if (getContext().hadError())
934       return;
935     // Size of fragments in one section can depend on the size of fragments in
936     // another. If any fragment has changed size, we have to re-layout (and
937     // as a result possibly further relax) all.
938     for (MCSection &Sec : *this)
939       Sec.setHasLayout(false);
940   }
941 
942   DEBUG_WITH_TYPE("mc-dump", {
943       errs() << "assembler backend - post-relaxation\n--\n";
944       dump(); });
945 
946   // Finalize the layout, including fragment lowering.
947   getBackend().finishLayout(*this);
948 
949   DEBUG_WITH_TYPE("mc-dump", {
950       errs() << "assembler backend - final-layout\n--\n";
951       dump(); });
952 
953   // Allow the object writer a chance to perform post-layout binding (for
954   // example, to set the index fields in the symbol data).
955   getWriter().executePostLayoutBinding(*this);
956 
957   // Evaluate and apply the fixups, generating relocation entries as necessary.
958   for (MCSection &Sec : *this) {
959     for (MCFragment &Frag : Sec) {
960       ArrayRef<MCFixup> Fixups;
961       MutableArrayRef<char> Contents;
962       const MCSubtargetInfo *STI = nullptr;
963 
964       // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
965       switch (Frag.getKind()) {
966       default:
967         continue;
968       case MCFragment::FT_Align: {
969         MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
970         // Insert fixup type for code alignment if the target define
971         // shouldInsertFixupForCodeAlign target hook.
972         if (Sec.useCodeAlign() && AF.hasEmitNops())
973           getBackend().shouldInsertFixupForCodeAlign(*this, AF);
974         continue;
975       }
976       case MCFragment::FT_Data: {
977         MCDataFragment &DF = cast<MCDataFragment>(Frag);
978         Fixups = DF.getFixups();
979         Contents = DF.getContents();
980         STI = DF.getSubtargetInfo();
981         assert(!DF.hasInstructions() || STI != nullptr);
982         break;
983       }
984       case MCFragment::FT_Relaxable: {
985         MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
986         Fixups = RF.getFixups();
987         Contents = RF.getContents();
988         STI = RF.getSubtargetInfo();
989         assert(!RF.hasInstructions() || STI != nullptr);
990         break;
991       }
992       case MCFragment::FT_CVDefRange: {
993         MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
994         Fixups = CF.getFixups();
995         Contents = CF.getContents();
996         break;
997       }
998       case MCFragment::FT_Dwarf: {
999         MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
1000         Fixups = DF.getFixups();
1001         Contents = DF.getContents();
1002         break;
1003       }
1004       case MCFragment::FT_DwarfFrame: {
1005         MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
1006         Fixups = DF.getFixups();
1007         Contents = DF.getContents();
1008         break;
1009       }
1010       case MCFragment::FT_LEB: {
1011         auto &LF = cast<MCLEBFragment>(Frag);
1012         Fixups = LF.getFixups();
1013         Contents = LF.getContents();
1014         break;
1015       }
1016       case MCFragment::FT_PseudoProbe: {
1017         MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
1018         Fixups = PF.getFixups();
1019         Contents = PF.getContents();
1020         break;
1021       }
1022       }
1023       for (const MCFixup &Fixup : Fixups) {
1024         uint64_t FixedValue;
1025         bool IsResolved;
1026         MCValue Target;
1027         std::tie(Target, FixedValue, IsResolved) =
1028             handleFixup(Frag, Fixup, STI);
1029         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
1030                                 IsResolved, STI);
1031       }
1032     }
1033   }
1034 }
1035 
1036 void MCAssembler::Finish() {
1037   layout();
1038 
1039   // Write the object file.
1040   stats::ObjectBytes += getWriter().writeObject(*this);
1041 
1042   HasLayout = false;
1043 }
1044 
1045 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
1046                                        const MCRelaxableFragment *DF) const {
1047   assert(getBackendPtr() && "Expected assembler backend");
1048   MCValue Target;
1049   uint64_t Value;
1050   bool WasForced;
1051   bool Resolved = evaluateFixup(Fixup, DF, Target, DF->getSubtargetInfo(),
1052                                 Value, WasForced);
1053   if (Target.getSymA() &&
1054       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
1055       Fixup.getKind() == FK_Data_1)
1056     return false;
1057   return getBackend().fixupNeedsRelaxationAdvanced(*this, Fixup, Resolved,
1058                                                    Value, DF, WasForced);
1059 }
1060 
1061 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F) const {
1062   assert(getBackendPtr() && "Expected assembler backend");
1063   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
1064   // are intentionally pushing out inst fragments, or because we relaxed a
1065   // previous instruction to one that doesn't need relaxation.
1066   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
1067     return false;
1068 
1069   for (const MCFixup &Fixup : F->getFixups())
1070     if (fixupNeedsRelaxation(Fixup, F))
1071       return true;
1072 
1073   return false;
1074 }
1075 
1076 bool MCAssembler::relaxInstruction(MCRelaxableFragment &F) {
1077   assert(getEmitterPtr() &&
1078          "Expected CodeEmitter defined for relaxInstruction");
1079   if (!fragmentNeedsRelaxation(&F))
1080     return false;
1081 
1082   ++stats::RelaxedInstructions;
1083 
1084   // FIXME-PERF: We could immediately lower out instructions if we can tell
1085   // they are fully resolved, to avoid retesting on later passes.
1086 
1087   // Relax the fragment.
1088 
1089   MCInst Relaxed = F.getInst();
1090   getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
1091 
1092   // Encode the new instruction.
1093   F.setInst(Relaxed);
1094   F.getFixups().clear();
1095   F.getContents().clear();
1096   getEmitter().encodeInstruction(Relaxed, F.getContents(), F.getFixups(),
1097                                  *F.getSubtargetInfo());
1098   return true;
1099 }
1100 
1101 bool MCAssembler::relaxLEB(MCLEBFragment &LF) {
1102   const unsigned OldSize = static_cast<unsigned>(LF.getContents().size());
1103   unsigned PadTo = OldSize;
1104   int64_t Value;
1105   SmallVectorImpl<char> &Data = LF.getContents();
1106   LF.getFixups().clear();
1107   // Use evaluateKnownAbsolute for Mach-O as a hack: .subsections_via_symbols
1108   // requires that .uleb128 A-B is foldable where A and B reside in different
1109   // fragments. This is used by __gcc_except_table.
1110   bool Abs = getWriter().getSubsectionsViaSymbols()
1111                  ? LF.getValue().evaluateKnownAbsolute(Value, *this)
1112                  : LF.getValue().evaluateAsAbsolute(Value, *this);
1113   if (!Abs) {
1114     bool Relaxed, UseZeroPad;
1115     std::tie(Relaxed, UseZeroPad) = getBackend().relaxLEB128(*this, LF, Value);
1116     if (!Relaxed) {
1117       getContext().reportError(LF.getValue().getLoc(),
1118                                Twine(LF.isSigned() ? ".s" : ".u") +
1119                                    "leb128 expression is not absolute");
1120       LF.setValue(MCConstantExpr::create(0, Context));
1121     }
1122     uint8_t Tmp[10]; // maximum size: ceil(64/7)
1123     PadTo = std::max(PadTo, encodeULEB128(uint64_t(Value), Tmp));
1124     if (UseZeroPad)
1125       Value = 0;
1126   }
1127   Data.clear();
1128   raw_svector_ostream OSE(Data);
1129   // The compiler can generate EH table assembly that is impossible to assemble
1130   // without either adding padding to an LEB fragment or adding extra padding
1131   // to a later alignment fragment. To accommodate such tables, relaxation can
1132   // only increase an LEB fragment size here, not decrease it. See PR35809.
1133   if (LF.isSigned())
1134     encodeSLEB128(Value, OSE, PadTo);
1135   else
1136     encodeULEB128(Value, OSE, PadTo);
1137   return OldSize != LF.getContents().size();
1138 }
1139 
1140 /// Check if the branch crosses the boundary.
1141 ///
1142 /// \param StartAddr start address of the fused/unfused branch.
1143 /// \param Size size of the fused/unfused branch.
1144 /// \param BoundaryAlignment alignment requirement of the branch.
1145 /// \returns true if the branch cross the boundary.
1146 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1147                              Align BoundaryAlignment) {
1148   uint64_t EndAddr = StartAddr + Size;
1149   return (StartAddr >> Log2(BoundaryAlignment)) !=
1150          ((EndAddr - 1) >> Log2(BoundaryAlignment));
1151 }
1152 
1153 /// Check if the branch is against the boundary.
1154 ///
1155 /// \param StartAddr start address of the fused/unfused branch.
1156 /// \param Size size of the fused/unfused branch.
1157 /// \param BoundaryAlignment alignment requirement of the branch.
1158 /// \returns true if the branch is against the boundary.
1159 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1160                               Align BoundaryAlignment) {
1161   uint64_t EndAddr = StartAddr + Size;
1162   return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1163 }
1164 
1165 /// Check if the branch needs padding.
1166 ///
1167 /// \param StartAddr start address of the fused/unfused branch.
1168 /// \param Size size of the fused/unfused branch.
1169 /// \param BoundaryAlignment alignment requirement of the branch.
1170 /// \returns true if the branch needs padding.
1171 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1172                         Align BoundaryAlignment) {
1173   return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1174          isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1175 }
1176 
1177 bool MCAssembler::relaxBoundaryAlign(MCBoundaryAlignFragment &BF) {
1178   // BoundaryAlignFragment that doesn't need to align any fragment should not be
1179   // relaxed.
1180   if (!BF.getLastFragment())
1181     return false;
1182 
1183   uint64_t AlignedOffset = getFragmentOffset(BF);
1184   uint64_t AlignedSize = 0;
1185   for (const MCFragment *F = BF.getNext();; F = F->getNext()) {
1186     AlignedSize += computeFragmentSize(*F);
1187     if (F == BF.getLastFragment())
1188       break;
1189   }
1190 
1191   Align BoundaryAlignment = BF.getAlignment();
1192   uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1193                          ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1194                          : 0U;
1195   if (NewSize == BF.getSize())
1196     return false;
1197   BF.setSize(NewSize);
1198   return true;
1199 }
1200 
1201 bool MCAssembler::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF) {
1202   bool WasRelaxed;
1203   if (getBackend().relaxDwarfLineAddr(*this, DF, WasRelaxed))
1204     return WasRelaxed;
1205 
1206   MCContext &Context = getContext();
1207   uint64_t OldSize = DF.getContents().size();
1208   int64_t AddrDelta;
1209   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1210   assert(Abs && "We created a line delta with an invalid expression");
1211   (void)Abs;
1212   int64_t LineDelta;
1213   LineDelta = DF.getLineDelta();
1214   SmallVectorImpl<char> &Data = DF.getContents();
1215   Data.clear();
1216   DF.getFixups().clear();
1217 
1218   MCDwarfLineAddr::encode(Context, getDWARFLinetableParams(), LineDelta,
1219                           AddrDelta, Data);
1220   return OldSize != Data.size();
1221 }
1222 
1223 bool MCAssembler::relaxDwarfCallFrameFragment(MCDwarfCallFrameFragment &DF) {
1224   bool WasRelaxed;
1225   if (getBackend().relaxDwarfCFA(*this, DF, WasRelaxed))
1226     return WasRelaxed;
1227 
1228   MCContext &Context = getContext();
1229   int64_t Value;
1230   bool Abs = DF.getAddrDelta().evaluateAsAbsolute(Value, *this);
1231   if (!Abs) {
1232     getContext().reportError(DF.getAddrDelta().getLoc(),
1233                              "invalid CFI advance_loc expression");
1234     DF.setAddrDelta(MCConstantExpr::create(0, Context));
1235     return false;
1236   }
1237 
1238   SmallVectorImpl<char> &Data = DF.getContents();
1239   uint64_t OldSize = Data.size();
1240   Data.clear();
1241   DF.getFixups().clear();
1242 
1243   MCDwarfFrameEmitter::encodeAdvanceLoc(Context, Value, Data);
1244   return OldSize != Data.size();
1245 }
1246 
1247 bool MCAssembler::relaxCVInlineLineTable(MCCVInlineLineTableFragment &F) {
1248   unsigned OldSize = F.getContents().size();
1249   getContext().getCVContext().encodeInlineLineTable(*this, F);
1250   return OldSize != F.getContents().size();
1251 }
1252 
1253 bool MCAssembler::relaxCVDefRange(MCCVDefRangeFragment &F) {
1254   unsigned OldSize = F.getContents().size();
1255   getContext().getCVContext().encodeDefRange(*this, F);
1256   return OldSize != F.getContents().size();
1257 }
1258 
1259 bool MCAssembler::relaxPseudoProbeAddr(MCPseudoProbeAddrFragment &PF) {
1260   uint64_t OldSize = PF.getContents().size();
1261   int64_t AddrDelta;
1262   bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, *this);
1263   assert(Abs && "We created a pseudo probe with an invalid expression");
1264   (void)Abs;
1265   SmallVectorImpl<char> &Data = PF.getContents();
1266   Data.clear();
1267   raw_svector_ostream OSE(Data);
1268   PF.getFixups().clear();
1269 
1270   // AddrDelta is a signed integer
1271   encodeSLEB128(AddrDelta, OSE, OldSize);
1272   return OldSize != Data.size();
1273 }
1274 
1275 bool MCAssembler::relaxFragment(MCFragment &F) {
1276   switch(F.getKind()) {
1277   default:
1278     return false;
1279   case MCFragment::FT_Relaxable:
1280     assert(!getRelaxAll() &&
1281            "Did not expect a MCRelaxableFragment in RelaxAll mode");
1282     return relaxInstruction(cast<MCRelaxableFragment>(F));
1283   case MCFragment::FT_Dwarf:
1284     return relaxDwarfLineAddr(cast<MCDwarfLineAddrFragment>(F));
1285   case MCFragment::FT_DwarfFrame:
1286     return relaxDwarfCallFrameFragment(cast<MCDwarfCallFrameFragment>(F));
1287   case MCFragment::FT_LEB:
1288     return relaxLEB(cast<MCLEBFragment>(F));
1289   case MCFragment::FT_BoundaryAlign:
1290     return relaxBoundaryAlign(cast<MCBoundaryAlignFragment>(F));
1291   case MCFragment::FT_CVInlineLines:
1292     return relaxCVInlineLineTable(cast<MCCVInlineLineTableFragment>(F));
1293   case MCFragment::FT_CVDefRange:
1294     return relaxCVDefRange(cast<MCCVDefRangeFragment>(F));
1295   case MCFragment::FT_PseudoProbe:
1296     return relaxPseudoProbeAddr(cast<MCPseudoProbeAddrFragment>(F));
1297   }
1298 }
1299 
1300 bool MCAssembler::layoutOnce() {
1301   ++stats::RelaxationSteps;
1302 
1303   bool Changed = false;
1304   for (MCSection &Sec : *this)
1305     for (MCFragment &Frag : Sec)
1306       if (relaxFragment(Frag))
1307         Changed = true;
1308   return Changed;
1309 }
1310 
1311 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1312 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1313   raw_ostream &OS = errs();
1314 
1315   OS << "<MCAssembler\n";
1316   OS << "  Sections:[\n    ";
1317   bool First = true;
1318   for (const MCSection &Sec : *this) {
1319     if (First)
1320       First = false;
1321     else
1322       OS << ",\n    ";
1323     Sec.dump();
1324   }
1325   OS << "],\n";
1326   OS << "  Symbols:[";
1327 
1328   First = true;
1329   for (const MCSymbol &Sym : symbols()) {
1330     if (First)
1331       First = false;
1332     else
1333       OS << ",\n           ";
1334     OS << "(";
1335     Sym.dump();
1336     OS << ", Index:" << Sym.getIndex() << ", ";
1337     OS << ")";
1338   }
1339   OS << "]>\n";
1340 }
1341 #endif
1342