1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/StableHashing.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/StackSafetyAnalysis.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Bitcode/BitcodeReader.h" 24 #include "llvm/Bitcode/BitcodeWriter.h" 25 #include "llvm/CGData/CodeGenData.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMRemarkStreamer.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/RuntimeLibcalls.h" 36 #include "llvm/LTO/LTOBackend.h" 37 #include "llvm/Linker/IRMover.h" 38 #include "llvm/MC/TargetRegistry.h" 39 #include "llvm/Object/IRObjectFile.h" 40 #include "llvm/Support/Caching.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Error.h" 43 #include "llvm/Support/FileSystem.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/Path.h" 46 #include "llvm/Support/SHA1.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/ThreadPool.h" 49 #include "llvm/Support/Threading.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/ToolOutputFile.h" 52 #include "llvm/Support/VCSRevision.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/Transforms/IPO.h" 56 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h" 57 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 58 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 59 #include "llvm/Transforms/Utils/SplitModule.h" 60 61 #include <optional> 62 #include <set> 63 64 using namespace llvm; 65 using namespace lto; 66 using namespace object; 67 68 #define DEBUG_TYPE "lto" 69 70 extern cl::opt<bool> UseNewDbgInfoFormat; 71 72 static cl::opt<bool> 73 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 74 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 75 76 extern cl::opt<bool> CodeGenDataThinLTOTwoRounds; 77 78 namespace llvm { 79 /// Enable global value internalization in LTO. 80 cl::opt<bool> EnableLTOInternalization( 81 "enable-lto-internalization", cl::init(true), cl::Hidden, 82 cl::desc("Enable global value internalization in LTO")); 83 84 static cl::opt<bool> 85 LTOKeepSymbolCopies("lto-keep-symbol-copies", cl::init(false), cl::Hidden, 86 cl::desc("Keep copies of symbols in LTO indexing")); 87 88 /// Indicate we are linking with an allocator that supports hot/cold operator 89 /// new interfaces. 90 extern cl::opt<bool> SupportsHotColdNew; 91 92 /// Enable MemProf context disambiguation for thin link. 93 extern cl::opt<bool> EnableMemProfContextDisambiguation; 94 } // namespace llvm 95 96 // Computes a unique hash for the Module considering the current list of 97 // export/import and other global analysis results. 98 // Returns the hash in its hexadecimal representation. 99 std::string llvm::computeLTOCacheKey( 100 const Config &Conf, const ModuleSummaryIndex &Index, StringRef ModuleID, 101 const FunctionImporter::ImportMapTy &ImportList, 102 const FunctionImporter::ExportSetTy &ExportList, 103 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 104 const GVSummaryMapTy &DefinedGlobals, 105 const DenseSet<GlobalValue::GUID> &CfiFunctionDefs, 106 const DenseSet<GlobalValue::GUID> &CfiFunctionDecls) { 107 // Compute the unique hash for this entry. 108 // This is based on the current compiler version, the module itself, the 109 // export list, the hash for every single module in the import list, the 110 // list of ResolvedODR for the module, and the list of preserved symbols. 111 SHA1 Hasher; 112 113 // Start with the compiler revision 114 Hasher.update(LLVM_VERSION_STRING); 115 #ifdef LLVM_REVISION 116 Hasher.update(LLVM_REVISION); 117 #endif 118 119 // Include the parts of the LTO configuration that affect code generation. 120 auto AddString = [&](StringRef Str) { 121 Hasher.update(Str); 122 Hasher.update(ArrayRef<uint8_t>{0}); 123 }; 124 auto AddUnsigned = [&](unsigned I) { 125 uint8_t Data[4]; 126 support::endian::write32le(Data, I); 127 Hasher.update(Data); 128 }; 129 auto AddUint64 = [&](uint64_t I) { 130 uint8_t Data[8]; 131 support::endian::write64le(Data, I); 132 Hasher.update(Data); 133 }; 134 auto AddUint8 = [&](const uint8_t I) { 135 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&I, 1)); 136 }; 137 AddString(Conf.CPU); 138 // FIXME: Hash more of Options. For now all clients initialize Options from 139 // command-line flags (which is unsupported in production), but may set 140 // X86RelaxRelocations. The clang driver can also pass FunctionSections, 141 // DataSections and DebuggerTuning via command line flags. 142 AddUnsigned(Conf.Options.MCOptions.X86RelaxRelocations); 143 AddUnsigned(Conf.Options.FunctionSections); 144 AddUnsigned(Conf.Options.DataSections); 145 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 146 for (auto &A : Conf.MAttrs) 147 AddString(A); 148 if (Conf.RelocModel) 149 AddUnsigned(*Conf.RelocModel); 150 else 151 AddUnsigned(-1); 152 if (Conf.CodeModel) 153 AddUnsigned(*Conf.CodeModel); 154 else 155 AddUnsigned(-1); 156 for (const auto &S : Conf.MllvmArgs) 157 AddString(S); 158 AddUnsigned(static_cast<int>(Conf.CGOptLevel)); 159 AddUnsigned(static_cast<int>(Conf.CGFileType)); 160 AddUnsigned(Conf.OptLevel); 161 AddUnsigned(Conf.Freestanding); 162 AddString(Conf.OptPipeline); 163 AddString(Conf.AAPipeline); 164 AddString(Conf.OverrideTriple); 165 AddString(Conf.DefaultTriple); 166 AddString(Conf.DwoDir); 167 168 // Include the hash for the current module 169 auto ModHash = Index.getModuleHash(ModuleID); 170 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 171 172 // TODO: `ExportList` is determined by `ImportList`. Since `ImportList` is 173 // used to compute cache key, we could omit hashing `ExportList` here. 174 std::vector<uint64_t> ExportsGUID; 175 ExportsGUID.reserve(ExportList.size()); 176 for (const auto &VI : ExportList) 177 ExportsGUID.push_back(VI.getGUID()); 178 179 // Sort the export list elements GUIDs. 180 llvm::sort(ExportsGUID); 181 for (auto GUID : ExportsGUID) 182 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 183 184 // Order using module hash, to be both independent of module name and 185 // module order. 186 auto Comp = [&](const std::pair<StringRef, GlobalValue::GUID> &L, 187 const std::pair<StringRef, GlobalValue::GUID> &R) { 188 return std::make_pair(Index.getModule(L.first)->second, L.second) < 189 std::make_pair(Index.getModule(R.first)->second, R.second); 190 }; 191 FunctionImporter::SortedImportList SortedImportList(ImportList, Comp); 192 193 // Count the number of imports for each source module. 194 DenseMap<StringRef, unsigned> ModuleToNumImports; 195 for (const auto &[FromModule, GUID, Type] : SortedImportList) 196 ++ModuleToNumImports[FromModule]; 197 198 std::optional<StringRef> LastModule; 199 for (const auto &[FromModule, GUID, Type] : SortedImportList) { 200 if (LastModule != FromModule) { 201 // Include the hash for every module we import functions from. The set of 202 // imported symbols for each module may affect code generation and is 203 // sensitive to link order, so include that as well. 204 LastModule = FromModule; 205 auto ModHash = Index.getModule(FromModule)->second; 206 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 207 AddUint64(ModuleToNumImports[FromModule]); 208 } 209 AddUint64(GUID); 210 AddUint8(Type); 211 } 212 213 // Include the hash for the resolved ODR. 214 for (auto &Entry : ResolvedODR) { 215 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 216 sizeof(GlobalValue::GUID))); 217 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 218 sizeof(GlobalValue::LinkageTypes))); 219 } 220 221 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 222 // defined in this module. 223 std::set<GlobalValue::GUID> UsedCfiDefs; 224 std::set<GlobalValue::GUID> UsedCfiDecls; 225 226 // Typeids used in this module. 227 std::set<GlobalValue::GUID> UsedTypeIds; 228 229 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 230 if (CfiFunctionDefs.contains(ValueGUID)) 231 UsedCfiDefs.insert(ValueGUID); 232 if (CfiFunctionDecls.contains(ValueGUID)) 233 UsedCfiDecls.insert(ValueGUID); 234 }; 235 236 auto AddUsedThings = [&](GlobalValueSummary *GS) { 237 if (!GS) return; 238 AddUnsigned(GS->getVisibility()); 239 AddUnsigned(GS->isLive()); 240 AddUnsigned(GS->canAutoHide()); 241 for (const ValueInfo &VI : GS->refs()) { 242 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 243 AddUsedCfiGlobal(VI.getGUID()); 244 } 245 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 246 AddUnsigned(GVS->maybeReadOnly()); 247 AddUnsigned(GVS->maybeWriteOnly()); 248 } 249 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 250 for (auto &TT : FS->type_tests()) 251 UsedTypeIds.insert(TT); 252 for (auto &TT : FS->type_test_assume_vcalls()) 253 UsedTypeIds.insert(TT.GUID); 254 for (auto &TT : FS->type_checked_load_vcalls()) 255 UsedTypeIds.insert(TT.GUID); 256 for (auto &TT : FS->type_test_assume_const_vcalls()) 257 UsedTypeIds.insert(TT.VFunc.GUID); 258 for (auto &TT : FS->type_checked_load_const_vcalls()) 259 UsedTypeIds.insert(TT.VFunc.GUID); 260 for (auto &ET : FS->calls()) { 261 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 262 AddUsedCfiGlobal(ET.first.getGUID()); 263 } 264 } 265 }; 266 267 // Include the hash for the linkage type to reflect internalization and weak 268 // resolution, and collect any used type identifier resolutions. 269 for (auto &GS : DefinedGlobals) { 270 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 271 Hasher.update( 272 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 273 AddUsedCfiGlobal(GS.first); 274 AddUsedThings(GS.second); 275 } 276 277 // Imported functions may introduce new uses of type identifier resolutions, 278 // so we need to collect their used resolutions as well. 279 for (const auto &[FromModule, GUID, Type] : SortedImportList) { 280 GlobalValueSummary *S = Index.findSummaryInModule(GUID, FromModule); 281 AddUsedThings(S); 282 // If this is an alias, we also care about any types/etc. that the aliasee 283 // may reference. 284 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 285 AddUsedThings(AS->getBaseObject()); 286 } 287 288 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 289 AddString(TId); 290 291 AddUnsigned(S.TTRes.TheKind); 292 AddUnsigned(S.TTRes.SizeM1BitWidth); 293 294 AddUint64(S.TTRes.AlignLog2); 295 AddUint64(S.TTRes.SizeM1); 296 AddUint64(S.TTRes.BitMask); 297 AddUint64(S.TTRes.InlineBits); 298 299 AddUint64(S.WPDRes.size()); 300 for (auto &WPD : S.WPDRes) { 301 AddUnsigned(WPD.first); 302 AddUnsigned(WPD.second.TheKind); 303 AddString(WPD.second.SingleImplName); 304 305 AddUint64(WPD.second.ResByArg.size()); 306 for (auto &ByArg : WPD.second.ResByArg) { 307 AddUint64(ByArg.first.size()); 308 for (uint64_t Arg : ByArg.first) 309 AddUint64(Arg); 310 AddUnsigned(ByArg.second.TheKind); 311 AddUint64(ByArg.second.Info); 312 AddUnsigned(ByArg.second.Byte); 313 AddUnsigned(ByArg.second.Bit); 314 } 315 } 316 }; 317 318 // Include the hash for all type identifiers used by this module. 319 for (GlobalValue::GUID TId : UsedTypeIds) { 320 auto TidIter = Index.typeIds().equal_range(TId); 321 for (const auto &I : make_range(TidIter)) 322 AddTypeIdSummary(I.second.first, I.second.second); 323 } 324 325 AddUnsigned(UsedCfiDefs.size()); 326 for (auto &V : UsedCfiDefs) 327 AddUint64(V); 328 329 AddUnsigned(UsedCfiDecls.size()); 330 for (auto &V : UsedCfiDecls) 331 AddUint64(V); 332 333 if (!Conf.SampleProfile.empty()) { 334 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 335 if (FileOrErr) { 336 Hasher.update(FileOrErr.get()->getBuffer()); 337 338 if (!Conf.ProfileRemapping.empty()) { 339 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 340 if (FileOrErr) 341 Hasher.update(FileOrErr.get()->getBuffer()); 342 } 343 } 344 } 345 346 return toHex(Hasher.result()); 347 } 348 349 std::string llvm::recomputeLTOCacheKey(const std::string &Key, 350 StringRef ExtraID) { 351 SHA1 Hasher; 352 353 auto AddString = [&](StringRef Str) { 354 Hasher.update(Str); 355 Hasher.update(ArrayRef<uint8_t>{0}); 356 }; 357 AddString(Key); 358 AddString(ExtraID); 359 360 return toHex(Hasher.result()); 361 } 362 363 static void thinLTOResolvePrevailingGUID( 364 const Config &C, ValueInfo VI, 365 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 366 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 367 isPrevailing, 368 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 369 recordNewLinkage, 370 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 371 GlobalValue::VisibilityTypes Visibility = 372 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 373 : GlobalValue::DefaultVisibility; 374 for (auto &S : VI.getSummaryList()) { 375 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 376 // Ignore local and appending linkage values since the linker 377 // doesn't resolve them. 378 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 379 GlobalValue::isAppendingLinkage(S->linkage())) 380 continue; 381 // We need to emit only one of these. The prevailing module will keep it, 382 // but turned into a weak, while the others will drop it when possible. 383 // This is both a compile-time optimization and a correctness 384 // transformation. This is necessary for correctness when we have exported 385 // a reference - we need to convert the linkonce to weak to 386 // ensure a copy is kept to satisfy the exported reference. 387 // FIXME: We may want to split the compile time and correctness 388 // aspects into separate routines. 389 if (isPrevailing(VI.getGUID(), S.get())) { 390 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 391 S->setLinkage(GlobalValue::getWeakLinkage( 392 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 393 // The kept copy is eligible for auto-hiding (hidden visibility) if all 394 // copies were (i.e. they were all linkonce_odr global unnamed addr). 395 // If any copy is not (e.g. it was originally weak_odr), then the symbol 396 // must remain externally available (e.g. a weak_odr from an explicitly 397 // instantiated template). Additionally, if it is in the 398 // GUIDPreservedSymbols set, that means that it is visibile outside 399 // the summary (e.g. in a native object or a bitcode file without 400 // summary), and in that case we cannot hide it as it isn't possible to 401 // check all copies. 402 S->setCanAutoHide(VI.canAutoHide() && 403 !GUIDPreservedSymbols.count(VI.getGUID())); 404 } 405 if (C.VisibilityScheme == Config::FromPrevailing) 406 Visibility = S->getVisibility(); 407 } 408 // Alias and aliasee can't be turned into available_externally. 409 else if (!isa<AliasSummary>(S.get()) && 410 !GlobalInvolvedWithAlias.count(S.get())) 411 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 412 413 // For ELF, set visibility to the computed visibility from summaries. We 414 // don't track visibility from declarations so this may be more relaxed than 415 // the most constraining one. 416 if (C.VisibilityScheme == Config::ELF) 417 S->setVisibility(Visibility); 418 419 if (S->linkage() != OriginalLinkage) 420 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 421 } 422 423 if (C.VisibilityScheme == Config::FromPrevailing) { 424 for (auto &S : VI.getSummaryList()) { 425 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 426 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 427 GlobalValue::isAppendingLinkage(S->linkage())) 428 continue; 429 S->setVisibility(Visibility); 430 } 431 } 432 } 433 434 /// Resolve linkage for prevailing symbols in the \p Index. 435 // 436 // We'd like to drop these functions if they are no longer referenced in the 437 // current module. However there is a chance that another module is still 438 // referencing them because of the import. We make sure we always emit at least 439 // one copy. 440 void llvm::thinLTOResolvePrevailingInIndex( 441 const Config &C, ModuleSummaryIndex &Index, 442 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 443 isPrevailing, 444 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 445 recordNewLinkage, 446 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 447 // We won't optimize the globals that are referenced by an alias for now 448 // Ideally we should turn the alias into a global and duplicate the definition 449 // when needed. 450 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 451 for (auto &I : Index) 452 for (auto &S : I.second.SummaryList) 453 if (auto AS = dyn_cast<AliasSummary>(S.get())) 454 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 455 456 for (auto &I : Index) 457 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 458 GlobalInvolvedWithAlias, isPrevailing, 459 recordNewLinkage, GUIDPreservedSymbols); 460 } 461 462 static void thinLTOInternalizeAndPromoteGUID( 463 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 464 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 465 isPrevailing) { 466 auto ExternallyVisibleCopies = 467 llvm::count_if(VI.getSummaryList(), 468 [](const std::unique_ptr<GlobalValueSummary> &Summary) { 469 return !GlobalValue::isLocalLinkage(Summary->linkage()); 470 }); 471 472 for (auto &S : VI.getSummaryList()) { 473 // First see if we need to promote an internal value because it is not 474 // exported. 475 if (isExported(S->modulePath(), VI)) { 476 if (GlobalValue::isLocalLinkage(S->linkage())) 477 S->setLinkage(GlobalValue::ExternalLinkage); 478 continue; 479 } 480 481 // Otherwise, see if we can internalize. 482 if (!EnableLTOInternalization) 483 continue; 484 485 // Non-exported values with external linkage can be internalized. 486 if (GlobalValue::isExternalLinkage(S->linkage())) { 487 S->setLinkage(GlobalValue::InternalLinkage); 488 continue; 489 } 490 491 // Non-exported function and variable definitions with a weak-for-linker 492 // linkage can be internalized in certain cases. The minimum legality 493 // requirements would be that they are not address taken to ensure that we 494 // don't break pointer equality checks, and that variables are either read- 495 // or write-only. For functions, this is the case if either all copies are 496 // [local_]unnamed_addr, or we can propagate reference edge attributes 497 // (which is how this is guaranteed for variables, when analyzing whether 498 // they are read or write-only). 499 // 500 // However, we only get to this code for weak-for-linkage values in one of 501 // two cases: 502 // 1) The prevailing copy is not in IR (it is in native code). 503 // 2) The prevailing copy in IR is not exported from its module. 504 // Additionally, at least for the new LTO API, case 2 will only happen if 505 // there is exactly one definition of the value (i.e. in exactly one 506 // module), as duplicate defs are result in the value being marked exported. 507 // Likely, users of the legacy LTO API are similar, however, currently there 508 // are llvm-lto based tests of the legacy LTO API that do not mark 509 // duplicate linkonce_odr copies as exported via the tool, so we need 510 // to handle that case below by checking the number of copies. 511 // 512 // Generally, we only want to internalize a weak-for-linker value in case 513 // 2, because in case 1 we cannot see how the value is used to know if it 514 // is read or write-only. We also don't want to bloat the binary with 515 // multiple internalized copies of non-prevailing linkonce/weak functions. 516 // Note if we don't internalize, we will convert non-prevailing copies to 517 // available_externally anyway, so that we drop them after inlining. The 518 // only reason to internalize such a function is if we indeed have a single 519 // copy, because internalizing it won't increase binary size, and enables 520 // use of inliner heuristics that are more aggressive in the face of a 521 // single call to a static (local). For variables, internalizing a read or 522 // write only variable can enable more aggressive optimization. However, we 523 // already perform this elsewhere in the ThinLTO backend handling for 524 // read or write-only variables (processGlobalForThinLTO). 525 // 526 // Therefore, only internalize linkonce/weak if there is a single copy, that 527 // is prevailing in this IR module. We can do so aggressively, without 528 // requiring the address to be insignificant, or that a variable be read or 529 // write-only. 530 if (!GlobalValue::isWeakForLinker(S->linkage()) || 531 GlobalValue::isExternalWeakLinkage(S->linkage())) 532 continue; 533 534 if (isPrevailing(VI.getGUID(), S.get()) && ExternallyVisibleCopies == 1) 535 S->setLinkage(GlobalValue::InternalLinkage); 536 } 537 } 538 539 // Update the linkages in the given \p Index to mark exported values 540 // as external and non-exported values as internal. 541 void llvm::thinLTOInternalizeAndPromoteInIndex( 542 ModuleSummaryIndex &Index, 543 function_ref<bool(StringRef, ValueInfo)> isExported, 544 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 545 isPrevailing) { 546 for (auto &I : Index) 547 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 548 isPrevailing); 549 } 550 551 // Requires a destructor for std::vector<InputModule>. 552 InputFile::~InputFile() = default; 553 554 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 555 std::unique_ptr<InputFile> File(new InputFile); 556 557 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 558 if (!FOrErr) 559 return FOrErr.takeError(); 560 561 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 562 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 563 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 564 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 565 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 566 567 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 568 size_t Begin = File->Symbols.size(); 569 for (const irsymtab::Reader::SymbolRef &Sym : 570 FOrErr->TheReader.module_symbols(I)) 571 // Skip symbols that are irrelevant to LTO. Note that this condition needs 572 // to match the one in Skip() in LTO::addRegularLTO(). 573 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 574 File->Symbols.push_back(Sym); 575 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 576 } 577 578 File->Mods = FOrErr->Mods; 579 File->Strtab = std::move(FOrErr->Strtab); 580 return std::move(File); 581 } 582 583 StringRef InputFile::getName() const { 584 return Mods[0].getModuleIdentifier(); 585 } 586 587 BitcodeModule &InputFile::getSingleBitcodeModule() { 588 assert(Mods.size() == 1 && "Expect only one bitcode module"); 589 return Mods[0]; 590 } 591 592 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 593 const Config &Conf) 594 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 595 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 596 Mover(std::make_unique<IRMover>(*CombinedModule)) { 597 CombinedModule->IsNewDbgInfoFormat = UseNewDbgInfoFormat; 598 } 599 600 LTO::ThinLTOState::ThinLTOState(ThinBackend BackendParam) 601 : Backend(std::move(BackendParam)), CombinedIndex(/*HaveGVs*/ false) { 602 if (!Backend.isValid()) 603 Backend = 604 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 605 } 606 607 LTO::LTO(Config Conf, ThinBackend Backend, 608 unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode) 609 : Conf(std::move(Conf)), 610 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 611 ThinLTO(std::move(Backend)), 612 GlobalResolutions( 613 std::make_unique<DenseMap<StringRef, GlobalResolution>>()), 614 LTOMode(LTOMode) { 615 if (Conf.KeepSymbolNameCopies || LTOKeepSymbolCopies) { 616 Alloc = std::make_unique<BumpPtrAllocator>(); 617 GlobalResolutionSymbolSaver = std::make_unique<llvm::StringSaver>(*Alloc); 618 } 619 } 620 621 // Requires a destructor for MapVector<BitcodeModule>. 622 LTO::~LTO() = default; 623 624 // Add the symbols in the given module to the GlobalResolutions map, and resolve 625 // their partitions. 626 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 627 ArrayRef<SymbolResolution> Res, 628 unsigned Partition, bool InSummary) { 629 auto *ResI = Res.begin(); 630 auto *ResE = Res.end(); 631 (void)ResE; 632 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 633 for (const InputFile::Symbol &Sym : Syms) { 634 assert(ResI != ResE); 635 SymbolResolution Res = *ResI++; 636 637 StringRef SymbolName = Sym.getName(); 638 // Keep copies of symbols if the client of LTO says so. 639 if (GlobalResolutionSymbolSaver && !GlobalResolutions->contains(SymbolName)) 640 SymbolName = GlobalResolutionSymbolSaver->save(SymbolName); 641 642 auto &GlobalRes = (*GlobalResolutions)[SymbolName]; 643 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 644 if (Res.Prevailing) { 645 assert(!GlobalRes.Prevailing && 646 "Multiple prevailing defs are not allowed"); 647 GlobalRes.Prevailing = true; 648 GlobalRes.IRName = std::string(Sym.getIRName()); 649 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 650 // Sometimes it can be two copies of symbol in a module and prevailing 651 // symbol can have no IR name. That might happen if symbol is defined in 652 // module level inline asm block. In case we have multiple modules with 653 // the same symbol we want to use IR name of the prevailing symbol. 654 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 655 // we can later use it to check if there is any prevailing copy in IR. 656 GlobalRes.IRName = std::string(Sym.getIRName()); 657 } 658 659 // In rare occasion, the symbol used to initialize GlobalRes has a different 660 // IRName from the inspected Symbol. This can happen on macOS + iOS, when a 661 // symbol is referenced through its mangled name, say @"\01_symbol" while 662 // the IRName is @symbol (the prefix underscore comes from MachO mangling). 663 // In that case, we have the same actual Symbol that can get two different 664 // GUID, leading to some invalid internalization. Workaround this by marking 665 // the GlobalRes external. 666 667 // FIXME: instead of this check, it would be desirable to compute GUIDs 668 // based on mangled name, but this requires an access to the Target Triple 669 // and would be relatively invasive on the codebase. 670 if (GlobalRes.IRName != Sym.getIRName()) { 671 GlobalRes.Partition = GlobalResolution::External; 672 GlobalRes.VisibleOutsideSummary = true; 673 } 674 675 // Set the partition to external if we know it is re-defined by the linker 676 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 677 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 678 // already recorded as being referenced from a different partition. 679 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 680 (GlobalRes.Partition != GlobalResolution::Unknown && 681 GlobalRes.Partition != Partition)) { 682 GlobalRes.Partition = GlobalResolution::External; 683 } else 684 // First recorded reference, save the current partition. 685 GlobalRes.Partition = Partition; 686 687 // Flag as visible outside of summary if visible from a regular object or 688 // from a module that does not have a summary. 689 GlobalRes.VisibleOutsideSummary |= 690 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 691 692 GlobalRes.ExportDynamic |= Res.ExportDynamic; 693 } 694 } 695 696 void LTO::releaseGlobalResolutionsMemory() { 697 // Release GlobalResolutions dense-map itself. 698 GlobalResolutions.reset(); 699 // Release the string saver memory. 700 GlobalResolutionSymbolSaver.reset(); 701 Alloc.reset(); 702 } 703 704 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 705 ArrayRef<SymbolResolution> Res) { 706 StringRef Path = Input->getName(); 707 OS << Path << '\n'; 708 auto ResI = Res.begin(); 709 for (const InputFile::Symbol &Sym : Input->symbols()) { 710 assert(ResI != Res.end()); 711 SymbolResolution Res = *ResI++; 712 713 OS << "-r=" << Path << ',' << Sym.getName() << ','; 714 if (Res.Prevailing) 715 OS << 'p'; 716 if (Res.FinalDefinitionInLinkageUnit) 717 OS << 'l'; 718 if (Res.VisibleToRegularObj) 719 OS << 'x'; 720 if (Res.LinkerRedefined) 721 OS << 'r'; 722 OS << '\n'; 723 } 724 OS.flush(); 725 assert(ResI == Res.end()); 726 } 727 728 Error LTO::add(std::unique_ptr<InputFile> Input, 729 ArrayRef<SymbolResolution> Res) { 730 assert(!CalledGetMaxTasks); 731 732 if (Conf.ResolutionFile) 733 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 734 735 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 736 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 737 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 738 Conf.VisibilityScheme = Config::ELF; 739 } 740 741 const SymbolResolution *ResI = Res.begin(); 742 for (unsigned I = 0; I != Input->Mods.size(); ++I) 743 if (Error Err = addModule(*Input, I, ResI, Res.end())) 744 return Err; 745 746 assert(ResI == Res.end()); 747 return Error::success(); 748 } 749 750 Error LTO::addModule(InputFile &Input, unsigned ModI, 751 const SymbolResolution *&ResI, 752 const SymbolResolution *ResE) { 753 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 754 if (!LTOInfo) 755 return LTOInfo.takeError(); 756 757 if (EnableSplitLTOUnit) { 758 // If only some modules were split, flag this in the index so that 759 // we can skip or error on optimizations that need consistently split 760 // modules (whole program devirt and lower type tests). 761 if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) 762 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 763 } else 764 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 765 766 BitcodeModule BM = Input.Mods[ModI]; 767 768 if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) && 769 !LTOInfo->UnifiedLTO) 770 return make_error<StringError>( 771 "unified LTO compilation must use " 772 "compatible bitcode modules (use -funified-lto)", 773 inconvertibleErrorCode()); 774 775 if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default) 776 LTOMode = LTOK_UnifiedThin; 777 778 bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular); 779 780 auto ModSyms = Input.module_symbols(ModI); 781 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 782 IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 783 LTOInfo->HasSummary); 784 785 if (IsThinLTO) 786 return addThinLTO(BM, ModSyms, ResI, ResE); 787 788 RegularLTO.EmptyCombinedModule = false; 789 Expected<RegularLTOState::AddedModule> ModOrErr = 790 addRegularLTO(BM, ModSyms, ResI, ResE); 791 if (!ModOrErr) 792 return ModOrErr.takeError(); 793 794 if (!LTOInfo->HasSummary) 795 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 796 797 // Regular LTO module summaries are added to a dummy module that represents 798 // the combined regular LTO module. 799 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "")) 800 return Err; 801 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 802 return Error::success(); 803 } 804 805 // Checks whether the given global value is in a non-prevailing comdat 806 // (comdat containing values the linker indicated were not prevailing, 807 // which we then dropped to available_externally), and if so, removes 808 // it from the comdat. This is called for all global values to ensure the 809 // comdat is empty rather than leaving an incomplete comdat. It is needed for 810 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 811 // and thin LTO modules) compilation. Since the regular LTO module will be 812 // linked first in the final native link, we want to make sure the linker 813 // doesn't select any of these incomplete comdats that would be left 814 // in the regular LTO module without this cleanup. 815 static void 816 handleNonPrevailingComdat(GlobalValue &GV, 817 std::set<const Comdat *> &NonPrevailingComdats) { 818 Comdat *C = GV.getComdat(); 819 if (!C) 820 return; 821 822 if (!NonPrevailingComdats.count(C)) 823 return; 824 825 // Additionally need to drop all global values from the comdat to 826 // available_externally, to satisfy the COMDAT requirement that all members 827 // are discarded as a unit. The non-local linkage global values avoid 828 // duplicate definition linker errors. 829 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 830 831 if (auto GO = dyn_cast<GlobalObject>(&GV)) 832 GO->setComdat(nullptr); 833 } 834 835 // Add a regular LTO object to the link. 836 // The resulting module needs to be linked into the combined LTO module with 837 // linkRegularLTO. 838 Expected<LTO::RegularLTOState::AddedModule> 839 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 840 const SymbolResolution *&ResI, 841 const SymbolResolution *ResE) { 842 RegularLTOState::AddedModule Mod; 843 Expected<std::unique_ptr<Module>> MOrErr = 844 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 845 /*IsImporting*/ false); 846 if (!MOrErr) 847 return MOrErr.takeError(); 848 Module &M = **MOrErr; 849 Mod.M = std::move(*MOrErr); 850 851 if (Error Err = M.materializeMetadata()) 852 return std::move(Err); 853 854 // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests 855 // will rename local functions in the merged module as "<function name>.1". 856 // This causes linking errors, since other parts of the module expect the 857 // original function name. 858 if (LTOMode == LTOK_UnifiedRegular) 859 if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions")) 860 M.eraseNamedMetadata(CfiFunctionsMD); 861 862 UpgradeDebugInfo(M); 863 864 ModuleSymbolTable SymTab; 865 SymTab.addModule(&M); 866 867 for (GlobalVariable &GV : M.globals()) 868 if (GV.hasAppendingLinkage()) 869 Mod.Keep.push_back(&GV); 870 871 DenseSet<GlobalObject *> AliasedGlobals; 872 for (auto &GA : M.aliases()) 873 if (GlobalObject *GO = GA.getAliaseeObject()) 874 AliasedGlobals.insert(GO); 875 876 // In this function we need IR GlobalValues matching the symbols in Syms 877 // (which is not backed by a module), so we need to enumerate them in the same 878 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 879 // matches the order of an irsymtab, but when we read the irsymtab in 880 // InputFile::create we omit some symbols that are irrelevant to LTO. The 881 // Skip() function skips the same symbols from the module as InputFile does 882 // from the symbol table. 883 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 884 auto Skip = [&]() { 885 while (MsymI != MsymE) { 886 auto Flags = SymTab.getSymbolFlags(*MsymI); 887 if ((Flags & object::BasicSymbolRef::SF_Global) && 888 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 889 return; 890 ++MsymI; 891 } 892 }; 893 Skip(); 894 895 std::set<const Comdat *> NonPrevailingComdats; 896 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 897 for (const InputFile::Symbol &Sym : Syms) { 898 assert(ResI != ResE); 899 SymbolResolution Res = *ResI++; 900 901 assert(MsymI != MsymE); 902 ModuleSymbolTable::Symbol Msym = *MsymI++; 903 Skip(); 904 905 if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) { 906 if (Res.Prevailing) { 907 if (Sym.isUndefined()) 908 continue; 909 Mod.Keep.push_back(GV); 910 // For symbols re-defined with linker -wrap and -defsym options, 911 // set the linkage to weak to inhibit IPO. The linkage will be 912 // restored by the linker. 913 if (Res.LinkerRedefined) 914 GV->setLinkage(GlobalValue::WeakAnyLinkage); 915 916 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 917 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 918 GV->setLinkage(GlobalValue::getWeakLinkage( 919 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 920 } else if (isa<GlobalObject>(GV) && 921 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 922 GV->hasAvailableExternallyLinkage()) && 923 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 924 // Any of the above three types of linkage indicates that the 925 // chosen prevailing symbol will have the same semantics as this copy of 926 // the symbol, so we may be able to link it with available_externally 927 // linkage. We will decide later whether to do that when we link this 928 // module (in linkRegularLTO), based on whether it is undefined. 929 Mod.Keep.push_back(GV); 930 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 931 if (GV->hasComdat()) 932 NonPrevailingComdats.insert(GV->getComdat()); 933 cast<GlobalObject>(GV)->setComdat(nullptr); 934 } 935 936 // Set the 'local' flag based on the linker resolution for this symbol. 937 if (Res.FinalDefinitionInLinkageUnit) { 938 GV->setDSOLocal(true); 939 if (GV->hasDLLImportStorageClass()) 940 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 941 DefaultStorageClass); 942 } 943 } else if (auto *AS = 944 dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) { 945 // Collect non-prevailing symbols. 946 if (!Res.Prevailing) 947 NonPrevailingAsmSymbols.insert(AS->first); 948 } else { 949 llvm_unreachable("unknown symbol type"); 950 } 951 952 // Common resolution: collect the maximum size/alignment over all commons. 953 // We also record if we see an instance of a common as prevailing, so that 954 // if none is prevailing we can ignore it later. 955 if (Sym.isCommon()) { 956 // FIXME: We should figure out what to do about commons defined by asm. 957 // For now they aren't reported correctly by ModuleSymbolTable. 958 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 959 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 960 if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { 961 CommonRes.Alignment = 962 std::max(Align(SymAlignValue), CommonRes.Alignment); 963 } 964 CommonRes.Prevailing |= Res.Prevailing; 965 } 966 } 967 968 if (!M.getComdatSymbolTable().empty()) 969 for (GlobalValue &GV : M.global_values()) 970 handleNonPrevailingComdat(GV, NonPrevailingComdats); 971 972 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 973 // block. 974 if (!M.getModuleInlineAsm().empty()) { 975 std::string NewIA = ".lto_discard"; 976 if (!NonPrevailingAsmSymbols.empty()) { 977 // Don't dicard a symbol if there is a live .symver for it. 978 ModuleSymbolTable::CollectAsmSymvers( 979 M, [&](StringRef Name, StringRef Alias) { 980 if (!NonPrevailingAsmSymbols.count(Alias)) 981 NonPrevailingAsmSymbols.erase(Name); 982 }); 983 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 984 } 985 NewIA += "\n"; 986 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 987 } 988 989 assert(MsymI == MsymE); 990 return std::move(Mod); 991 } 992 993 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 994 bool LivenessFromIndex) { 995 std::vector<GlobalValue *> Keep; 996 for (GlobalValue *GV : Mod.Keep) { 997 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 998 if (Function *F = dyn_cast<Function>(GV)) { 999 if (DiagnosticOutputFile) { 1000 if (Error Err = F->materialize()) 1001 return Err; 1002 OptimizationRemarkEmitter ORE(F, nullptr); 1003 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 1004 << ore::NV("Function", F) 1005 << " not added to the combined module "); 1006 } 1007 } 1008 continue; 1009 } 1010 1011 if (!GV->hasAvailableExternallyLinkage()) { 1012 Keep.push_back(GV); 1013 continue; 1014 } 1015 1016 // Only link available_externally definitions if we don't already have a 1017 // definition. 1018 GlobalValue *CombinedGV = 1019 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 1020 if (CombinedGV && !CombinedGV->isDeclaration()) 1021 continue; 1022 1023 Keep.push_back(GV); 1024 } 1025 1026 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 1027 /* IsPerformingImport */ false); 1028 } 1029 1030 // Add a ThinLTO module to the link. 1031 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 1032 const SymbolResolution *&ResI, 1033 const SymbolResolution *ResE) { 1034 const SymbolResolution *ResITmp = ResI; 1035 for (const InputFile::Symbol &Sym : Syms) { 1036 assert(ResITmp != ResE); 1037 SymbolResolution Res = *ResITmp++; 1038 1039 if (!Sym.getIRName().empty()) { 1040 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1041 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1042 if (Res.Prevailing) 1043 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 1044 } 1045 } 1046 1047 if (Error Err = 1048 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 1049 [&](GlobalValue::GUID GUID) { 1050 return ThinLTO.PrevailingModuleForGUID[GUID] == 1051 BM.getModuleIdentifier(); 1052 })) 1053 return Err; 1054 LLVM_DEBUG(dbgs() << "Module " << BM.getModuleIdentifier() << "\n"); 1055 1056 for (const InputFile::Symbol &Sym : Syms) { 1057 assert(ResI != ResE); 1058 SymbolResolution Res = *ResI++; 1059 1060 if (!Sym.getIRName().empty()) { 1061 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 1062 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 1063 if (Res.Prevailing) { 1064 assert(ThinLTO.PrevailingModuleForGUID[GUID] == 1065 BM.getModuleIdentifier()); 1066 1067 // For linker redefined symbols (via --wrap or --defsym) we want to 1068 // switch the linkage to `weak` to prevent IPOs from happening. 1069 // Find the summary in the module for this very GV and record the new 1070 // linkage so that we can switch it when we import the GV. 1071 if (Res.LinkerRedefined) 1072 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1073 GUID, BM.getModuleIdentifier())) 1074 S->setLinkage(GlobalValue::WeakAnyLinkage); 1075 } 1076 1077 // If the linker resolved the symbol to a local definition then mark it 1078 // as local in the summary for the module we are adding. 1079 if (Res.FinalDefinitionInLinkageUnit) { 1080 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 1081 GUID, BM.getModuleIdentifier())) { 1082 S->setDSOLocal(true); 1083 } 1084 } 1085 } 1086 } 1087 1088 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 1089 return make_error<StringError>( 1090 "Expected at most one ThinLTO module per bitcode file", 1091 inconvertibleErrorCode()); 1092 1093 if (!Conf.ThinLTOModulesToCompile.empty()) { 1094 if (!ThinLTO.ModulesToCompile) 1095 ThinLTO.ModulesToCompile = ModuleMapType(); 1096 // This is a fuzzy name matching where only modules with name containing the 1097 // specified switch values are going to be compiled. 1098 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 1099 if (BM.getModuleIdentifier().contains(Name)) { 1100 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 1101 LLVM_DEBUG(dbgs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 1102 << " to compile\n"); 1103 } 1104 } 1105 } 1106 1107 return Error::success(); 1108 } 1109 1110 unsigned LTO::getMaxTasks() const { 1111 CalledGetMaxTasks = true; 1112 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 1113 : ThinLTO.ModuleMap.size(); 1114 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 1115 } 1116 1117 // If only some of the modules were split, we cannot correctly handle 1118 // code that contains type tests or type checked loads. 1119 Error LTO::checkPartiallySplit() { 1120 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 1121 return Error::success(); 1122 1123 const Module *Combined = RegularLTO.CombinedModule.get(); 1124 Function *TypeTestFunc = 1125 Intrinsic::getDeclarationIfExists(Combined, Intrinsic::type_test); 1126 Function *TypeCheckedLoadFunc = 1127 Intrinsic::getDeclarationIfExists(Combined, Intrinsic::type_checked_load); 1128 Function *TypeCheckedLoadRelativeFunc = Intrinsic::getDeclarationIfExists( 1129 Combined, Intrinsic::type_checked_load_relative); 1130 1131 // First check if there are type tests / type checked loads in the 1132 // merged regular LTO module IR. 1133 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 1134 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) || 1135 (TypeCheckedLoadRelativeFunc && 1136 !TypeCheckedLoadRelativeFunc->use_empty())) 1137 return make_error<StringError>( 1138 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1139 inconvertibleErrorCode()); 1140 1141 // Otherwise check if there are any recorded in the combined summary from the 1142 // ThinLTO modules. 1143 for (auto &P : ThinLTO.CombinedIndex) { 1144 for (auto &S : P.second.SummaryList) { 1145 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1146 if (!FS) 1147 continue; 1148 if (!FS->type_test_assume_vcalls().empty() || 1149 !FS->type_checked_load_vcalls().empty() || 1150 !FS->type_test_assume_const_vcalls().empty() || 1151 !FS->type_checked_load_const_vcalls().empty() || 1152 !FS->type_tests().empty()) 1153 return make_error<StringError>( 1154 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 1155 inconvertibleErrorCode()); 1156 } 1157 } 1158 return Error::success(); 1159 } 1160 1161 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1162 // Compute "dead" symbols, we don't want to import/export these! 1163 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1164 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1165 for (auto &Res : *GlobalResolutions) { 1166 // Normally resolution have IR name of symbol. We can do nothing here 1167 // otherwise. See comments in GlobalResolution struct for more details. 1168 if (Res.second.IRName.empty()) 1169 continue; 1170 1171 GlobalValue::GUID GUID = GlobalValue::getGUID( 1172 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1173 1174 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1175 GUIDPreservedSymbols.insert(GUID); 1176 1177 if (Res.second.ExportDynamic) 1178 DynamicExportSymbols.insert(GUID); 1179 1180 GUIDPrevailingResolutions[GUID] = 1181 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1182 } 1183 1184 auto isPrevailing = [&](GlobalValue::GUID G) { 1185 auto It = GUIDPrevailingResolutions.find(G); 1186 if (It == GUIDPrevailingResolutions.end()) 1187 return PrevailingType::Unknown; 1188 return It->second; 1189 }; 1190 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1191 isPrevailing, Conf.OptLevel > 0); 1192 1193 // Setup output file to emit statistics. 1194 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1195 if (!StatsFileOrErr) 1196 return StatsFileOrErr.takeError(); 1197 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1198 1199 // TODO: Ideally this would be controlled automatically by detecting that we 1200 // are linking with an allocator that supports these interfaces, rather than 1201 // an internal option (which would still be needed for tests, however). For 1202 // example, if the library exported a symbol like __malloc_hot_cold the linker 1203 // could recognize that and set a flag in the lto::Config. 1204 if (SupportsHotColdNew) 1205 ThinLTO.CombinedIndex.setWithSupportsHotColdNew(); 1206 1207 Error Result = runRegularLTO(AddStream); 1208 if (!Result) 1209 // This will reset the GlobalResolutions optional once done with it to 1210 // reduce peak memory before importing. 1211 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1212 1213 if (StatsFile) 1214 PrintStatisticsJSON(StatsFile->os()); 1215 1216 return Result; 1217 } 1218 1219 void lto::updateMemProfAttributes(Module &Mod, 1220 const ModuleSummaryIndex &Index) { 1221 if (Index.withSupportsHotColdNew()) 1222 return; 1223 1224 // The profile matcher applies hotness attributes directly for allocations, 1225 // and those will cause us to generate calls to the hot/cold interfaces 1226 // unconditionally. If supports-hot-cold-new was not enabled in the LTO 1227 // link then assume we don't want these calls (e.g. not linking with 1228 // the appropriate library, or otherwise trying to disable this behavior). 1229 for (auto &F : Mod) { 1230 for (auto &BB : F) { 1231 for (auto &I : BB) { 1232 auto *CI = dyn_cast<CallBase>(&I); 1233 if (!CI) 1234 continue; 1235 if (CI->hasFnAttr("memprof")) 1236 CI->removeFnAttr("memprof"); 1237 // Strip off all memprof metadata as it is no longer needed. 1238 // Importantly, this avoids the addition of new memprof attributes 1239 // after inlining propagation. 1240 // TODO: If we support additional types of MemProf metadata beyond hot 1241 // and cold, we will need to update the metadata based on the allocator 1242 // APIs supported instead of completely stripping all. 1243 CI->setMetadata(LLVMContext::MD_memprof, nullptr); 1244 CI->setMetadata(LLVMContext::MD_callsite, nullptr); 1245 } 1246 } 1247 } 1248 } 1249 1250 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1251 // Setup optimization remarks. 1252 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1253 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1254 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1255 Conf.RemarksHotnessThreshold); 1256 LLVM_DEBUG(dbgs() << "Running regular LTO\n"); 1257 if (!DiagFileOrErr) 1258 return DiagFileOrErr.takeError(); 1259 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1260 1261 // Finalize linking of regular LTO modules containing summaries now that 1262 // we have computed liveness information. 1263 for (auto &M : RegularLTO.ModsWithSummaries) 1264 if (Error Err = linkRegularLTO(std::move(M), 1265 /*LivenessFromIndex=*/true)) 1266 return Err; 1267 1268 // Ensure we don't have inconsistently split LTO units with type tests. 1269 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1270 // this path both cases but eventually this should be split into two and 1271 // do the ThinLTO checks in `runThinLTO`. 1272 if (Error Err = checkPartiallySplit()) 1273 return Err; 1274 1275 // Make sure commons have the right size/alignment: we kept the largest from 1276 // all the prevailing when adding the inputs, and we apply it here. 1277 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1278 for (auto &I : RegularLTO.Commons) { 1279 if (!I.second.Prevailing) 1280 // Don't do anything if no instance of this common was prevailing. 1281 continue; 1282 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1283 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1284 // Don't create a new global if the type is already correct, just make 1285 // sure the alignment is correct. 1286 OldGV->setAlignment(I.second.Alignment); 1287 continue; 1288 } 1289 ArrayType *Ty = 1290 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1291 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1292 GlobalValue::CommonLinkage, 1293 ConstantAggregateZero::get(Ty), ""); 1294 GV->setAlignment(I.second.Alignment); 1295 if (OldGV) { 1296 OldGV->replaceAllUsesWith(GV); 1297 GV->takeName(OldGV); 1298 OldGV->eraseFromParent(); 1299 } else { 1300 GV->setName(I.first); 1301 } 1302 } 1303 1304 updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex); 1305 1306 bool WholeProgramVisibilityEnabledInLTO = 1307 Conf.HasWholeProgramVisibility && 1308 // If validation is enabled, upgrade visibility only when all vtables 1309 // have typeinfos. 1310 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); 1311 1312 // This returns true when the name is local or not defined. Locals are 1313 // expected to be handled separately. 1314 auto IsVisibleToRegularObj = [&](StringRef name) { 1315 auto It = GlobalResolutions->find(name); 1316 return (It == GlobalResolutions->end() || It->second.VisibleOutsideSummary); 1317 }; 1318 1319 // If allowed, upgrade public vcall visibility metadata to linkage unit 1320 // visibility before whole program devirtualization in the optimizer. 1321 updateVCallVisibilityInModule( 1322 *RegularLTO.CombinedModule, WholeProgramVisibilityEnabledInLTO, 1323 DynamicExportSymbols, Conf.ValidateAllVtablesHaveTypeInfos, 1324 IsVisibleToRegularObj); 1325 updatePublicTypeTestCalls(*RegularLTO.CombinedModule, 1326 WholeProgramVisibilityEnabledInLTO); 1327 1328 if (Conf.PreOptModuleHook && 1329 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1330 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1331 1332 if (!Conf.CodeGenOnly) { 1333 for (const auto &R : *GlobalResolutions) { 1334 GlobalValue *GV = 1335 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1336 if (!R.second.isPrevailingIRSymbol()) 1337 continue; 1338 if (R.second.Partition != 0 && 1339 R.second.Partition != GlobalResolution::External) 1340 continue; 1341 1342 // Ignore symbols defined in other partitions. 1343 // Also skip declarations, which are not allowed to have internal linkage. 1344 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1345 continue; 1346 1347 // Symbols that are marked DLLImport or DLLExport should not be 1348 // internalized, as they are either externally visible or referencing 1349 // external symbols. Symbols that have AvailableExternally or Appending 1350 // linkage might be used by future passes and should be kept as is. 1351 // These linkages are seen in Unified regular LTO, because the process 1352 // of creating split LTO units introduces symbols with that linkage into 1353 // one of the created modules. Normally, only the ThinLTO backend would 1354 // compile this module, but Unified Regular LTO processes both 1355 // modules created by the splitting process as regular LTO modules. 1356 if ((LTOMode == LTOKind::LTOK_UnifiedRegular) && 1357 ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) || 1358 GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage())) 1359 continue; 1360 1361 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1362 : GlobalValue::UnnamedAddr::None); 1363 if (EnableLTOInternalization && R.second.Partition == 0) 1364 GV->setLinkage(GlobalValue::InternalLinkage); 1365 } 1366 1367 if (Conf.PostInternalizeModuleHook && 1368 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1369 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1370 } 1371 1372 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1373 if (Error Err = 1374 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1375 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1376 return Err; 1377 } 1378 1379 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1380 } 1381 1382 SmallVector<const char *> LTO::getRuntimeLibcallSymbols(const Triple &TT) { 1383 RTLIB::RuntimeLibcallsInfo Libcalls(TT); 1384 SmallVector<const char *> LibcallSymbols; 1385 copy_if(Libcalls.getLibcallNames(), std::back_inserter(LibcallSymbols), 1386 [](const char *Name) { return Name; }); 1387 return LibcallSymbols; 1388 } 1389 1390 Error ThinBackendProc::emitFiles( 1391 const FunctionImporter::ImportMapTy &ImportList, llvm::StringRef ModulePath, 1392 const std::string &NewModulePath) const { 1393 ModuleToSummariesForIndexTy ModuleToSummariesForIndex; 1394 GVSummaryPtrSet DeclarationSummaries; 1395 1396 std::error_code EC; 1397 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1398 ImportList, ModuleToSummariesForIndex, 1399 DeclarationSummaries); 1400 1401 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1402 sys::fs::OpenFlags::OF_None); 1403 if (EC) 1404 return createFileError("cannot open " + NewModulePath + ".thinlto.bc", EC); 1405 1406 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex, 1407 &DeclarationSummaries); 1408 1409 if (ShouldEmitImportsFiles) { 1410 Error ImportFilesError = EmitImportsFiles( 1411 ModulePath, NewModulePath + ".imports", ModuleToSummariesForIndex); 1412 if (ImportFilesError) 1413 return ImportFilesError; 1414 } 1415 return Error::success(); 1416 } 1417 1418 namespace { 1419 class InProcessThinBackend : public ThinBackendProc { 1420 protected: 1421 AddStreamFn AddStream; 1422 FileCache Cache; 1423 DenseSet<GlobalValue::GUID> CfiFunctionDefs; 1424 DenseSet<GlobalValue::GUID> CfiFunctionDecls; 1425 1426 bool ShouldEmitIndexFiles; 1427 1428 public: 1429 InProcessThinBackend( 1430 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1431 ThreadPoolStrategy ThinLTOParallelism, 1432 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1433 AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, 1434 bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) 1435 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1436 OnWrite, ShouldEmitImportsFiles, ThinLTOParallelism), 1437 AddStream(std::move(AddStream)), Cache(std::move(Cache)), 1438 ShouldEmitIndexFiles(ShouldEmitIndexFiles) { 1439 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1440 CfiFunctionDefs.insert( 1441 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1442 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1443 CfiFunctionDecls.insert( 1444 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1445 } 1446 1447 virtual Error runThinLTOBackendThread( 1448 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1449 ModuleSummaryIndex &CombinedIndex, 1450 const FunctionImporter::ImportMapTy &ImportList, 1451 const FunctionImporter::ExportSetTy &ExportList, 1452 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1453 const GVSummaryMapTy &DefinedGlobals, 1454 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1455 auto RunThinBackend = [&](AddStreamFn AddStream) { 1456 LTOLLVMContext BackendContext(Conf); 1457 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1458 if (!MOrErr) 1459 return MOrErr.takeError(); 1460 1461 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1462 ImportList, DefinedGlobals, &ModuleMap, 1463 Conf.CodeGenOnly); 1464 }; 1465 1466 auto ModuleID = BM.getModuleIdentifier(); 1467 1468 if (ShouldEmitIndexFiles) { 1469 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1470 return E; 1471 } 1472 1473 if (!Cache.isValid() || !CombinedIndex.modulePaths().count(ModuleID) || 1474 all_of(CombinedIndex.getModuleHash(ModuleID), 1475 [](uint32_t V) { return V == 0; })) 1476 // Cache disabled or no entry for this module in the combined index or 1477 // no module hash. 1478 return RunThinBackend(AddStream); 1479 1480 // The module may be cached, this helps handling it. 1481 std::string Key = computeLTOCacheKey( 1482 Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR, 1483 DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls); 1484 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1485 if (Error Err = CacheAddStreamOrErr.takeError()) 1486 return Err; 1487 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1488 if (CacheAddStream) 1489 return RunThinBackend(CacheAddStream); 1490 1491 return Error::success(); 1492 } 1493 1494 Error start( 1495 unsigned Task, BitcodeModule BM, 1496 const FunctionImporter::ImportMapTy &ImportList, 1497 const FunctionImporter::ExportSetTy &ExportList, 1498 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1499 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1500 StringRef ModulePath = BM.getModuleIdentifier(); 1501 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1502 const GVSummaryMapTy &DefinedGlobals = 1503 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1504 BackendThreadPool.async( 1505 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1506 const FunctionImporter::ImportMapTy &ImportList, 1507 const FunctionImporter::ExportSetTy &ExportList, 1508 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1509 &ResolvedODR, 1510 const GVSummaryMapTy &DefinedGlobals, 1511 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1512 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1513 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1514 "thin backend"); 1515 Error E = runThinLTOBackendThread( 1516 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1517 ResolvedODR, DefinedGlobals, ModuleMap); 1518 if (E) { 1519 std::unique_lock<std::mutex> L(ErrMu); 1520 if (Err) 1521 Err = joinErrors(std::move(*Err), std::move(E)); 1522 else 1523 Err = std::move(E); 1524 } 1525 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1526 timeTraceProfilerFinishThread(); 1527 }, 1528 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1529 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1530 1531 if (OnWrite) 1532 OnWrite(std::string(ModulePath)); 1533 return Error::success(); 1534 } 1535 }; 1536 1537 /// This backend is utilized in the first round of a two-codegen round process. 1538 /// It first saves optimized bitcode files to disk before the codegen process 1539 /// begins. After codegen, it stores the resulting object files in a scratch 1540 /// buffer. Note the codegen data stored in the scratch buffer will be extracted 1541 /// and merged in the subsequent step. 1542 class FirstRoundThinBackend : public InProcessThinBackend { 1543 AddStreamFn IRAddStream; 1544 FileCache IRCache; 1545 1546 public: 1547 FirstRoundThinBackend( 1548 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1549 ThreadPoolStrategy ThinLTOParallelism, 1550 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1551 AddStreamFn CGAddStream, FileCache CGCache, AddStreamFn IRAddStream, 1552 FileCache IRCache) 1553 : InProcessThinBackend(Conf, CombinedIndex, ThinLTOParallelism, 1554 ModuleToDefinedGVSummaries, std::move(CGAddStream), 1555 std::move(CGCache), /*OnWrite=*/nullptr, 1556 /*ShouldEmitIndexFiles=*/false, 1557 /*ShouldEmitImportsFiles=*/false), 1558 IRAddStream(std::move(IRAddStream)), IRCache(std::move(IRCache)) {} 1559 1560 Error runThinLTOBackendThread( 1561 AddStreamFn CGAddStream, FileCache CGCache, unsigned Task, 1562 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1563 const FunctionImporter::ImportMapTy &ImportList, 1564 const FunctionImporter::ExportSetTy &ExportList, 1565 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1566 const GVSummaryMapTy &DefinedGlobals, 1567 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1568 auto RunThinBackend = [&](AddStreamFn CGAddStream, 1569 AddStreamFn IRAddStream) { 1570 LTOLLVMContext BackendContext(Conf); 1571 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1572 if (!MOrErr) 1573 return MOrErr.takeError(); 1574 1575 return thinBackend(Conf, Task, CGAddStream, **MOrErr, CombinedIndex, 1576 ImportList, DefinedGlobals, &ModuleMap, 1577 Conf.CodeGenOnly, IRAddStream); 1578 }; 1579 1580 auto ModuleID = BM.getModuleIdentifier(); 1581 // Like InProcessThinBackend, we produce index files as needed for 1582 // FirstRoundThinBackend. However, these files are not generated for 1583 // SecondRoundThinBackend. 1584 if (ShouldEmitIndexFiles) { 1585 if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str())) 1586 return E; 1587 } 1588 1589 assert((CGCache.isValid() == IRCache.isValid()) && 1590 "Both caches for CG and IR should have matching availability"); 1591 if (!CGCache.isValid() || !CombinedIndex.modulePaths().count(ModuleID) || 1592 all_of(CombinedIndex.getModuleHash(ModuleID), 1593 [](uint32_t V) { return V == 0; })) 1594 // Cache disabled or no entry for this module in the combined index or 1595 // no module hash. 1596 return RunThinBackend(CGAddStream, IRAddStream); 1597 1598 // Get CGKey for caching object in CGCache. 1599 std::string CGKey = computeLTOCacheKey( 1600 Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR, 1601 DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls); 1602 Expected<AddStreamFn> CacheCGAddStreamOrErr = 1603 CGCache(Task, CGKey, ModuleID); 1604 if (Error Err = CacheCGAddStreamOrErr.takeError()) 1605 return Err; 1606 AddStreamFn &CacheCGAddStream = *CacheCGAddStreamOrErr; 1607 1608 // Get IRKey for caching (optimized) IR in IRCache with an extra ID. 1609 std::string IRKey = recomputeLTOCacheKey(CGKey, /*ExtraID=*/"IR"); 1610 Expected<AddStreamFn> CacheIRAddStreamOrErr = 1611 IRCache(Task, IRKey, ModuleID); 1612 if (Error Err = CacheIRAddStreamOrErr.takeError()) 1613 return Err; 1614 AddStreamFn &CacheIRAddStream = *CacheIRAddStreamOrErr; 1615 1616 // Ideally, both CG and IR caching should be synchronized. However, in 1617 // practice, their availability may differ due to different expiration 1618 // times. Therefore, if either cache is missing, the backend process is 1619 // triggered. 1620 if (CacheCGAddStream || CacheIRAddStream) { 1621 LLVM_DEBUG(dbgs() << "[FirstRound] Cache Miss for " 1622 << BM.getModuleIdentifier() << "\n"); 1623 return RunThinBackend(CacheCGAddStream ? CacheCGAddStream : CGAddStream, 1624 CacheIRAddStream ? CacheIRAddStream : IRAddStream); 1625 } 1626 1627 return Error::success(); 1628 } 1629 }; 1630 1631 /// This backend operates in the second round of a two-codegen round process. 1632 /// It starts by reading the optimized bitcode files that were saved during the 1633 /// first round. The backend then executes the codegen only to further optimize 1634 /// the code, utilizing the codegen data merged from the first round. Finally, 1635 /// it writes the resulting object files as usual. 1636 class SecondRoundThinBackend : public InProcessThinBackend { 1637 std::unique_ptr<SmallVector<StringRef>> IRFiles; 1638 stable_hash CombinedCGDataHash; 1639 1640 public: 1641 SecondRoundThinBackend( 1642 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1643 ThreadPoolStrategy ThinLTOParallelism, 1644 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1645 AddStreamFn AddStream, FileCache Cache, 1646 std::unique_ptr<SmallVector<StringRef>> IRFiles, 1647 stable_hash CombinedCGDataHash) 1648 : InProcessThinBackend(Conf, CombinedIndex, ThinLTOParallelism, 1649 ModuleToDefinedGVSummaries, std::move(AddStream), 1650 std::move(Cache), 1651 /*OnWrite=*/nullptr, 1652 /*ShouldEmitIndexFiles=*/false, 1653 /*ShouldEmitImportsFiles=*/false), 1654 IRFiles(std::move(IRFiles)), CombinedCGDataHash(CombinedCGDataHash) {} 1655 1656 virtual Error runThinLTOBackendThread( 1657 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1658 ModuleSummaryIndex &CombinedIndex, 1659 const FunctionImporter::ImportMapTy &ImportList, 1660 const FunctionImporter::ExportSetTy &ExportList, 1661 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1662 const GVSummaryMapTy &DefinedGlobals, 1663 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1664 auto RunThinBackend = [&](AddStreamFn AddStream) { 1665 LTOLLVMContext BackendContext(Conf); 1666 std::unique_ptr<Module> LoadedModule = 1667 cgdata::loadModuleForTwoRounds(BM, Task, BackendContext, *IRFiles); 1668 1669 return thinBackend(Conf, Task, AddStream, *LoadedModule, CombinedIndex, 1670 ImportList, DefinedGlobals, &ModuleMap, 1671 /*CodeGenOnly=*/true); 1672 }; 1673 1674 auto ModuleID = BM.getModuleIdentifier(); 1675 if (!Cache.isValid() || !CombinedIndex.modulePaths().count(ModuleID) || 1676 all_of(CombinedIndex.getModuleHash(ModuleID), 1677 [](uint32_t V) { return V == 0; })) 1678 // Cache disabled or no entry for this module in the combined index or 1679 // no module hash. 1680 return RunThinBackend(AddStream); 1681 1682 // Get Key for caching the final object file in Cache with the combined 1683 // CGData hash. 1684 std::string Key = computeLTOCacheKey( 1685 Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR, 1686 DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls); 1687 Key = recomputeLTOCacheKey(Key, 1688 /*ExtraID=*/std::to_string(CombinedCGDataHash)); 1689 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); 1690 if (Error Err = CacheAddStreamOrErr.takeError()) 1691 return Err; 1692 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1693 1694 if (CacheAddStream) { 1695 LLVM_DEBUG(dbgs() << "[SecondRound] Cache Miss for " 1696 << BM.getModuleIdentifier() << "\n"); 1697 return RunThinBackend(CacheAddStream); 1698 } 1699 1700 return Error::success(); 1701 } 1702 }; 1703 } // end anonymous namespace 1704 1705 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, 1706 lto::IndexWriteCallback OnWrite, 1707 bool ShouldEmitIndexFiles, 1708 bool ShouldEmitImportsFiles) { 1709 auto Func = 1710 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1711 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1712 AddStreamFn AddStream, FileCache Cache) { 1713 return std::make_unique<InProcessThinBackend>( 1714 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, 1715 AddStream, Cache, OnWrite, ShouldEmitIndexFiles, 1716 ShouldEmitImportsFiles); 1717 }; 1718 return ThinBackend(Func, Parallelism); 1719 } 1720 1721 StringLiteral lto::getThinLTODefaultCPU(const Triple &TheTriple) { 1722 if (!TheTriple.isOSDarwin()) 1723 return ""; 1724 if (TheTriple.getArch() == Triple::x86_64) 1725 return "core2"; 1726 if (TheTriple.getArch() == Triple::x86) 1727 return "yonah"; 1728 if (TheTriple.isArm64e()) 1729 return "apple-a12"; 1730 if (TheTriple.getArch() == Triple::aarch64 || 1731 TheTriple.getArch() == Triple::aarch64_32) 1732 return "cyclone"; 1733 return ""; 1734 } 1735 1736 // Given the original \p Path to an output file, replace any path 1737 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1738 // resulting directory if it does not yet exist. 1739 std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, 1740 StringRef NewPrefix) { 1741 if (OldPrefix.empty() && NewPrefix.empty()) 1742 return std::string(Path); 1743 SmallString<128> NewPath(Path); 1744 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1745 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1746 if (!ParentPath.empty()) { 1747 // Make sure the new directory exists, creating it if necessary. 1748 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1749 llvm::errs() << "warning: could not create directory '" << ParentPath 1750 << "': " << EC.message() << '\n'; 1751 } 1752 return std::string(NewPath); 1753 } 1754 1755 namespace { 1756 class WriteIndexesThinBackend : public ThinBackendProc { 1757 std::string OldPrefix, NewPrefix, NativeObjectPrefix; 1758 raw_fd_ostream *LinkedObjectsFile; 1759 1760 public: 1761 WriteIndexesThinBackend( 1762 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1763 ThreadPoolStrategy ThinLTOParallelism, 1764 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1765 std::string OldPrefix, std::string NewPrefix, 1766 std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, 1767 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1768 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, 1769 OnWrite, ShouldEmitImportsFiles, ThinLTOParallelism), 1770 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1771 NativeObjectPrefix(NativeObjectPrefix), 1772 LinkedObjectsFile(LinkedObjectsFile) {} 1773 1774 Error start( 1775 unsigned Task, BitcodeModule BM, 1776 const FunctionImporter::ImportMapTy &ImportList, 1777 const FunctionImporter::ExportSetTy &ExportList, 1778 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1779 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1780 StringRef ModulePath = BM.getModuleIdentifier(); 1781 1782 // The contents of this file may be used as input to a native link, and must 1783 // therefore contain the processed modules in a determinstic order that 1784 // match the order they are provided on the command line. For that reason, 1785 // we cannot include this in the asynchronously executed lambda below. 1786 if (LinkedObjectsFile) { 1787 std::string ObjectPrefix = 1788 NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix; 1789 std::string LinkedObjectsFilePath = 1790 getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix); 1791 *LinkedObjectsFile << LinkedObjectsFilePath << '\n'; 1792 } 1793 1794 BackendThreadPool.async( 1795 [this](const StringRef ModulePath, 1796 const FunctionImporter::ImportMapTy &ImportList, 1797 const std::string &OldPrefix, const std::string &NewPrefix) { 1798 std::string NewModulePath = 1799 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1800 auto E = emitFiles(ImportList, ModulePath, NewModulePath); 1801 if (E) { 1802 std::unique_lock<std::mutex> L(ErrMu); 1803 if (Err) 1804 Err = joinErrors(std::move(*Err), std::move(E)); 1805 else 1806 Err = std::move(E); 1807 return; 1808 } 1809 }, 1810 ModulePath, ImportList, OldPrefix, NewPrefix); 1811 1812 if (OnWrite) 1813 OnWrite(std::string(ModulePath)); 1814 return Error::success(); 1815 } 1816 1817 bool isSensitiveToInputOrder() override { 1818 // The order which modules are written to LinkedObjectsFile should be 1819 // deterministic and match the order they are passed on the command line. 1820 return true; 1821 } 1822 }; 1823 } // end anonymous namespace 1824 1825 ThinBackend lto::createWriteIndexesThinBackend( 1826 ThreadPoolStrategy Parallelism, std::string OldPrefix, 1827 std::string NewPrefix, std::string NativeObjectPrefix, 1828 bool ShouldEmitImportsFiles, raw_fd_ostream *LinkedObjectsFile, 1829 IndexWriteCallback OnWrite) { 1830 auto Func = 1831 [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1832 const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1833 AddStreamFn AddStream, FileCache Cache) { 1834 return std::make_unique<WriteIndexesThinBackend>( 1835 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, 1836 OldPrefix, NewPrefix, NativeObjectPrefix, ShouldEmitImportsFiles, 1837 LinkedObjectsFile, OnWrite); 1838 }; 1839 return ThinBackend(Func, Parallelism); 1840 } 1841 1842 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1843 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1844 LLVM_DEBUG(dbgs() << "Running ThinLTO\n"); 1845 ThinLTO.CombinedIndex.releaseTemporaryMemory(); 1846 timeTraceProfilerBegin("ThinLink", StringRef("")); 1847 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1848 if (llvm::timeTraceProfilerEnabled()) 1849 llvm::timeTraceProfilerEnd(); 1850 }); 1851 if (ThinLTO.ModuleMap.empty()) 1852 return Error::success(); 1853 1854 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1855 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1856 return Error::success(); 1857 } 1858 1859 if (Conf.CombinedIndexHook && 1860 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1861 return Error::success(); 1862 1863 // Collect for each module the list of function it defines (GUID -> 1864 // Summary). 1865 DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries( 1866 ThinLTO.ModuleMap.size()); 1867 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1868 ModuleToDefinedGVSummaries); 1869 // Create entries for any modules that didn't have any GV summaries 1870 // (either they didn't have any GVs to start with, or we suppressed 1871 // generation of the summaries because they e.g. had inline assembly 1872 // uses that couldn't be promoted/renamed on export). This is so 1873 // InProcessThinBackend::start can still launch a backend thread, which 1874 // is passed the map of summaries for the module, without any special 1875 // handling for this case. 1876 for (auto &Mod : ThinLTO.ModuleMap) 1877 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1878 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1879 1880 FunctionImporter::ImportListsTy ImportLists(ThinLTO.ModuleMap.size()); 1881 DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists( 1882 ThinLTO.ModuleMap.size()); 1883 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1884 1885 if (DumpThinCGSCCs) 1886 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1887 1888 std::set<GlobalValue::GUID> ExportedGUIDs; 1889 1890 bool WholeProgramVisibilityEnabledInLTO = 1891 Conf.HasWholeProgramVisibility && 1892 // If validation is enabled, upgrade visibility only when all vtables 1893 // have typeinfos. 1894 (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); 1895 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 1896 ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); 1897 1898 // If we're validating, get the vtable symbols that should not be 1899 // upgraded because they correspond to typeIDs outside of index-based 1900 // WPD info. 1901 DenseSet<GlobalValue::GUID> VisibleToRegularObjSymbols; 1902 if (WholeProgramVisibilityEnabledInLTO && 1903 Conf.ValidateAllVtablesHaveTypeInfos) { 1904 // This returns true when the name is local or not defined. Locals are 1905 // expected to be handled separately. 1906 auto IsVisibleToRegularObj = [&](StringRef name) { 1907 auto It = GlobalResolutions->find(name); 1908 return (It == GlobalResolutions->end() || 1909 It->second.VisibleOutsideSummary); 1910 }; 1911 1912 getVisibleToRegularObjVtableGUIDs(ThinLTO.CombinedIndex, 1913 VisibleToRegularObjSymbols, 1914 IsVisibleToRegularObj); 1915 } 1916 1917 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1918 // the summaries before whole program devirtualization below. 1919 updateVCallVisibilityInIndex( 1920 ThinLTO.CombinedIndex, WholeProgramVisibilityEnabledInLTO, 1921 DynamicExportSymbols, VisibleToRegularObjSymbols); 1922 1923 // Perform index-based WPD. This will return immediately if there are 1924 // no index entries in the typeIdMetadata map (e.g. if we are instead 1925 // performing IR-based WPD in hybrid regular/thin LTO mode). 1926 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1927 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1928 LocalWPDTargetsMap); 1929 1930 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { 1931 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1932 }; 1933 if (EnableMemProfContextDisambiguation) { 1934 MemProfContextDisambiguation ContextDisambiguation; 1935 ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing); 1936 } 1937 1938 // Figure out which symbols need to be internalized. This also needs to happen 1939 // at -O0 because summary-based DCE is implemented using internalization, and 1940 // we must apply DCE consistently with the full LTO module in order to avoid 1941 // undefined references during the final link. 1942 for (auto &Res : *GlobalResolutions) { 1943 // If the symbol does not have external references or it is not prevailing, 1944 // then not need to mark it as exported from a ThinLTO partition. 1945 if (Res.second.Partition != GlobalResolution::External || 1946 !Res.second.isPrevailingIRSymbol()) 1947 continue; 1948 auto GUID = GlobalValue::getGUID( 1949 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1950 // Mark exported unless index-based analysis determined it to be dead. 1951 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1952 ExportedGUIDs.insert(GUID); 1953 } 1954 1955 // Reset the GlobalResolutions to deallocate the associated memory, as there 1956 // are no further accesses. We specifically want to do this before computing 1957 // cross module importing, which adds to peak memory via the computed import 1958 // and export lists. 1959 releaseGlobalResolutionsMemory(); 1960 1961 if (Conf.OptLevel > 0) 1962 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1963 isPrevailing, ImportLists, ExportLists); 1964 1965 // Any functions referenced by the jump table in the regular LTO object must 1966 // be exported. 1967 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1968 ExportedGUIDs.insert( 1969 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1970 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1971 ExportedGUIDs.insert( 1972 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1973 1974 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1975 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1976 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1977 ExportedGUIDs.count(VI.getGUID()); 1978 }; 1979 1980 // Update local devirtualized targets that were exported by cross-module 1981 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1982 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1983 LocalWPDTargetsMap); 1984 1985 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1986 isPrevailing); 1987 1988 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1989 GlobalValue::GUID GUID, 1990 GlobalValue::LinkageTypes NewLinkage) { 1991 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1992 }; 1993 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1994 recordNewLinkage, GUIDPreservedSymbols); 1995 1996 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1997 1998 generateParamAccessSummary(ThinLTO.CombinedIndex); 1999 2000 if (llvm::timeTraceProfilerEnabled()) 2001 llvm::timeTraceProfilerEnd(); 2002 2003 TimeTraceScopeExit.release(); 2004 2005 auto &ModuleMap = 2006 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 2007 2008 auto RunBackends = [&](ThinBackendProc *BackendProcess) -> Error { 2009 auto ProcessOneModule = [&](int I) -> Error { 2010 auto &Mod = *(ModuleMap.begin() + I); 2011 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 2012 // combined module and parallel code generation partitions. 2013 return BackendProcess->start( 2014 RegularLTO.ParallelCodeGenParallelismLevel + I, Mod.second, 2015 ImportLists[Mod.first], ExportLists[Mod.first], 2016 ResolvedODR[Mod.first], ThinLTO.ModuleMap); 2017 }; 2018 2019 if (BackendProcess->getThreadCount() == 1 || 2020 BackendProcess->isSensitiveToInputOrder()) { 2021 // Process the modules in the order they were provided on the 2022 // command-line. It is important for this codepath to be used for 2023 // WriteIndexesThinBackend, to ensure the emitted LinkedObjectsFile lists 2024 // ThinLTO objects in the same order as the inputs, which otherwise would 2025 // affect the final link order. 2026 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 2027 if (Error E = ProcessOneModule(I)) 2028 return E; 2029 } else { 2030 // When executing in parallel, process largest bitsize modules first to 2031 // improve parallelism, and avoid starving the thread pool near the end. 2032 // This saves about 15 sec on a 36-core machine while link `clang.exe` 2033 // (out of 100 sec). 2034 std::vector<BitcodeModule *> ModulesVec; 2035 ModulesVec.reserve(ModuleMap.size()); 2036 for (auto &Mod : ModuleMap) 2037 ModulesVec.push_back(&Mod.second); 2038 for (int I : generateModulesOrdering(ModulesVec)) 2039 if (Error E = ProcessOneModule(I)) 2040 return E; 2041 } 2042 return BackendProcess->wait(); 2043 }; 2044 2045 if (!CodeGenDataThinLTOTwoRounds) { 2046 std::unique_ptr<ThinBackendProc> BackendProc = 2047 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 2048 AddStream, Cache); 2049 return RunBackends(BackendProc.get()); 2050 } 2051 2052 // Perform two rounds of code generation for ThinLTO: 2053 // 1. First round: Perform optimization and code generation, outputting to 2054 // temporary scratch objects. 2055 // 2. Merge code generation data extracted from the temporary scratch objects. 2056 // 3. Second round: Execute code generation again using the merged data. 2057 LLVM_DEBUG(dbgs() << "[TwoRounds] Initializing ThinLTO two-codegen rounds\n"); 2058 2059 unsigned MaxTasks = getMaxTasks(); 2060 auto Parallelism = ThinLTO.Backend.getParallelism(); 2061 // Set up two additional streams and caches for storing temporary scratch 2062 // objects and optimized IRs, using the same cache directory as the original. 2063 cgdata::StreamCacheData CG(MaxTasks, Cache, "CG"), IR(MaxTasks, Cache, "IR"); 2064 2065 // First round: Execute optimization and code generation, outputting to 2066 // temporary scratch objects. Serialize the optimized IRs before initiating 2067 // code generation. 2068 LLVM_DEBUG(dbgs() << "[TwoRounds] Running the first round of codegen\n"); 2069 auto FirstRoundLTO = std::make_unique<FirstRoundThinBackend>( 2070 Conf, ThinLTO.CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, 2071 CG.AddStream, CG.Cache, IR.AddStream, IR.Cache); 2072 if (Error E = RunBackends(FirstRoundLTO.get())) 2073 return E; 2074 2075 LLVM_DEBUG(dbgs() << "[TwoRounds] Merging codegen data\n"); 2076 auto CombinedHashOrErr = cgdata::mergeCodeGenData(*CG.getResult()); 2077 if (Error E = CombinedHashOrErr.takeError()) 2078 return E; 2079 auto CombinedHash = *CombinedHashOrErr; 2080 LLVM_DEBUG(dbgs() << "[TwoRounds] CGData hash: " << CombinedHash << "\n"); 2081 2082 // Second round: Read the optimized IRs and execute code generation using the 2083 // merged data. 2084 LLVM_DEBUG(dbgs() << "[TwoRounds] Running the second round of codegen\n"); 2085 auto SecondRoundLTO = std::make_unique<SecondRoundThinBackend>( 2086 Conf, ThinLTO.CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, 2087 AddStream, Cache, IR.getResult(), CombinedHash); 2088 return RunBackends(SecondRoundLTO.get()); 2089 } 2090 2091 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 2092 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 2093 StringRef RemarksFormat, bool RemarksWithHotness, 2094 std::optional<uint64_t> RemarksHotnessThreshold, int Count) { 2095 std::string Filename = std::string(RemarksFilename); 2096 // For ThinLTO, file.opt.<format> becomes 2097 // file.opt.<format>.thin.<num>.<format>. 2098 if (!Filename.empty() && Count != -1) 2099 Filename = 2100 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 2101 .str(); 2102 2103 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 2104 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 2105 RemarksHotnessThreshold); 2106 if (Error E = ResultOrErr.takeError()) 2107 return std::move(E); 2108 2109 if (*ResultOrErr) 2110 (*ResultOrErr)->keep(); 2111 2112 return ResultOrErr; 2113 } 2114 2115 Expected<std::unique_ptr<ToolOutputFile>> 2116 lto::setupStatsFile(StringRef StatsFilename) { 2117 // Setup output file to emit statistics. 2118 if (StatsFilename.empty()) 2119 return nullptr; 2120 2121 llvm::EnableStatistics(false); 2122 std::error_code EC; 2123 auto StatsFile = 2124 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 2125 if (EC) 2126 return errorCodeToError(EC); 2127 2128 StatsFile->keep(); 2129 return std::move(StatsFile); 2130 } 2131 2132 // Compute the ordering we will process the inputs: the rough heuristic here 2133 // is to sort them per size so that the largest module get schedule as soon as 2134 // possible. This is purely a compile-time optimization. 2135 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 2136 auto Seq = llvm::seq<int>(0, R.size()); 2137 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 2138 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 2139 auto LSize = R[LeftIndex]->getBuffer().size(); 2140 auto RSize = R[RightIndex]->getBuffer().size(); 2141 return LSize > RSize; 2142 }); 2143 return ModulesOrdering; 2144 } 2145