xref: /llvm-project/llvm/lib/IR/DebugInfoMetadata.cpp (revision 67fb2686fba9abd6e607ff9a09b7018b2b8ae31b)
1 //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the debug info Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/DebugInfoMetadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/IR/DebugProgramInstruction.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/IR/Value.h"
24 
25 #include <numeric>
26 #include <optional>
27 
28 using namespace llvm;
29 
30 namespace llvm {
31 // Use FS-AFDO discriminator.
32 cl::opt<bool> EnableFSDiscriminator(
33     "enable-fs-discriminator", cl::Hidden,
34     cl::desc("Enable adding flow sensitive discriminators"));
35 } // namespace llvm
36 
37 uint32_t DIType::getAlignInBits() const {
38   return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
39 }
40 
41 const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
42     std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
43 
44 DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
45     : Variable(DII->getVariable()),
46       Fragment(DII->getExpression()->getFragmentInfo()),
47       InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
48 
49 DebugVariable::DebugVariable(const DbgVariableRecord *DVR)
50     : Variable(DVR->getVariable()),
51       Fragment(DVR->getExpression()->getFragmentInfo()),
52       InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
53 
54 DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
55     : DebugVariable(DVI->getVariable(), std::nullopt,
56                     DVI->getDebugLoc()->getInlinedAt()) {}
57 
58 DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
59                        unsigned Column, ArrayRef<Metadata *> MDs,
60                        bool ImplicitCode)
61     : MDNode(C, DILocationKind, Storage, MDs) {
62   assert((MDs.size() == 1 || MDs.size() == 2) &&
63          "Expected a scope and optional inlined-at");
64 
65   // Set line and column.
66   assert(Column < (1u << 16) && "Expected 16-bit column");
67 
68   SubclassData32 = Line;
69   SubclassData16 = Column;
70 
71   setImplicitCode(ImplicitCode);
72 }
73 
74 static void adjustColumn(unsigned &Column) {
75   // Set to unknown on overflow.  We only have 16 bits to play with here.
76   if (Column >= (1u << 16))
77     Column = 0;
78 }
79 
80 DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
81                                 unsigned Column, Metadata *Scope,
82                                 Metadata *InlinedAt, bool ImplicitCode,
83                                 StorageType Storage, bool ShouldCreate) {
84   // Fixup column.
85   adjustColumn(Column);
86 
87   if (Storage == Uniqued) {
88     if (auto *N = getUniqued(Context.pImpl->DILocations,
89                              DILocationInfo::KeyTy(Line, Column, Scope,
90                                                    InlinedAt, ImplicitCode)))
91       return N;
92     if (!ShouldCreate)
93       return nullptr;
94   } else {
95     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
96   }
97 
98   SmallVector<Metadata *, 2> Ops;
99   Ops.push_back(Scope);
100   if (InlinedAt)
101     Ops.push_back(InlinedAt);
102   return storeImpl(new (Ops.size(), Storage) DILocation(
103                        Context, Storage, Line, Column, Ops, ImplicitCode),
104                    Storage, Context.pImpl->DILocations);
105 }
106 
107 DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
108   if (Locs.empty())
109     return nullptr;
110   if (Locs.size() == 1)
111     return Locs[0];
112   auto *Merged = Locs[0];
113   for (DILocation *L : llvm::drop_begin(Locs)) {
114     Merged = getMergedLocation(Merged, L);
115     if (Merged == nullptr)
116       break;
117   }
118   return Merged;
119 }
120 
121 DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
122   if (!LocA || !LocB)
123     return nullptr;
124 
125   if (LocA == LocB)
126     return LocA;
127 
128   LLVMContext &C = LocA->getContext();
129 
130   using LocVec = SmallVector<const DILocation *>;
131   LocVec ALocs;
132   LocVec BLocs;
133   SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
134                 4>
135       ALookup;
136 
137   // Walk through LocA and its inlined-at locations, populate them in ALocs and
138   // save the index for the subprogram and inlined-at pair, which we use to find
139   // a matching starting location in LocB's chain.
140   for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
141     ALocs.push_back(L);
142     auto Res = ALookup.try_emplace(
143         {L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
144     assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
145     (void)Res;
146   }
147 
148   LocVec::reverse_iterator ARIt = ALocs.rend();
149   LocVec::reverse_iterator BRIt = BLocs.rend();
150 
151   // Populate BLocs and look for a matching starting location, the first
152   // location with the same subprogram and inlined-at location as in LocA's
153   // chain. Since the two locations have the same inlined-at location we do
154   // not need to look at those parts of the chains.
155   for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
156     BLocs.push_back(L);
157 
158     if (ARIt != ALocs.rend())
159       // We have already found a matching starting location.
160       continue;
161 
162     auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
163     if (IT == ALookup.end())
164       continue;
165 
166     // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
167     ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
168     BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
169 
170     // If we have found a matching starting location we do not need to add more
171     // locations to BLocs, since we will only look at location pairs preceding
172     // the matching starting location, and adding more elements to BLocs could
173     // invalidate the iterator that we initialized here.
174     break;
175   }
176 
177   // Merge the two locations if possible, using the supplied
178   // inlined-at location for the created location.
179   auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
180                            DILocation *InlinedAt) -> DILocation * {
181     if (L1 == L2)
182       return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
183                              InlinedAt);
184 
185     // If the locations originate from different subprograms we can't produce
186     // a common location.
187     if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
188       return nullptr;
189 
190     // Return the nearest common scope inside a subprogram.
191     auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
192       SmallPtrSet<DIScope *, 8> Scopes;
193       for (; S1; S1 = S1->getScope()) {
194         Scopes.insert(S1);
195         if (isa<DISubprogram>(S1))
196           break;
197       }
198 
199       for (; S2; S2 = S2->getScope()) {
200         if (Scopes.count(S2))
201           return S2;
202         if (isa<DISubprogram>(S2))
203           break;
204       }
205 
206       return nullptr;
207     };
208 
209     auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
210     assert(Scope && "No common scope in the same subprogram?");
211 
212     bool SameLine = L1->getLine() == L2->getLine();
213     bool SameCol = L1->getColumn() == L2->getColumn();
214     unsigned Line = SameLine ? L1->getLine() : 0;
215     unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
216 
217     return DILocation::get(C, Line, Col, Scope, InlinedAt);
218   };
219 
220   DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
221 
222   // If we have found a common starting location, walk up the inlined-at chains
223   // and try to produce common locations.
224   for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
225     DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
226 
227     if (!Tmp)
228       // We have walked up to a point in the chains where the two locations
229       // are irreconsilable. At this point Result contains the nearest common
230       // location in the inlined-at chains of LocA and LocB, so we break here.
231       break;
232 
233     Result = Tmp;
234   }
235 
236   if (Result)
237     return Result;
238 
239   // We ended up with LocA and LocB as irreconsilable locations. Produce a
240   // location at 0:0 with one of the locations' scope. The function has
241   // historically picked A's scope, and a nullptr inlined-at location, so that
242   // behavior is mimicked here but I am not sure if this is always the correct
243   // way to handle this.
244   return DILocation::get(C, 0, 0, LocA->getScope(), nullptr);
245 }
246 
247 std::optional<unsigned>
248 DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
249   std::array<unsigned, 3> Components = {BD, DF, CI};
250   uint64_t RemainingWork = 0U;
251   // We use RemainingWork to figure out if we have no remaining components to
252   // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
253   // encode anything for the latter 2.
254   // Since any of the input components is at most 32 bits, their sum will be
255   // less than 34 bits, and thus RemainingWork won't overflow.
256   RemainingWork =
257       std::accumulate(Components.begin(), Components.end(), RemainingWork);
258 
259   int I = 0;
260   unsigned Ret = 0;
261   unsigned NextBitInsertionIndex = 0;
262   while (RemainingWork > 0) {
263     unsigned C = Components[I++];
264     RemainingWork -= C;
265     unsigned EC = encodeComponent(C);
266     Ret |= (EC << NextBitInsertionIndex);
267     NextBitInsertionIndex += encodingBits(C);
268   }
269 
270   // Encoding may be unsuccessful because of overflow. We determine success by
271   // checking equivalence of components before & after encoding. Alternatively,
272   // we could determine Success during encoding, but the current alternative is
273   // simpler.
274   unsigned TBD, TDF, TCI = 0;
275   decodeDiscriminator(Ret, TBD, TDF, TCI);
276   if (TBD == BD && TDF == DF && TCI == CI)
277     return Ret;
278   return std::nullopt;
279 }
280 
281 void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
282                                      unsigned &CI) {
283   BD = getUnsignedFromPrefixEncoding(D);
284   DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
285   CI = getUnsignedFromPrefixEncoding(
286       getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
287 }
288 dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
289 
290 DINode::DIFlags DINode::getFlag(StringRef Flag) {
291   return StringSwitch<DIFlags>(Flag)
292 #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
293 #include "llvm/IR/DebugInfoFlags.def"
294       .Default(DINode::FlagZero);
295 }
296 
297 StringRef DINode::getFlagString(DIFlags Flag) {
298   switch (Flag) {
299 #define HANDLE_DI_FLAG(ID, NAME)                                               \
300   case Flag##NAME:                                                             \
301     return "DIFlag" #NAME;
302 #include "llvm/IR/DebugInfoFlags.def"
303   }
304   return "";
305 }
306 
307 DINode::DIFlags DINode::splitFlags(DIFlags Flags,
308                                    SmallVectorImpl<DIFlags> &SplitFlags) {
309   // Flags that are packed together need to be specially handled, so
310   // that, for example, we emit "DIFlagPublic" and not
311   // "DIFlagPrivate | DIFlagProtected".
312   if (DIFlags A = Flags & FlagAccessibility) {
313     if (A == FlagPrivate)
314       SplitFlags.push_back(FlagPrivate);
315     else if (A == FlagProtected)
316       SplitFlags.push_back(FlagProtected);
317     else
318       SplitFlags.push_back(FlagPublic);
319     Flags &= ~A;
320   }
321   if (DIFlags R = Flags & FlagPtrToMemberRep) {
322     if (R == FlagSingleInheritance)
323       SplitFlags.push_back(FlagSingleInheritance);
324     else if (R == FlagMultipleInheritance)
325       SplitFlags.push_back(FlagMultipleInheritance);
326     else
327       SplitFlags.push_back(FlagVirtualInheritance);
328     Flags &= ~R;
329   }
330   if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
331     Flags &= ~FlagIndirectVirtualBase;
332     SplitFlags.push_back(FlagIndirectVirtualBase);
333   }
334 
335 #define HANDLE_DI_FLAG(ID, NAME)                                               \
336   if (DIFlags Bit = Flags & Flag##NAME) {                                      \
337     SplitFlags.push_back(Bit);                                                 \
338     Flags &= ~Bit;                                                             \
339   }
340 #include "llvm/IR/DebugInfoFlags.def"
341   return Flags;
342 }
343 
344 DIScope *DIScope::getScope() const {
345   if (auto *T = dyn_cast<DIType>(this))
346     return T->getScope();
347 
348   if (auto *SP = dyn_cast<DISubprogram>(this))
349     return SP->getScope();
350 
351   if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
352     return LB->getScope();
353 
354   if (auto *NS = dyn_cast<DINamespace>(this))
355     return NS->getScope();
356 
357   if (auto *CB = dyn_cast<DICommonBlock>(this))
358     return CB->getScope();
359 
360   if (auto *M = dyn_cast<DIModule>(this))
361     return M->getScope();
362 
363   assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
364          "Unhandled type of scope.");
365   return nullptr;
366 }
367 
368 StringRef DIScope::getName() const {
369   if (auto *T = dyn_cast<DIType>(this))
370     return T->getName();
371   if (auto *SP = dyn_cast<DISubprogram>(this))
372     return SP->getName();
373   if (auto *NS = dyn_cast<DINamespace>(this))
374     return NS->getName();
375   if (auto *CB = dyn_cast<DICommonBlock>(this))
376     return CB->getName();
377   if (auto *M = dyn_cast<DIModule>(this))
378     return M->getName();
379   assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
380           isa<DICompileUnit>(this)) &&
381          "Unhandled type of scope.");
382   return "";
383 }
384 
385 #ifndef NDEBUG
386 static bool isCanonical(const MDString *S) {
387   return !S || !S->getString().empty();
388 }
389 #endif
390 
391 dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
392 GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
393                                       MDString *Header,
394                                       ArrayRef<Metadata *> DwarfOps,
395                                       StorageType Storage, bool ShouldCreate) {
396   unsigned Hash = 0;
397   if (Storage == Uniqued) {
398     GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
399     if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
400       return N;
401     if (!ShouldCreate)
402       return nullptr;
403     Hash = Key.getHash();
404   } else {
405     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
406   }
407 
408   // Use a nullptr for empty headers.
409   assert(isCanonical(Header) && "Expected canonical MDString");
410   Metadata *PreOps[] = {Header};
411   return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
412                        Context, Storage, Hash, Tag, PreOps, DwarfOps),
413                    Storage, Context.pImpl->GenericDINodes);
414 }
415 
416 void GenericDINode::recalculateHash() {
417   setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
418 }
419 
420 #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
421 #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
422 #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)                                     \
423   do {                                                                         \
424     if (Storage == Uniqued) {                                                  \
425       if (auto *N = getUniqued(Context.pImpl->CLASS##s,                        \
426                                CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS))))         \
427         return N;                                                              \
428       if (!ShouldCreate)                                                       \
429         return nullptr;                                                        \
430     } else {                                                                   \
431       assert(ShouldCreate &&                                                   \
432              "Expected non-uniqued nodes to always be created");               \
433     }                                                                          \
434   } while (false)
435 #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)                                 \
436   return storeImpl(new (std::size(OPS), Storage)                               \
437                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \
438                    Storage, Context.pImpl->CLASS##s)
439 #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)                               \
440   return storeImpl(new (0u, Storage)                                           \
441                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS)),             \
442                    Storage, Context.pImpl->CLASS##s)
443 #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)                   \
444   return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
445                    Storage, Context.pImpl->CLASS##s)
446 #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)                      \
447   return storeImpl(new (NUM_OPS, Storage)                                      \
448                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \
449                    Storage, Context.pImpl->CLASS##s)
450 
451 DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
452                        ArrayRef<Metadata *> Ops)
453     : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
454 DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
455                                 StorageType Storage, bool ShouldCreate) {
456   auto *CountNode = ConstantAsMetadata::get(
457       ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
458   auto *LB = ConstantAsMetadata::get(
459       ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
460   return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
461                  ShouldCreate);
462 }
463 
464 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
465                                 int64_t Lo, StorageType Storage,
466                                 bool ShouldCreate) {
467   auto *LB = ConstantAsMetadata::get(
468       ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
469   return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
470                  ShouldCreate);
471 }
472 
473 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
474                                 Metadata *LB, Metadata *UB, Metadata *Stride,
475                                 StorageType Storage, bool ShouldCreate) {
476   DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
477   Metadata *Ops[] = {CountNode, LB, UB, Stride};
478   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
479 }
480 
481 DISubrange::BoundType DISubrange::getCount() const {
482   Metadata *CB = getRawCountNode();
483   if (!CB)
484     return BoundType();
485 
486   assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
487           isa<DIExpression>(CB)) &&
488          "Count must be signed constant or DIVariable or DIExpression");
489 
490   if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
491     return BoundType(cast<ConstantInt>(MD->getValue()));
492 
493   if (auto *MD = dyn_cast<DIVariable>(CB))
494     return BoundType(MD);
495 
496   if (auto *MD = dyn_cast<DIExpression>(CB))
497     return BoundType(MD);
498 
499   return BoundType();
500 }
501 
502 DISubrange::BoundType DISubrange::getLowerBound() const {
503   Metadata *LB = getRawLowerBound();
504   if (!LB)
505     return BoundType();
506 
507   assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
508           isa<DIExpression>(LB)) &&
509          "LowerBound must be signed constant or DIVariable or DIExpression");
510 
511   if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
512     return BoundType(cast<ConstantInt>(MD->getValue()));
513 
514   if (auto *MD = dyn_cast<DIVariable>(LB))
515     return BoundType(MD);
516 
517   if (auto *MD = dyn_cast<DIExpression>(LB))
518     return BoundType(MD);
519 
520   return BoundType();
521 }
522 
523 DISubrange::BoundType DISubrange::getUpperBound() const {
524   Metadata *UB = getRawUpperBound();
525   if (!UB)
526     return BoundType();
527 
528   assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
529           isa<DIExpression>(UB)) &&
530          "UpperBound must be signed constant or DIVariable or DIExpression");
531 
532   if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
533     return BoundType(cast<ConstantInt>(MD->getValue()));
534 
535   if (auto *MD = dyn_cast<DIVariable>(UB))
536     return BoundType(MD);
537 
538   if (auto *MD = dyn_cast<DIExpression>(UB))
539     return BoundType(MD);
540 
541   return BoundType();
542 }
543 
544 DISubrange::BoundType DISubrange::getStride() const {
545   Metadata *ST = getRawStride();
546   if (!ST)
547     return BoundType();
548 
549   assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
550           isa<DIExpression>(ST)) &&
551          "Stride must be signed constant or DIVariable or DIExpression");
552 
553   if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
554     return BoundType(cast<ConstantInt>(MD->getValue()));
555 
556   if (auto *MD = dyn_cast<DIVariable>(ST))
557     return BoundType(MD);
558 
559   if (auto *MD = dyn_cast<DIExpression>(ST))
560     return BoundType(MD);
561 
562   return BoundType();
563 }
564 DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
565                                      ArrayRef<Metadata *> Ops)
566     : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
567              Ops) {}
568 
569 DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
570                                               Metadata *CountNode, Metadata *LB,
571                                               Metadata *UB, Metadata *Stride,
572                                               StorageType Storage,
573                                               bool ShouldCreate) {
574   DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
575   Metadata *Ops[] = {CountNode, LB, UB, Stride};
576   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
577 }
578 
579 DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
580   Metadata *CB = getRawCountNode();
581   if (!CB)
582     return BoundType();
583 
584   assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
585          "Count must be signed constant or DIVariable or DIExpression");
586 
587   if (auto *MD = dyn_cast<DIVariable>(CB))
588     return BoundType(MD);
589 
590   if (auto *MD = dyn_cast<DIExpression>(CB))
591     return BoundType(MD);
592 
593   return BoundType();
594 }
595 
596 DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
597   Metadata *LB = getRawLowerBound();
598   if (!LB)
599     return BoundType();
600 
601   assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
602          "LowerBound must be signed constant or DIVariable or DIExpression");
603 
604   if (auto *MD = dyn_cast<DIVariable>(LB))
605     return BoundType(MD);
606 
607   if (auto *MD = dyn_cast<DIExpression>(LB))
608     return BoundType(MD);
609 
610   return BoundType();
611 }
612 
613 DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
614   Metadata *UB = getRawUpperBound();
615   if (!UB)
616     return BoundType();
617 
618   assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
619          "UpperBound must be signed constant or DIVariable or DIExpression");
620 
621   if (auto *MD = dyn_cast<DIVariable>(UB))
622     return BoundType(MD);
623 
624   if (auto *MD = dyn_cast<DIExpression>(UB))
625     return BoundType(MD);
626 
627   return BoundType();
628 }
629 
630 DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
631   Metadata *ST = getRawStride();
632   if (!ST)
633     return BoundType();
634 
635   assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
636          "Stride must be signed constant or DIVariable or DIExpression");
637 
638   if (auto *MD = dyn_cast<DIVariable>(ST))
639     return BoundType(MD);
640 
641   if (auto *MD = dyn_cast<DIExpression>(ST))
642     return BoundType(MD);
643 
644   return BoundType();
645 }
646 
647 DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
648                            const APInt &Value, bool IsUnsigned,
649                            ArrayRef<Metadata *> Ops)
650     : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
651       Value(Value) {
652   SubclassData32 = IsUnsigned;
653 }
654 DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
655                                     bool IsUnsigned, MDString *Name,
656                                     StorageType Storage, bool ShouldCreate) {
657   assert(isCanonical(Name) && "Expected canonical MDString");
658   DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
659   Metadata *Ops[] = {Name};
660   DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
661 }
662 
663 DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
664                                   MDString *Name, uint64_t SizeInBits,
665                                   uint32_t AlignInBits, unsigned Encoding,
666                                   uint32_t NumExtraInhabitants, DIFlags Flags,
667                                   StorageType Storage, bool ShouldCreate) {
668   assert(isCanonical(Name) && "Expected canonical MDString");
669   DEFINE_GETIMPL_LOOKUP(DIBasicType, (Tag, Name, SizeInBits, AlignInBits,
670                                       Encoding, NumExtraInhabitants, Flags));
671   Metadata *Ops[] = {nullptr, nullptr, Name};
672   DEFINE_GETIMPL_STORE(
673       DIBasicType,
674       (Tag, SizeInBits, AlignInBits, Encoding, NumExtraInhabitants, Flags),
675       Ops);
676 }
677 
678 std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
679   switch (getEncoding()) {
680   case dwarf::DW_ATE_signed:
681   case dwarf::DW_ATE_signed_char:
682     return Signedness::Signed;
683   case dwarf::DW_ATE_unsigned:
684   case dwarf::DW_ATE_unsigned_char:
685     return Signedness::Unsigned;
686   default:
687     return std::nullopt;
688   }
689 }
690 
691 DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
692                                     MDString *Name, Metadata *StringLength,
693                                     Metadata *StringLengthExp,
694                                     Metadata *StringLocationExp,
695                                     uint64_t SizeInBits, uint32_t AlignInBits,
696                                     unsigned Encoding, StorageType Storage,
697                                     bool ShouldCreate) {
698   assert(isCanonical(Name) && "Expected canonical MDString");
699   DEFINE_GETIMPL_LOOKUP(DIStringType,
700                         (Tag, Name, StringLength, StringLengthExp,
701                          StringLocationExp, SizeInBits, AlignInBits, Encoding));
702   Metadata *Ops[] = {nullptr,      nullptr,         Name,
703                      StringLength, StringLengthExp, StringLocationExp};
704   DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
705                        Ops);
706 }
707 DIType *DIDerivedType::getClassType() const {
708   assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
709   return cast_or_null<DIType>(getExtraData());
710 }
711 uint32_t DIDerivedType::getVBPtrOffset() const {
712   assert(getTag() == dwarf::DW_TAG_inheritance);
713   if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
714     if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
715       return static_cast<uint32_t>(CI->getZExtValue());
716   return 0;
717 }
718 Constant *DIDerivedType::getStorageOffsetInBits() const {
719   assert(getTag() == dwarf::DW_TAG_member && isBitField());
720   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
721     return C->getValue();
722   return nullptr;
723 }
724 
725 Constant *DIDerivedType::getConstant() const {
726   assert((getTag() == dwarf::DW_TAG_member ||
727           getTag() == dwarf::DW_TAG_variable) &&
728          isStaticMember());
729   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
730     return C->getValue();
731   return nullptr;
732 }
733 Constant *DIDerivedType::getDiscriminantValue() const {
734   assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
735   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
736     return C->getValue();
737   return nullptr;
738 }
739 
740 DIDerivedType *DIDerivedType::getImpl(
741     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
742     unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
743     uint32_t AlignInBits, uint64_t OffsetInBits,
744     std::optional<unsigned> DWARFAddressSpace,
745     std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
746     Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
747   assert(isCanonical(Name) && "Expected canonical MDString");
748   DEFINE_GETIMPL_LOOKUP(DIDerivedType,
749                         (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
750                          AlignInBits, OffsetInBits, DWARFAddressSpace,
751                          PtrAuthData, Flags, ExtraData, Annotations));
752   Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
753   DEFINE_GETIMPL_STORE(DIDerivedType,
754                        (Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
755                         DWARFAddressSpace, PtrAuthData, Flags),
756                        Ops);
757 }
758 
759 std::optional<DIDerivedType::PtrAuthData>
760 DIDerivedType::getPtrAuthData() const {
761   return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
762              ? std::optional<PtrAuthData>(PtrAuthData(SubclassData32))
763              : std::nullopt;
764 }
765 
766 DICompositeType *DICompositeType::getImpl(
767     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
768     unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
769     uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
770     Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
771     Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
772     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
773     Metadata *Rank, Metadata *Annotations, Metadata *Specification,
774     uint32_t NumExtraInhabitants, StorageType Storage, bool ShouldCreate) {
775   assert(isCanonical(Name) && "Expected canonical MDString");
776 
777   // Keep this in sync with buildODRType.
778   DEFINE_GETIMPL_LOOKUP(
779       DICompositeType,
780       (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits,
781        OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams,
782        Identifier, Discriminator, DataLocation, Associated, Allocated, Rank,
783        Annotations, Specification, NumExtraInhabitants));
784   Metadata *Ops[] = {File,          Scope,        Name,           BaseType,
785                      Elements,      VTableHolder, TemplateParams, Identifier,
786                      Discriminator, DataLocation, Associated,     Allocated,
787                      Rank,          Annotations,  Specification};
788   DEFINE_GETIMPL_STORE(DICompositeType,
789                        (Tag, Line, RuntimeLang, SizeInBits, AlignInBits,
790                         OffsetInBits, NumExtraInhabitants, Flags),
791                        Ops);
792 }
793 
794 DICompositeType *DICompositeType::buildODRType(
795     LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
796     Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
797     uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
798     Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
799     Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
800     Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation,
801     Metadata *Associated, Metadata *Allocated, Metadata *Rank,
802     Metadata *Annotations) {
803   assert(!Identifier.getString().empty() && "Expected valid identifier");
804   if (!Context.isODRUniquingDebugTypes())
805     return nullptr;
806   auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
807   if (!CT)
808     return CT = DICompositeType::getDistinct(
809                Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
810                AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
811                VTableHolder, TemplateParams, &Identifier, Discriminator,
812                DataLocation, Associated, Allocated, Rank, Annotations,
813                Specification, NumExtraInhabitants);
814   if (CT->getTag() != Tag)
815     return nullptr;
816 
817   // Only mutate CT if it's a forward declaration and the new operands aren't.
818   assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
819   if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
820     return CT;
821 
822   // Mutate CT in place.  Keep this in sync with getImpl.
823   CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
824              NumExtraInhabitants, Flags);
825   Metadata *Ops[] = {File,          Scope,        Name,           BaseType,
826                      Elements,      VTableHolder, TemplateParams, &Identifier,
827                      Discriminator, DataLocation, Associated,     Allocated,
828                      Rank,          Annotations,  Specification};
829   assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
830          "Mismatched number of operands");
831   for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
832     if (Ops[I] != CT->getOperand(I))
833       CT->setOperand(I, Ops[I]);
834   return CT;
835 }
836 
837 DICompositeType *DICompositeType::getODRType(
838     LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
839     Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
840     uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
841     Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
842     Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
843     Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation,
844     Metadata *Associated, Metadata *Allocated, Metadata *Rank,
845     Metadata *Annotations) {
846   assert(!Identifier.getString().empty() && "Expected valid identifier");
847   if (!Context.isODRUniquingDebugTypes())
848     return nullptr;
849   auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
850   if (!CT) {
851     CT = DICompositeType::getDistinct(
852         Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
853         AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
854         TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
855         Allocated, Rank, Annotations, Specification, NumExtraInhabitants);
856   } else {
857     if (CT->getTag() != Tag)
858       return nullptr;
859   }
860   return CT;
861 }
862 
863 DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
864                                                      MDString &Identifier) {
865   assert(!Identifier.getString().empty() && "Expected valid identifier");
866   if (!Context.isODRUniquingDebugTypes())
867     return nullptr;
868   return Context.pImpl->DITypeMap->lookup(&Identifier);
869 }
870 DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
871                                    DIFlags Flags, uint8_t CC,
872                                    ArrayRef<Metadata *> Ops)
873     : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
874              0, 0, 0, 0, Flags, Ops),
875       CC(CC) {}
876 
877 DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
878                                             uint8_t CC, Metadata *TypeArray,
879                                             StorageType Storage,
880                                             bool ShouldCreate) {
881   DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
882   Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
883   DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
884 }
885 
886 DIFile::DIFile(LLVMContext &C, StorageType Storage,
887                std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
888                ArrayRef<Metadata *> Ops)
889     : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
890       Checksum(CS), Source(Src) {}
891 
892 // FIXME: Implement this string-enum correspondence with a .def file and macros,
893 // so that the association is explicit rather than implied.
894 static const char *ChecksumKindName[DIFile::CSK_Last] = {
895     "CSK_MD5",
896     "CSK_SHA1",
897     "CSK_SHA256",
898 };
899 
900 StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
901   assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
902   // The first space was originally the CSK_None variant, which is now
903   // obsolete, but the space is still reserved in ChecksumKind, so we account
904   // for it here.
905   return ChecksumKindName[CSKind - 1];
906 }
907 
908 std::optional<DIFile::ChecksumKind>
909 DIFile::getChecksumKind(StringRef CSKindStr) {
910   return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
911       .Case("CSK_MD5", DIFile::CSK_MD5)
912       .Case("CSK_SHA1", DIFile::CSK_SHA1)
913       .Case("CSK_SHA256", DIFile::CSK_SHA256)
914       .Default(std::nullopt);
915 }
916 
917 DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
918                         MDString *Directory,
919                         std::optional<DIFile::ChecksumInfo<MDString *>> CS,
920                         MDString *Source, StorageType Storage,
921                         bool ShouldCreate) {
922   assert(isCanonical(Filename) && "Expected canonical MDString");
923   assert(isCanonical(Directory) && "Expected canonical MDString");
924   assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
925   // We do *NOT* expect Source to be a canonical MDString because nullptr
926   // means none, so we need something to represent the empty file.
927   DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
928   Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
929   DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
930 }
931 DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
932                              unsigned SourceLanguage, bool IsOptimized,
933                              unsigned RuntimeVersion, unsigned EmissionKind,
934                              uint64_t DWOId, bool SplitDebugInlining,
935                              bool DebugInfoForProfiling, unsigned NameTableKind,
936                              bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
937     : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
938       SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
939       DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
940       IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
941       DebugInfoForProfiling(DebugInfoForProfiling),
942       RangesBaseAddress(RangesBaseAddress) {
943   assert(Storage != Uniqued);
944 }
945 
946 DICompileUnit *DICompileUnit::getImpl(
947     LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
948     MDString *Producer, bool IsOptimized, MDString *Flags,
949     unsigned RuntimeVersion, MDString *SplitDebugFilename,
950     unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
951     Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
952     uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
953     unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
954     MDString *SDK, StorageType Storage, bool ShouldCreate) {
955   assert(Storage != Uniqued && "Cannot unique DICompileUnit");
956   assert(isCanonical(Producer) && "Expected canonical MDString");
957   assert(isCanonical(Flags) && "Expected canonical MDString");
958   assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
959 
960   Metadata *Ops[] = {File,
961                      Producer,
962                      Flags,
963                      SplitDebugFilename,
964                      EnumTypes,
965                      RetainedTypes,
966                      GlobalVariables,
967                      ImportedEntities,
968                      Macros,
969                      SysRoot,
970                      SDK};
971   return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
972                        Context, Storage, SourceLanguage, IsOptimized,
973                        RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
974                        DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
975                        Ops),
976                    Storage);
977 }
978 
979 std::optional<DICompileUnit::DebugEmissionKind>
980 DICompileUnit::getEmissionKind(StringRef Str) {
981   return StringSwitch<std::optional<DebugEmissionKind>>(Str)
982       .Case("NoDebug", NoDebug)
983       .Case("FullDebug", FullDebug)
984       .Case("LineTablesOnly", LineTablesOnly)
985       .Case("DebugDirectivesOnly", DebugDirectivesOnly)
986       .Default(std::nullopt);
987 }
988 
989 std::optional<DICompileUnit::DebugNameTableKind>
990 DICompileUnit::getNameTableKind(StringRef Str) {
991   return StringSwitch<std::optional<DebugNameTableKind>>(Str)
992       .Case("Default", DebugNameTableKind::Default)
993       .Case("GNU", DebugNameTableKind::GNU)
994       .Case("Apple", DebugNameTableKind::Apple)
995       .Case("None", DebugNameTableKind::None)
996       .Default(std::nullopt);
997 }
998 
999 const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
1000   switch (EK) {
1001   case NoDebug:
1002     return "NoDebug";
1003   case FullDebug:
1004     return "FullDebug";
1005   case LineTablesOnly:
1006     return "LineTablesOnly";
1007   case DebugDirectivesOnly:
1008     return "DebugDirectivesOnly";
1009   }
1010   return nullptr;
1011 }
1012 
1013 const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1014   switch (NTK) {
1015   case DebugNameTableKind::Default:
1016     return nullptr;
1017   case DebugNameTableKind::GNU:
1018     return "GNU";
1019   case DebugNameTableKind::Apple:
1020     return "Apple";
1021   case DebugNameTableKind::None:
1022     return "None";
1023   }
1024   return nullptr;
1025 }
1026 DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1027                            unsigned ScopeLine, unsigned VirtualIndex,
1028                            int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1029                            ArrayRef<Metadata *> Ops)
1030     : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1031       Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1032       ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1033   static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1034 }
1035 DISubprogram::DISPFlags
1036 DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1037                         unsigned Virtuality, bool IsMainSubprogram) {
1038   // We're assuming virtuality is the low-order field.
1039   static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1040                     int(SPFlagPureVirtual) ==
1041                         int(dwarf::DW_VIRTUALITY_pure_virtual),
1042                 "Virtuality constant mismatch");
1043   return static_cast<DISPFlags>(
1044       (Virtuality & SPFlagVirtuality) |
1045       (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1046       (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1047       (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1048       (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1049 }
1050 
1051 DISubprogram *DILocalScope::getSubprogram() const {
1052   if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1053     return Block->getScope()->getSubprogram();
1054   return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1055 }
1056 
1057 DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1058   if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1059     return File->getScope()->getNonLexicalBlockFileScope();
1060   return const_cast<DILocalScope *>(this);
1061 }
1062 
1063 DILocalScope *DILocalScope::cloneScopeForSubprogram(
1064     DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1065     DenseMap<const MDNode *, MDNode *> &Cache) {
1066   SmallVector<DIScope *> ScopeChain;
1067   DIScope *CachedResult = nullptr;
1068 
1069   for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1070        Scope = Scope->getScope()) {
1071     if (auto It = Cache.find(Scope); It != Cache.end()) {
1072       CachedResult = cast<DIScope>(It->second);
1073       break;
1074     }
1075     ScopeChain.push_back(Scope);
1076   }
1077 
1078   // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1079   // cached result).
1080   DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1081   for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1082     TempMDNode ClonedScope = ScopeToUpdate->clone();
1083     cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
1084     UpdatedScope =
1085         cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
1086     Cache[ScopeToUpdate] = UpdatedScope;
1087   }
1088 
1089   return cast<DILocalScope>(UpdatedScope);
1090 }
1091 
1092 DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1093   return StringSwitch<DISPFlags>(Flag)
1094 #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1095 #include "llvm/IR/DebugInfoFlags.def"
1096       .Default(SPFlagZero);
1097 }
1098 
1099 StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1100   switch (Flag) {
1101   // Appease a warning.
1102   case SPFlagVirtuality:
1103     return "";
1104 #define HANDLE_DISP_FLAG(ID, NAME)                                             \
1105   case SPFlag##NAME:                                                           \
1106     return "DISPFlag" #NAME;
1107 #include "llvm/IR/DebugInfoFlags.def"
1108   }
1109   return "";
1110 }
1111 
1112 DISubprogram::DISPFlags
1113 DISubprogram::splitFlags(DISPFlags Flags,
1114                          SmallVectorImpl<DISPFlags> &SplitFlags) {
1115   // Multi-bit fields can require special handling. In our case, however, the
1116   // only multi-bit field is virtuality, and all its values happen to be
1117   // single-bit values, so the right behavior just falls out.
1118 #define HANDLE_DISP_FLAG(ID, NAME)                                             \
1119   if (DISPFlags Bit = Flags & SPFlag##NAME) {                                  \
1120     SplitFlags.push_back(Bit);                                                 \
1121     Flags &= ~Bit;                                                             \
1122   }
1123 #include "llvm/IR/DebugInfoFlags.def"
1124   return Flags;
1125 }
1126 
1127 DISubprogram *DISubprogram::getImpl(
1128     LLVMContext &Context, Metadata *Scope, MDString *Name,
1129     MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1130     unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1131     int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1132     Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1133     Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1134     StorageType Storage, bool ShouldCreate) {
1135   assert(isCanonical(Name) && "Expected canonical MDString");
1136   assert(isCanonical(LinkageName) && "Expected canonical MDString");
1137   assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1138   DEFINE_GETIMPL_LOOKUP(DISubprogram,
1139                         (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1140                          ContainingType, VirtualIndex, ThisAdjustment, Flags,
1141                          SPFlags, Unit, TemplateParams, Declaration,
1142                          RetainedNodes, ThrownTypes, Annotations,
1143                          TargetFuncName));
1144   SmallVector<Metadata *, 13> Ops = {
1145       File,           Scope,          Name,        LinkageName,
1146       Type,           Unit,           Declaration, RetainedNodes,
1147       ContainingType, TemplateParams, ThrownTypes, Annotations,
1148       TargetFuncName};
1149   if (!TargetFuncName) {
1150     Ops.pop_back();
1151     if (!Annotations) {
1152       Ops.pop_back();
1153       if (!ThrownTypes) {
1154         Ops.pop_back();
1155         if (!TemplateParams) {
1156           Ops.pop_back();
1157           if (!ContainingType)
1158             Ops.pop_back();
1159         }
1160       }
1161     }
1162   }
1163   DEFINE_GETIMPL_STORE_N(
1164       DISubprogram,
1165       (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1166       Ops.size());
1167 }
1168 
1169 bool DISubprogram::describes(const Function *F) const {
1170   assert(F && "Invalid function");
1171   return F->getSubprogram() == this;
1172 }
1173 DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1174                                        StorageType Storage,
1175                                        ArrayRef<Metadata *> Ops)
1176     : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1177 
1178 DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1179                                         Metadata *File, unsigned Line,
1180                                         unsigned Column, StorageType Storage,
1181                                         bool ShouldCreate) {
1182   // Fixup column.
1183   adjustColumn(Column);
1184 
1185   assert(Scope && "Expected scope");
1186   DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1187   Metadata *Ops[] = {File, Scope};
1188   DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1189 }
1190 
1191 DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1192                                                 Metadata *Scope, Metadata *File,
1193                                                 unsigned Discriminator,
1194                                                 StorageType Storage,
1195                                                 bool ShouldCreate) {
1196   assert(Scope && "Expected scope");
1197   DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1198   Metadata *Ops[] = {File, Scope};
1199   DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1200 }
1201 
1202 DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1203                          bool ExportSymbols, ArrayRef<Metadata *> Ops)
1204     : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1205   SubclassData1 = ExportSymbols;
1206 }
1207 DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1208                                   MDString *Name, bool ExportSymbols,
1209                                   StorageType Storage, bool ShouldCreate) {
1210   assert(isCanonical(Name) && "Expected canonical MDString");
1211   DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1212   // The nullptr is for DIScope's File operand. This should be refactored.
1213   Metadata *Ops[] = {nullptr, Scope, Name};
1214   DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1215 }
1216 
1217 DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1218                              unsigned LineNo, ArrayRef<Metadata *> Ops)
1219     : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1220               Ops) {
1221   SubclassData32 = LineNo;
1222 }
1223 DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1224                                       Metadata *Decl, MDString *Name,
1225                                       Metadata *File, unsigned LineNo,
1226                                       StorageType Storage, bool ShouldCreate) {
1227   assert(isCanonical(Name) && "Expected canonical MDString");
1228   DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1229   // The nullptr is for DIScope's File operand. This should be refactored.
1230   Metadata *Ops[] = {Scope, Decl, Name, File};
1231   DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1232 }
1233 
1234 DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1235                    bool IsDecl, ArrayRef<Metadata *> Ops)
1236     : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1237   SubclassData1 = IsDecl;
1238   SubclassData32 = LineNo;
1239 }
1240 DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1241                             Metadata *Scope, MDString *Name,
1242                             MDString *ConfigurationMacros,
1243                             MDString *IncludePath, MDString *APINotesFile,
1244                             unsigned LineNo, bool IsDecl, StorageType Storage,
1245                             bool ShouldCreate) {
1246   assert(isCanonical(Name) && "Expected canonical MDString");
1247   DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1248                                    IncludePath, APINotesFile, LineNo, IsDecl));
1249   Metadata *Ops[] = {File,        Scope,       Name, ConfigurationMacros,
1250                      IncludePath, APINotesFile};
1251   DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1252 }
1253 DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1254                                                  StorageType Storage,
1255                                                  bool IsDefault,
1256                                                  ArrayRef<Metadata *> Ops)
1257     : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1258                           dwarf::DW_TAG_template_type_parameter, IsDefault,
1259                           Ops) {}
1260 
1261 DITemplateTypeParameter *
1262 DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1263                                  Metadata *Type, bool isDefault,
1264                                  StorageType Storage, bool ShouldCreate) {
1265   assert(isCanonical(Name) && "Expected canonical MDString");
1266   DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1267   Metadata *Ops[] = {Name, Type};
1268   DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1269 }
1270 
1271 DITemplateValueParameter *DITemplateValueParameter::getImpl(
1272     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1273     bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1274   assert(isCanonical(Name) && "Expected canonical MDString");
1275   DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1276                         (Tag, Name, Type, isDefault, Value));
1277   Metadata *Ops[] = {Name, Type, Value};
1278   DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1279 }
1280 
1281 DIGlobalVariable *
1282 DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1283                           MDString *LinkageName, Metadata *File, unsigned Line,
1284                           Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1285                           Metadata *StaticDataMemberDeclaration,
1286                           Metadata *TemplateParams, uint32_t AlignInBits,
1287                           Metadata *Annotations, StorageType Storage,
1288                           bool ShouldCreate) {
1289   assert(isCanonical(Name) && "Expected canonical MDString");
1290   assert(isCanonical(LinkageName) && "Expected canonical MDString");
1291   DEFINE_GETIMPL_LOOKUP(
1292       DIGlobalVariable,
1293       (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1294        StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1295   Metadata *Ops[] = {Scope,
1296                      Name,
1297                      File,
1298                      Type,
1299                      Name,
1300                      LinkageName,
1301                      StaticDataMemberDeclaration,
1302                      TemplateParams,
1303                      Annotations};
1304   DEFINE_GETIMPL_STORE(DIGlobalVariable,
1305                        (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1306 }
1307 
1308 DILocalVariable *
1309 DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1310                          Metadata *File, unsigned Line, Metadata *Type,
1311                          unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1312                          Metadata *Annotations, StorageType Storage,
1313                          bool ShouldCreate) {
1314   // 64K ought to be enough for any frontend.
1315   assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1316 
1317   assert(Scope && "Expected scope");
1318   assert(isCanonical(Name) && "Expected canonical MDString");
1319   DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1320                                           Flags, AlignInBits, Annotations));
1321   Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1322   DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1323 }
1324 
1325 DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1326                        signed Line, ArrayRef<Metadata *> Ops,
1327                        uint32_t AlignInBits)
1328     : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1329   SubclassData32 = AlignInBits;
1330 }
1331 std::optional<uint64_t> DIVariable::getSizeInBits() const {
1332   // This is used by the Verifier so be mindful of broken types.
1333   const Metadata *RawType = getRawType();
1334   while (RawType) {
1335     // Try to get the size directly.
1336     if (auto *T = dyn_cast<DIType>(RawType))
1337       if (uint64_t Size = T->getSizeInBits())
1338         return Size;
1339 
1340     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1341       // Look at the base type.
1342       RawType = DT->getRawBaseType();
1343       continue;
1344     }
1345 
1346     // Missing type or size.
1347     break;
1348   }
1349 
1350   // Fail gracefully.
1351   return std::nullopt;
1352 }
1353 
1354 DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1355                  ArrayRef<Metadata *> Ops)
1356     : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1357   SubclassData32 = Line;
1358 }
1359 DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1360                           Metadata *File, unsigned Line, StorageType Storage,
1361                           bool ShouldCreate) {
1362   assert(Scope && "Expected scope");
1363   assert(isCanonical(Name) && "Expected canonical MDString");
1364   DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
1365   Metadata *Ops[] = {Scope, Name, File};
1366   DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
1367 }
1368 
1369 DIExpression *DIExpression::getImpl(LLVMContext &Context,
1370                                     ArrayRef<uint64_t> Elements,
1371                                     StorageType Storage, bool ShouldCreate) {
1372   DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1373   DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1374 }
1375 bool DIExpression::isEntryValue() const {
1376   if (auto singleLocElts = getSingleLocationExpressionElements()) {
1377     return singleLocElts->size() > 0 &&
1378            (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1379   }
1380   return false;
1381 }
1382 bool DIExpression::startsWithDeref() const {
1383   if (auto singleLocElts = getSingleLocationExpressionElements())
1384     return singleLocElts->size() > 0 &&
1385            (*singleLocElts)[0] == dwarf::DW_OP_deref;
1386   return false;
1387 }
1388 bool DIExpression::isDeref() const {
1389   if (auto singleLocElts = getSingleLocationExpressionElements())
1390     return singleLocElts->size() == 1 &&
1391            (*singleLocElts)[0] == dwarf::DW_OP_deref;
1392   return false;
1393 }
1394 
1395 DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1396                                 bool ShouldCreate) {
1397   // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1398   assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1399   return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1400 }
1401 
1402 unsigned DIExpression::ExprOperand::getSize() const {
1403   uint64_t Op = getOp();
1404 
1405   if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1406     return 2;
1407 
1408   switch (Op) {
1409   case dwarf::DW_OP_LLVM_convert:
1410   case dwarf::DW_OP_LLVM_fragment:
1411   case dwarf::DW_OP_LLVM_extract_bits_sext:
1412   case dwarf::DW_OP_LLVM_extract_bits_zext:
1413   case dwarf::DW_OP_bregx:
1414     return 3;
1415   case dwarf::DW_OP_constu:
1416   case dwarf::DW_OP_consts:
1417   case dwarf::DW_OP_deref_size:
1418   case dwarf::DW_OP_plus_uconst:
1419   case dwarf::DW_OP_LLVM_tag_offset:
1420   case dwarf::DW_OP_LLVM_entry_value:
1421   case dwarf::DW_OP_LLVM_arg:
1422   case dwarf::DW_OP_regx:
1423     return 2;
1424   default:
1425     return 1;
1426   }
1427 }
1428 
1429 bool DIExpression::isValid() const {
1430   for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1431     // Check that there's space for the operand.
1432     if (I->get() + I->getSize() > E->get())
1433       return false;
1434 
1435     uint64_t Op = I->getOp();
1436     if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1437         (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1438       return true;
1439 
1440     // Check that the operand is valid.
1441     switch (Op) {
1442     default:
1443       return false;
1444     case dwarf::DW_OP_LLVM_fragment:
1445       // A fragment operator must appear at the end.
1446       return I->get() + I->getSize() == E->get();
1447     case dwarf::DW_OP_stack_value: {
1448       // Must be the last one or followed by a DW_OP_LLVM_fragment.
1449       if (I->get() + I->getSize() == E->get())
1450         break;
1451       auto J = I;
1452       if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1453         return false;
1454       break;
1455     }
1456     case dwarf::DW_OP_swap: {
1457       // Must be more than one implicit element on the stack.
1458 
1459       // FIXME: A better way to implement this would be to add a local variable
1460       // that keeps track of the stack depth and introduce something like a
1461       // DW_LLVM_OP_implicit_location as a placeholder for the location this
1462       // DIExpression is attached to, or else pass the number of implicit stack
1463       // elements into isValid.
1464       if (getNumElements() == 1)
1465         return false;
1466       break;
1467     }
1468     case dwarf::DW_OP_LLVM_entry_value: {
1469       // An entry value operator must appear at the beginning or immediately
1470       // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1471       // currently only be 1, because we support only entry values of a simple
1472       // register location. One reason for this is that we currently can't
1473       // calculate the size of the resulting DWARF block for other expressions.
1474       auto FirstOp = expr_op_begin();
1475       if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1476         ++FirstOp;
1477       return I->get() == FirstOp->get() && I->getArg(0) == 1;
1478     }
1479     case dwarf::DW_OP_LLVM_implicit_pointer:
1480     case dwarf::DW_OP_LLVM_convert:
1481     case dwarf::DW_OP_LLVM_arg:
1482     case dwarf::DW_OP_LLVM_tag_offset:
1483     case dwarf::DW_OP_LLVM_extract_bits_sext:
1484     case dwarf::DW_OP_LLVM_extract_bits_zext:
1485     case dwarf::DW_OP_constu:
1486     case dwarf::DW_OP_plus_uconst:
1487     case dwarf::DW_OP_plus:
1488     case dwarf::DW_OP_minus:
1489     case dwarf::DW_OP_mul:
1490     case dwarf::DW_OP_div:
1491     case dwarf::DW_OP_mod:
1492     case dwarf::DW_OP_or:
1493     case dwarf::DW_OP_and:
1494     case dwarf::DW_OP_xor:
1495     case dwarf::DW_OP_shl:
1496     case dwarf::DW_OP_shr:
1497     case dwarf::DW_OP_shra:
1498     case dwarf::DW_OP_deref:
1499     case dwarf::DW_OP_deref_size:
1500     case dwarf::DW_OP_xderef:
1501     case dwarf::DW_OP_lit0:
1502     case dwarf::DW_OP_not:
1503     case dwarf::DW_OP_dup:
1504     case dwarf::DW_OP_regx:
1505     case dwarf::DW_OP_bregx:
1506     case dwarf::DW_OP_push_object_address:
1507     case dwarf::DW_OP_over:
1508     case dwarf::DW_OP_consts:
1509     case dwarf::DW_OP_eq:
1510     case dwarf::DW_OP_ne:
1511     case dwarf::DW_OP_gt:
1512     case dwarf::DW_OP_ge:
1513     case dwarf::DW_OP_lt:
1514     case dwarf::DW_OP_le:
1515       break;
1516     }
1517   }
1518   return true;
1519 }
1520 
1521 bool DIExpression::isImplicit() const {
1522   if (!isValid())
1523     return false;
1524 
1525   if (getNumElements() == 0)
1526     return false;
1527 
1528   for (const auto &It : expr_ops()) {
1529     switch (It.getOp()) {
1530     default:
1531       break;
1532     case dwarf::DW_OP_stack_value:
1533       return true;
1534     }
1535   }
1536 
1537   return false;
1538 }
1539 
1540 bool DIExpression::isComplex() const {
1541   if (!isValid())
1542     return false;
1543 
1544   if (getNumElements() == 0)
1545     return false;
1546 
1547   // If there are any elements other than fragment or tag_offset, then some
1548   // kind of complex computation occurs.
1549   for (const auto &It : expr_ops()) {
1550     switch (It.getOp()) {
1551     case dwarf::DW_OP_LLVM_tag_offset:
1552     case dwarf::DW_OP_LLVM_fragment:
1553     case dwarf::DW_OP_LLVM_arg:
1554       continue;
1555     default:
1556       return true;
1557     }
1558   }
1559 
1560   return false;
1561 }
1562 
1563 bool DIExpression::isSingleLocationExpression() const {
1564   if (!isValid())
1565     return false;
1566 
1567   if (getNumElements() == 0)
1568     return true;
1569 
1570   auto ExprOpBegin = expr_ops().begin();
1571   auto ExprOpEnd = expr_ops().end();
1572   if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1573     if (ExprOpBegin->getArg(0) != 0)
1574       return false;
1575     ++ExprOpBegin;
1576   }
1577 
1578   return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1579     return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1580   });
1581 }
1582 
1583 std::optional<ArrayRef<uint64_t>>
1584 DIExpression::getSingleLocationExpressionElements() const {
1585   // Check for `isValid` covered by `isSingleLocationExpression`.
1586   if (!isSingleLocationExpression())
1587     return std::nullopt;
1588 
1589   // An empty expression is already non-variadic.
1590   if (!getNumElements())
1591     return ArrayRef<uint64_t>();
1592 
1593   // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1594   // anything.
1595   if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1596     return getElements().drop_front(2);
1597   return getElements();
1598 }
1599 
1600 const DIExpression *
1601 DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1602   SmallVector<uint64_t, 3> UndefOps;
1603   if (auto FragmentInfo = Expr->getFragmentInfo()) {
1604     UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1605                      FragmentInfo->SizeInBits});
1606   }
1607   return DIExpression::get(Expr->getContext(), UndefOps);
1608 }
1609 
1610 const DIExpression *
1611 DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1612   if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1613         return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1614       }))
1615     return Expr;
1616   SmallVector<uint64_t> NewOps;
1617   NewOps.reserve(Expr->getNumElements() + 2);
1618   NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1619   NewOps.append(Expr->elements_begin(), Expr->elements_end());
1620   return DIExpression::get(Expr->getContext(), NewOps);
1621 }
1622 
1623 std::optional<const DIExpression *>
1624 DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1625   if (!Expr)
1626     return std::nullopt;
1627 
1628   if (auto Elts = Expr->getSingleLocationExpressionElements())
1629     return DIExpression::get(Expr->getContext(), *Elts);
1630 
1631   return std::nullopt;
1632 }
1633 
1634 void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1635                                              const DIExpression *Expr,
1636                                              bool IsIndirect) {
1637   // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1638   // to the existing expression ops.
1639   if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1640         return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1641       }))
1642     Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1643   // If Expr is not indirect, we only need to insert the expression elements and
1644   // we're done.
1645   if (!IsIndirect) {
1646     Ops.append(Expr->elements_begin(), Expr->elements_end());
1647     return;
1648   }
1649   // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1650   // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1651   // present.
1652   for (auto Op : Expr->expr_ops()) {
1653     if (Op.getOp() == dwarf::DW_OP_stack_value ||
1654         Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1655       Ops.push_back(dwarf::DW_OP_deref);
1656       IsIndirect = false;
1657     }
1658     Op.appendToVector(Ops);
1659   }
1660   if (IsIndirect)
1661     Ops.push_back(dwarf::DW_OP_deref);
1662 }
1663 
1664 bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1665                                      bool FirstIndirect,
1666                                      const DIExpression *SecondExpr,
1667                                      bool SecondIndirect) {
1668   SmallVector<uint64_t> FirstOps;
1669   DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1670   SmallVector<uint64_t> SecondOps;
1671   DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1672                                           SecondIndirect);
1673   return FirstOps == SecondOps;
1674 }
1675 
1676 std::optional<DIExpression::FragmentInfo>
1677 DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1678   for (auto I = Start; I != End; ++I)
1679     if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1680       DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1681       return Info;
1682     }
1683   return std::nullopt;
1684 }
1685 
1686 std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1687   std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1688   std::optional<uint64_t> ActiveBits = InitialActiveBits;
1689   for (auto Op : expr_ops()) {
1690     switch (Op.getOp()) {
1691     default:
1692       // We assume the worst case for anything we don't currently handle and
1693       // revert to the initial active bits.
1694       ActiveBits = InitialActiveBits;
1695       break;
1696     case dwarf::DW_OP_LLVM_extract_bits_zext:
1697     case dwarf::DW_OP_LLVM_extract_bits_sext: {
1698       // We can't handle an extract whose sign doesn't match that of the
1699       // variable.
1700       std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1701       bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1702       bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1703       if (!VarSign || VarSigned != OpSigned) {
1704         ActiveBits = InitialActiveBits;
1705         break;
1706       }
1707       [[fallthrough]];
1708     }
1709     case dwarf::DW_OP_LLVM_fragment:
1710       // Extract or fragment narrows the active bits
1711       if (ActiveBits)
1712         ActiveBits = std::min(*ActiveBits, Op.getArg(1));
1713       else
1714         ActiveBits = Op.getArg(1);
1715       break;
1716     }
1717   }
1718   return ActiveBits;
1719 }
1720 
1721 void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1722                                 int64_t Offset) {
1723   if (Offset > 0) {
1724     Ops.push_back(dwarf::DW_OP_plus_uconst);
1725     Ops.push_back(Offset);
1726   } else if (Offset < 0) {
1727     Ops.push_back(dwarf::DW_OP_constu);
1728     // Avoid UB when encountering LLONG_MIN, because in 2's complement
1729     // abs(LLONG_MIN) is LLONG_MAX+1.
1730     uint64_t AbsMinusOne = -(Offset+1);
1731     Ops.push_back(AbsMinusOne + 1);
1732     Ops.push_back(dwarf::DW_OP_minus);
1733   }
1734 }
1735 
1736 bool DIExpression::extractIfOffset(int64_t &Offset) const {
1737   auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1738   if (!SingleLocEltsOpt)
1739     return false;
1740   auto SingleLocElts = *SingleLocEltsOpt;
1741 
1742   if (SingleLocElts.size() == 0) {
1743     Offset = 0;
1744     return true;
1745   }
1746 
1747   if (SingleLocElts.size() == 2 &&
1748       SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
1749     Offset = SingleLocElts[1];
1750     return true;
1751   }
1752 
1753   if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
1754     if (SingleLocElts[2] == dwarf::DW_OP_plus) {
1755       Offset = SingleLocElts[1];
1756       return true;
1757     }
1758     if (SingleLocElts[2] == dwarf::DW_OP_minus) {
1759       Offset = -SingleLocElts[1];
1760       return true;
1761     }
1762   }
1763 
1764   return false;
1765 }
1766 
1767 bool DIExpression::extractLeadingOffset(
1768     int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
1769   OffsetInBytes = 0;
1770   RemainingOps.clear();
1771 
1772   auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1773   if (!SingleLocEltsOpt)
1774     return false;
1775 
1776   auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
1777   auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
1778   while (ExprOpIt != ExprOpEnd) {
1779     uint64_t Op = ExprOpIt->getOp();
1780     if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
1781         Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
1782         Op == dwarf::DW_OP_LLVM_extract_bits_zext ||
1783         Op == dwarf::DW_OP_LLVM_extract_bits_sext) {
1784       break;
1785     } else if (Op == dwarf::DW_OP_plus_uconst) {
1786       OffsetInBytes += ExprOpIt->getArg(0);
1787     } else if (Op == dwarf::DW_OP_constu) {
1788       uint64_t Value = ExprOpIt->getArg(0);
1789       ++ExprOpIt;
1790       if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
1791         OffsetInBytes += Value;
1792       else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
1793         OffsetInBytes -= Value;
1794       else
1795         return false;
1796     } else {
1797       // Not a const plus/minus operation or deref.
1798       return false;
1799     }
1800     ++ExprOpIt;
1801   }
1802   RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase());
1803   return true;
1804 }
1805 
1806 bool DIExpression::hasAllLocationOps(unsigned N) const {
1807   SmallDenseSet<uint64_t, 4> SeenOps;
1808   for (auto ExprOp : expr_ops())
1809     if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1810       SeenOps.insert(ExprOp.getArg(0));
1811   for (uint64_t Idx = 0; Idx < N; ++Idx)
1812     if (!SeenOps.contains(Idx))
1813       return false;
1814   return true;
1815 }
1816 
1817 const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
1818                                                       unsigned &AddrClass) {
1819   // FIXME: This seems fragile. Nothing that verifies that these elements
1820   // actually map to ops and not operands.
1821   auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
1822   if (!SingleLocEltsOpt)
1823     return nullptr;
1824   auto SingleLocElts = *SingleLocEltsOpt;
1825 
1826   const unsigned PatternSize = 4;
1827   if (SingleLocElts.size() >= PatternSize &&
1828       SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
1829       SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
1830       SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
1831     AddrClass = SingleLocElts[PatternSize - 3];
1832 
1833     if (SingleLocElts.size() == PatternSize)
1834       return nullptr;
1835     return DIExpression::get(
1836         Expr->getContext(),
1837         ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
1838   }
1839   return Expr;
1840 }
1841 
1842 DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
1843                                     int64_t Offset) {
1844   SmallVector<uint64_t, 8> Ops;
1845   if (Flags & DIExpression::DerefBefore)
1846     Ops.push_back(dwarf::DW_OP_deref);
1847 
1848   appendOffset(Ops, Offset);
1849   if (Flags & DIExpression::DerefAfter)
1850     Ops.push_back(dwarf::DW_OP_deref);
1851 
1852   bool StackValue = Flags & DIExpression::StackValue;
1853   bool EntryValue = Flags & DIExpression::EntryValue;
1854 
1855   return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1856 }
1857 
1858 DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
1859                                            ArrayRef<uint64_t> Ops,
1860                                            unsigned ArgNo, bool StackValue) {
1861   assert(Expr && "Can't add ops to this expression");
1862 
1863   // Handle non-variadic intrinsics by prepending the opcodes.
1864   if (!any_of(Expr->expr_ops(),
1865               [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1866     assert(ArgNo == 0 &&
1867            "Location Index must be 0 for a non-variadic expression.");
1868     SmallVector<uint64_t, 8> NewOps(Ops);
1869     return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
1870   }
1871 
1872   SmallVector<uint64_t, 8> NewOps;
1873   for (auto Op : Expr->expr_ops()) {
1874     // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1875     if (StackValue) {
1876       if (Op.getOp() == dwarf::DW_OP_stack_value)
1877         StackValue = false;
1878       else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1879         NewOps.push_back(dwarf::DW_OP_stack_value);
1880         StackValue = false;
1881       }
1882     }
1883     Op.appendToVector(NewOps);
1884     if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
1885       NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
1886   }
1887   if (StackValue)
1888     NewOps.push_back(dwarf::DW_OP_stack_value);
1889 
1890   return DIExpression::get(Expr->getContext(), NewOps);
1891 }
1892 
1893 DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
1894                                        uint64_t OldArg, uint64_t NewArg) {
1895   assert(Expr && "Can't replace args in this expression");
1896 
1897   SmallVector<uint64_t, 8> NewOps;
1898 
1899   for (auto Op : Expr->expr_ops()) {
1900     if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
1901       Op.appendToVector(NewOps);
1902       continue;
1903     }
1904     NewOps.push_back(dwarf::DW_OP_LLVM_arg);
1905     uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
1906     // OldArg has been deleted from the Op list, so decrement all indices
1907     // greater than it.
1908     if (Arg > OldArg)
1909       --Arg;
1910     NewOps.push_back(Arg);
1911   }
1912   return DIExpression::get(Expr->getContext(), NewOps);
1913 }
1914 
1915 DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
1916                                            SmallVectorImpl<uint64_t> &Ops,
1917                                            bool StackValue, bool EntryValue) {
1918   assert(Expr && "Can't prepend ops to this expression");
1919 
1920   if (EntryValue) {
1921     Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
1922     // Use a block size of 1 for the target register operand.  The
1923     // DWARF backend currently cannot emit entry values with a block
1924     // size > 1.
1925     Ops.push_back(1);
1926   }
1927 
1928   // If there are no ops to prepend, do not even add the DW_OP_stack_value.
1929   if (Ops.empty())
1930     StackValue = false;
1931   for (auto Op : Expr->expr_ops()) {
1932     // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1933     if (StackValue) {
1934       if (Op.getOp() == dwarf::DW_OP_stack_value)
1935         StackValue = false;
1936       else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1937         Ops.push_back(dwarf::DW_OP_stack_value);
1938         StackValue = false;
1939       }
1940     }
1941     Op.appendToVector(Ops);
1942   }
1943   if (StackValue)
1944     Ops.push_back(dwarf::DW_OP_stack_value);
1945   return DIExpression::get(Expr->getContext(), Ops);
1946 }
1947 
1948 DIExpression *DIExpression::append(const DIExpression *Expr,
1949                                    ArrayRef<uint64_t> Ops) {
1950   assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1951 
1952   // Copy Expr's current op list.
1953   SmallVector<uint64_t, 16> NewOps;
1954   for (auto Op : Expr->expr_ops()) {
1955     // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1956     if (Op.getOp() == dwarf::DW_OP_stack_value ||
1957         Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1958       NewOps.append(Ops.begin(), Ops.end());
1959 
1960       // Ensure that the new opcodes are only appended once.
1961       Ops = {};
1962     }
1963     Op.appendToVector(NewOps);
1964   }
1965   NewOps.append(Ops.begin(), Ops.end());
1966   auto *result =
1967       DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath();
1968   assert(result->isValid() && "concatenated expression is not valid");
1969   return result;
1970 }
1971 
1972 DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
1973                                           ArrayRef<uint64_t> Ops) {
1974   assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1975   assert(std::none_of(expr_op_iterator(Ops.begin()),
1976                       expr_op_iterator(Ops.end()),
1977                       [](auto Op) {
1978                         return Op.getOp() == dwarf::DW_OP_stack_value ||
1979                                Op.getOp() == dwarf::DW_OP_LLVM_fragment;
1980                       }) &&
1981          "Can't append this op");
1982 
1983   // Append a DW_OP_deref after Expr's current op list if it's non-empty and
1984   // has no DW_OP_stack_value.
1985   //
1986   // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1987   std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1988   unsigned DropUntilStackValue = FI ? 3 : 0;
1989   ArrayRef<uint64_t> ExprOpsBeforeFragment =
1990       Expr->getElements().drop_back(DropUntilStackValue);
1991   bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1992                     (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1993   bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1994 
1995   // Append a DW_OP_deref after Expr's current op list if needed, then append
1996   // the new ops, and finally ensure that a single DW_OP_stack_value is present.
1997   SmallVector<uint64_t, 16> NewOps;
1998   if (NeedsDeref)
1999     NewOps.push_back(dwarf::DW_OP_deref);
2000   NewOps.append(Ops.begin(), Ops.end());
2001   if (NeedsStackValue)
2002     NewOps.push_back(dwarf::DW_OP_stack_value);
2003   return DIExpression::append(Expr, NewOps);
2004 }
2005 
2006 std::optional<DIExpression *> DIExpression::createFragmentExpression(
2007     const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2008   SmallVector<uint64_t, 8> Ops;
2009   // Track whether it's safe to split the value at the top of the DWARF stack,
2010   // assuming that it'll be used as an implicit location value.
2011   bool CanSplitValue = true;
2012   // Track whether we need to add a fragment expression to the end of Expr.
2013   bool EmitFragment = true;
2014   // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2015   if (Expr) {
2016     for (auto Op : Expr->expr_ops()) {
2017       switch (Op.getOp()) {
2018       default:
2019         break;
2020       case dwarf::DW_OP_shr:
2021       case dwarf::DW_OP_shra:
2022       case dwarf::DW_OP_shl:
2023       case dwarf::DW_OP_plus:
2024       case dwarf::DW_OP_plus_uconst:
2025       case dwarf::DW_OP_minus:
2026         // We can't safely split arithmetic or shift operations into multiple
2027         // fragments because we can't express carry-over between fragments.
2028         //
2029         // FIXME: We *could* preserve the lowest fragment of a constant offset
2030         // operation if the offset fits into SizeInBits.
2031         CanSplitValue = false;
2032         break;
2033       case dwarf::DW_OP_deref:
2034       case dwarf::DW_OP_deref_size:
2035       case dwarf::DW_OP_deref_type:
2036       case dwarf::DW_OP_xderef:
2037       case dwarf::DW_OP_xderef_size:
2038       case dwarf::DW_OP_xderef_type:
2039         // Preceeding arithmetic operations have been applied to compute an
2040         // address. It's okay to split the value loaded from that address.
2041         CanSplitValue = true;
2042         break;
2043       case dwarf::DW_OP_stack_value:
2044         // Bail if this expression computes a value that cannot be split.
2045         if (!CanSplitValue)
2046           return std::nullopt;
2047         break;
2048       case dwarf::DW_OP_LLVM_fragment: {
2049         // If we've decided we don't need a fragment then give up if we see that
2050         // there's already a fragment expression.
2051         // FIXME: We could probably do better here
2052         if (!EmitFragment)
2053           return std::nullopt;
2054         // Make the new offset point into the existing fragment.
2055         uint64_t FragmentOffsetInBits = Op.getArg(0);
2056         uint64_t FragmentSizeInBits = Op.getArg(1);
2057         (void)FragmentSizeInBits;
2058         assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2059                "new fragment outside of original fragment");
2060         OffsetInBits += FragmentOffsetInBits;
2061         continue;
2062       }
2063       case dwarf::DW_OP_LLVM_extract_bits_zext:
2064       case dwarf::DW_OP_LLVM_extract_bits_sext: {
2065         // If we're extracting bits from inside of the fragment that we're
2066         // creating then we don't have a fragment after all, and just need to
2067         // adjust the offset that we're extracting from.
2068         uint64_t ExtractOffsetInBits = Op.getArg(0);
2069         uint64_t ExtractSizeInBits = Op.getArg(1);
2070         if (ExtractOffsetInBits >= OffsetInBits &&
2071             ExtractOffsetInBits + ExtractSizeInBits <=
2072                 OffsetInBits + SizeInBits) {
2073           Ops.push_back(Op.getOp());
2074           Ops.push_back(ExtractOffsetInBits - OffsetInBits);
2075           Ops.push_back(ExtractSizeInBits);
2076           EmitFragment = false;
2077           continue;
2078         }
2079         // If the extracted bits aren't fully contained within the fragment then
2080         // give up.
2081         // FIXME: We could probably do better here
2082         return std::nullopt;
2083       }
2084       }
2085       Op.appendToVector(Ops);
2086     }
2087   }
2088   assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2089   assert(Expr && "Unknown DIExpression");
2090   if (EmitFragment) {
2091     Ops.push_back(dwarf::DW_OP_LLVM_fragment);
2092     Ops.push_back(OffsetInBits);
2093     Ops.push_back(SizeInBits);
2094   }
2095   return DIExpression::get(Expr->getContext(), Ops);
2096 }
2097 
2098 /// See declaration for more info.
2099 bool DIExpression::calculateFragmentIntersect(
2100     const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2101     uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2102     int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2103     std::optional<DIExpression::FragmentInfo> &Result,
2104     int64_t &OffsetFromLocationInBits) {
2105 
2106   if (VarFrag.SizeInBits == 0)
2107     return false; // Variable size is unknown.
2108 
2109   // Difference between mem slice start and the dbg location start.
2110   // 0   4   8   12   16 ...
2111   // |       |
2112   // dbg location start
2113   //         |
2114   //         mem slice start
2115   // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2116   int64_t MemStartRelToDbgStartInBits;
2117   {
2118     auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL);
2119     if (!MemOffsetFromDbgInBytes)
2120       return false; // Can't calculate difference in addresses.
2121     // Difference between the pointers.
2122     MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2123     // Add the difference of the offsets.
2124     MemStartRelToDbgStartInBits +=
2125         SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2126   }
2127 
2128   // Out-param. Invert offset to get offset from debug location.
2129   OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2130 
2131   // Check if the variable fragment sits outside (before) this memory slice.
2132   int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2133   if (MemEndRelToDbgStart < 0) {
2134     Result = {0, 0}; // Out-param.
2135     return true;
2136   }
2137 
2138   // Work towards creating SliceOfVariable which is the bits of the variable
2139   // that the memory region covers.
2140   // 0   4   8   12   16 ...
2141   // |       |
2142   // dbg location start with VarFrag offset=32
2143   //         |
2144   //         mem slice start: SliceOfVariable offset=40
2145   int64_t MemStartRelToVarInBits =
2146       MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2147   int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2148   // If the memory region starts before the debug location the fragment
2149   // offset would be negative, which we can't encode. Limit those to 0. This
2150   // is fine because those bits necessarily don't overlap with the existing
2151   // variable fragment.
2152   int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits);
2153   int64_t MemFragSize =
2154       std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart);
2155   DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2156 
2157   // Intersect the memory region fragment with the variable location fragment.
2158   DIExpression::FragmentInfo TrimmedSliceOfVariable =
2159       DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag);
2160   if (TrimmedSliceOfVariable == VarFrag)
2161     Result = std::nullopt; // Out-param.
2162   else
2163     Result = TrimmedSliceOfVariable; // Out-param.
2164   return true;
2165 }
2166 
2167 std::pair<DIExpression *, const ConstantInt *>
2168 DIExpression::constantFold(const ConstantInt *CI) {
2169   // Copy the APInt so we can modify it.
2170   APInt NewInt = CI->getValue();
2171   SmallVector<uint64_t, 8> Ops;
2172 
2173   // Fold operators only at the beginning of the expression.
2174   bool First = true;
2175   bool Changed = false;
2176   for (auto Op : expr_ops()) {
2177     switch (Op.getOp()) {
2178     default:
2179       // We fold only the leading part of the expression; if we get to a part
2180       // that we're going to copy unchanged, and haven't done any folding,
2181       // then the entire expression is unchanged and we can return early.
2182       if (!Changed)
2183         return {this, CI};
2184       First = false;
2185       break;
2186     case dwarf::DW_OP_LLVM_convert:
2187       if (!First)
2188         break;
2189       Changed = true;
2190       if (Op.getArg(1) == dwarf::DW_ATE_signed)
2191         NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2192       else {
2193         assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2194         NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2195       }
2196       continue;
2197     }
2198     Op.appendToVector(Ops);
2199   }
2200   if (!Changed)
2201     return {this, CI};
2202   return {DIExpression::get(getContext(), Ops),
2203           ConstantInt::get(getContext(), NewInt)};
2204 }
2205 
2206 uint64_t DIExpression::getNumLocationOperands() const {
2207   uint64_t Result = 0;
2208   for (auto ExprOp : expr_ops())
2209     if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2210       Result = std::max(Result, ExprOp.getArg(0) + 1);
2211   assert(hasAllLocationOps(Result) &&
2212          "Expression is missing one or more location operands.");
2213   return Result;
2214 }
2215 
2216 std::optional<DIExpression::SignedOrUnsignedConstant>
2217 DIExpression::isConstant() const {
2218 
2219   // Recognize signed and unsigned constants.
2220   // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2221   // (DW_OP_LLVM_fragment of Len).
2222   // An unsigned constant can be represented as
2223   // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2224 
2225   if ((getNumElements() != 2 && getNumElements() != 3 &&
2226        getNumElements() != 6) ||
2227       (getElement(0) != dwarf::DW_OP_consts &&
2228        getElement(0) != dwarf::DW_OP_constu))
2229     return std::nullopt;
2230 
2231   if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2232     return SignedOrUnsignedConstant::SignedConstant;
2233 
2234   if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2235       (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2236                                  getElement(3) != dwarf::DW_OP_LLVM_fragment)))
2237     return std::nullopt;
2238   return getElement(0) == dwarf::DW_OP_constu
2239              ? SignedOrUnsignedConstant::UnsignedConstant
2240              : SignedOrUnsignedConstant::SignedConstant;
2241 }
2242 
2243 DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2244                                              bool Signed) {
2245   dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2246   DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
2247                             dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2248   return Ops;
2249 }
2250 
2251 DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2252                                       unsigned FromSize, unsigned ToSize,
2253                                       bool Signed) {
2254   return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2255 }
2256 
2257 DIGlobalVariableExpression *
2258 DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2259                                     Metadata *Expression, StorageType Storage,
2260                                     bool ShouldCreate) {
2261   DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2262   Metadata *Ops[] = {Variable, Expression};
2263   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2264 }
2265 DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2266                                unsigned Line, unsigned Attributes,
2267                                ArrayRef<Metadata *> Ops)
2268     : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2269       Line(Line), Attributes(Attributes) {}
2270 
2271 DIObjCProperty *DIObjCProperty::getImpl(
2272     LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2273     MDString *GetterName, MDString *SetterName, unsigned Attributes,
2274     Metadata *Type, StorageType Storage, bool ShouldCreate) {
2275   assert(isCanonical(Name) && "Expected canonical MDString");
2276   assert(isCanonical(GetterName) && "Expected canonical MDString");
2277   assert(isCanonical(SetterName) && "Expected canonical MDString");
2278   DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2279                                          SetterName, Attributes, Type));
2280   Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2281   DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2282 }
2283 
2284 DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2285                                             Metadata *Scope, Metadata *Entity,
2286                                             Metadata *File, unsigned Line,
2287                                             MDString *Name, Metadata *Elements,
2288                                             StorageType Storage,
2289                                             bool ShouldCreate) {
2290   assert(isCanonical(Name) && "Expected canonical MDString");
2291   DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2292                         (Tag, Scope, Entity, File, Line, Name, Elements));
2293   Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2294   DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2295 }
2296 
2297 DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2298                           MDString *Name, MDString *Value, StorageType Storage,
2299                           bool ShouldCreate) {
2300   assert(isCanonical(Name) && "Expected canonical MDString");
2301   DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2302   Metadata *Ops[] = {Name, Value};
2303   DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2304 }
2305 
2306 DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2307                                   unsigned Line, Metadata *File,
2308                                   Metadata *Elements, StorageType Storage,
2309                                   bool ShouldCreate) {
2310   DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2311   Metadata *Ops[] = {File, Elements};
2312   DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2313 }
2314 
2315 DIArgList *DIArgList::get(LLVMContext &Context,
2316                           ArrayRef<ValueAsMetadata *> Args) {
2317   auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2318   if (ExistingIt != Context.pImpl->DIArgLists.end())
2319     return *ExistingIt;
2320   DIArgList *NewArgList = new DIArgList(Context, Args);
2321   Context.pImpl->DIArgLists.insert(NewArgList);
2322   return NewArgList;
2323 }
2324 
2325 void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2326   ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2327   assert((!New || isa<ValueAsMetadata>(New)) &&
2328          "DIArgList must be passed a ValueAsMetadata");
2329   untrack();
2330   // We need to update the set storage once the Args are updated since they
2331   // form the key to the DIArgLists store.
2332   getContext().pImpl->DIArgLists.erase(this);
2333   ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
2334   for (ValueAsMetadata *&VM : Args) {
2335     if (&VM == OldVMPtr) {
2336       if (NewVM)
2337         VM = NewVM;
2338       else
2339         VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2340     }
2341   }
2342   // We've changed the contents of this DIArgList, and the set storage may
2343   // already contain a DIArgList with our new set of args; if it does, then we
2344   // must RAUW this with the existing DIArgList, otherwise we simply insert this
2345   // back into the set storage.
2346   DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2347   if (ExistingArgList) {
2348     replaceAllUsesWith(ExistingArgList);
2349     // Clear this here so we don't try to untrack in the destructor.
2350     Args.clear();
2351     delete this;
2352     return;
2353   }
2354   getContext().pImpl->DIArgLists.insert(this);
2355   track();
2356 }
2357 void DIArgList::track() {
2358   for (ValueAsMetadata *&VAM : Args)
2359     if (VAM)
2360       MetadataTracking::track(&VAM, *VAM, *this);
2361 }
2362 void DIArgList::untrack() {
2363   for (ValueAsMetadata *&VAM : Args)
2364     if (VAM)
2365       MetadataTracking::untrack(&VAM, *VAM);
2366 }
2367 void DIArgList::dropAllReferences(bool Untrack) {
2368   if (Untrack)
2369     untrack();
2370   Args.clear();
2371   ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2372 }
2373