1 //===- DataLayout.cpp - Data size & alignment routines ---------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines layout properties related to datatype size/offset/alignment 10 // information. 11 // 12 // This structure should be created once, filled in if the defaults are not 13 // correct and then passed around by const&. None of the members functions 14 // require modification to the object. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/Value.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Error.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Support/MemAlloc.h" 33 #include "llvm/Support/TypeSize.h" 34 #include "llvm/TargetParser/Triple.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstdlib> 39 #include <new> 40 #include <utility> 41 42 using namespace llvm; 43 44 //===----------------------------------------------------------------------===// 45 // Support for StructLayout 46 //===----------------------------------------------------------------------===// 47 48 StructLayout::StructLayout(StructType *ST, const DataLayout &DL) 49 : StructSize(TypeSize::getFixed(0)) { 50 assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); 51 IsPadded = false; 52 NumElements = ST->getNumElements(); 53 54 // Loop over each of the elements, placing them in memory. 55 for (unsigned i = 0, e = NumElements; i != e; ++i) { 56 Type *Ty = ST->getElementType(i); 57 if (i == 0 && Ty->isScalableTy()) 58 StructSize = TypeSize::getScalable(0); 59 60 const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty); 61 62 // Add padding if necessary to align the data element properly. 63 // Currently the only structure with scalable size will be the homogeneous 64 // scalable vector types. Homogeneous scalable vector types have members of 65 // the same data type so no alignment issue will happen. The condition here 66 // assumes so and needs to be adjusted if this assumption changes (e.g. we 67 // support structures with arbitrary scalable data type, or structure that 68 // contains both fixed size and scalable size data type members). 69 if (!StructSize.isScalable() && !isAligned(TyAlign, StructSize)) { 70 IsPadded = true; 71 StructSize = TypeSize::getFixed(alignTo(StructSize, TyAlign)); 72 } 73 74 // Keep track of maximum alignment constraint. 75 StructAlignment = std::max(TyAlign, StructAlignment); 76 77 getMemberOffsets()[i] = StructSize; 78 // Consume space for this data item 79 StructSize += DL.getTypeAllocSize(Ty); 80 } 81 82 // Add padding to the end of the struct so that it could be put in an array 83 // and all array elements would be aligned correctly. 84 if (!StructSize.isScalable() && !isAligned(StructAlignment, StructSize)) { 85 IsPadded = true; 86 StructSize = TypeSize::getFixed(alignTo(StructSize, StructAlignment)); 87 } 88 } 89 90 /// getElementContainingOffset - Given a valid offset into the structure, 91 /// return the structure index that contains it. 92 unsigned StructLayout::getElementContainingOffset(uint64_t FixedOffset) const { 93 assert(!StructSize.isScalable() && 94 "Cannot get element at offset for structure containing scalable " 95 "vector types"); 96 TypeSize Offset = TypeSize::getFixed(FixedOffset); 97 ArrayRef<TypeSize> MemberOffsets = getMemberOffsets(); 98 99 const auto *SI = 100 std::upper_bound(MemberOffsets.begin(), MemberOffsets.end(), Offset, 101 [](TypeSize LHS, TypeSize RHS) -> bool { 102 return TypeSize::isKnownLT(LHS, RHS); 103 }); 104 assert(SI != MemberOffsets.begin() && "Offset not in structure type!"); 105 --SI; 106 assert(TypeSize::isKnownLE(*SI, Offset) && "upper_bound didn't work"); 107 assert( 108 (SI == MemberOffsets.begin() || TypeSize::isKnownLE(*(SI - 1), Offset)) && 109 (SI + 1 == MemberOffsets.end() || 110 TypeSize::isKnownGT(*(SI + 1), Offset)) && 111 "Upper bound didn't work!"); 112 113 // Multiple fields can have the same offset if any of them are zero sized. 114 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop 115 // at the i32 element, because it is the last element at that offset. This is 116 // the right one to return, because anything after it will have a higher 117 // offset, implying that this element is non-empty. 118 return SI - MemberOffsets.begin(); 119 } 120 121 namespace { 122 123 class StructLayoutMap { 124 using LayoutInfoTy = DenseMap<StructType *, StructLayout *>; 125 LayoutInfoTy LayoutInfo; 126 127 public: 128 ~StructLayoutMap() { 129 // Remove any layouts. 130 for (const auto &I : LayoutInfo) { 131 StructLayout *Value = I.second; 132 Value->~StructLayout(); 133 free(Value); 134 } 135 } 136 137 StructLayout *&operator[](StructType *STy) { return LayoutInfo[STy]; } 138 }; 139 140 } // end anonymous namespace 141 142 //===----------------------------------------------------------------------===// 143 // DataLayout Class Implementation 144 //===----------------------------------------------------------------------===// 145 146 bool DataLayout::PrimitiveSpec::operator==(const PrimitiveSpec &Other) const { 147 return BitWidth == Other.BitWidth && ABIAlign == Other.ABIAlign && 148 PrefAlign == Other.PrefAlign; 149 } 150 151 bool DataLayout::PointerSpec::operator==(const PointerSpec &Other) const { 152 return AddrSpace == Other.AddrSpace && BitWidth == Other.BitWidth && 153 ABIAlign == Other.ABIAlign && PrefAlign == Other.PrefAlign && 154 IndexBitWidth == Other.IndexBitWidth && 155 IsNonIntegral == Other.IsNonIntegral; 156 } 157 158 namespace { 159 /// Predicate to sort primitive specs by bit width. 160 struct LessPrimitiveBitWidth { 161 bool operator()(const DataLayout::PrimitiveSpec &LHS, 162 unsigned RHSBitWidth) const { 163 return LHS.BitWidth < RHSBitWidth; 164 } 165 }; 166 167 /// Predicate to sort pointer specs by address space number. 168 struct LessPointerAddrSpace { 169 bool operator()(const DataLayout::PointerSpec &LHS, 170 unsigned RHSAddrSpace) const { 171 return LHS.AddrSpace < RHSAddrSpace; 172 } 173 }; 174 } // namespace 175 176 const char *DataLayout::getManglingComponent(const Triple &T) { 177 if (T.isOSBinFormatGOFF()) 178 return "-m:l"; 179 if (T.isOSBinFormatMachO()) 180 return "-m:o"; 181 if (T.isOSWindowsOrUEFI() && T.isOSBinFormatCOFF()) 182 return T.getArch() == Triple::x86 ? "-m:x" : "-m:w"; 183 if (T.isOSBinFormatXCOFF()) 184 return "-m:a"; 185 return "-m:e"; 186 } 187 188 // Default primitive type specifications. 189 // NOTE: These arrays must be sorted by type bit width. 190 constexpr DataLayout::PrimitiveSpec DefaultIntSpecs[] = { 191 {1, Align::Constant<1>(), Align::Constant<1>()}, // i1:8:8 192 {8, Align::Constant<1>(), Align::Constant<1>()}, // i8:8:8 193 {16, Align::Constant<2>(), Align::Constant<2>()}, // i16:16:16 194 {32, Align::Constant<4>(), Align::Constant<4>()}, // i32:32:32 195 {64, Align::Constant<4>(), Align::Constant<8>()}, // i64:32:64 196 }; 197 constexpr DataLayout::PrimitiveSpec DefaultFloatSpecs[] = { 198 {16, Align::Constant<2>(), Align::Constant<2>()}, // f16:16:16 199 {32, Align::Constant<4>(), Align::Constant<4>()}, // f32:32:32 200 {64, Align::Constant<8>(), Align::Constant<8>()}, // f64:64:64 201 {128, Align::Constant<16>(), Align::Constant<16>()}, // f128:128:128 202 }; 203 constexpr DataLayout::PrimitiveSpec DefaultVectorSpecs[] = { 204 {64, Align::Constant<8>(), Align::Constant<8>()}, // v64:64:64 205 {128, Align::Constant<16>(), Align::Constant<16>()}, // v128:128:128 206 }; 207 208 // Default pointer type specifications. 209 constexpr DataLayout::PointerSpec DefaultPointerSpecs[] = { 210 // p0:64:64:64:64 211 {0, 64, Align::Constant<8>(), Align::Constant<8>(), 64, false}, 212 }; 213 214 DataLayout::DataLayout() 215 : IntSpecs(ArrayRef(DefaultIntSpecs)), 216 FloatSpecs(ArrayRef(DefaultFloatSpecs)), 217 VectorSpecs(ArrayRef(DefaultVectorSpecs)), 218 PointerSpecs(ArrayRef(DefaultPointerSpecs)) {} 219 220 DataLayout::DataLayout(StringRef LayoutString) : DataLayout() { 221 if (Error Err = parseLayoutString(LayoutString)) 222 report_fatal_error(std::move(Err)); 223 } 224 225 DataLayout &DataLayout::operator=(const DataLayout &Other) { 226 delete static_cast<StructLayoutMap *>(LayoutMap); 227 LayoutMap = nullptr; 228 StringRepresentation = Other.StringRepresentation; 229 BigEndian = Other.BigEndian; 230 AllocaAddrSpace = Other.AllocaAddrSpace; 231 ProgramAddrSpace = Other.ProgramAddrSpace; 232 DefaultGlobalsAddrSpace = Other.DefaultGlobalsAddrSpace; 233 StackNaturalAlign = Other.StackNaturalAlign; 234 FunctionPtrAlign = Other.FunctionPtrAlign; 235 TheFunctionPtrAlignType = Other.TheFunctionPtrAlignType; 236 ManglingMode = Other.ManglingMode; 237 LegalIntWidths = Other.LegalIntWidths; 238 IntSpecs = Other.IntSpecs; 239 FloatSpecs = Other.FloatSpecs; 240 VectorSpecs = Other.VectorSpecs; 241 PointerSpecs = Other.PointerSpecs; 242 StructABIAlignment = Other.StructABIAlignment; 243 StructPrefAlignment = Other.StructPrefAlignment; 244 return *this; 245 } 246 247 bool DataLayout::operator==(const DataLayout &Other) const { 248 // NOTE: StringRepresentation might differ, it is not canonicalized. 249 return BigEndian == Other.BigEndian && 250 AllocaAddrSpace == Other.AllocaAddrSpace && 251 ProgramAddrSpace == Other.ProgramAddrSpace && 252 DefaultGlobalsAddrSpace == Other.DefaultGlobalsAddrSpace && 253 StackNaturalAlign == Other.StackNaturalAlign && 254 FunctionPtrAlign == Other.FunctionPtrAlign && 255 TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType && 256 ManglingMode == Other.ManglingMode && 257 LegalIntWidths == Other.LegalIntWidths && IntSpecs == Other.IntSpecs && 258 FloatSpecs == Other.FloatSpecs && VectorSpecs == Other.VectorSpecs && 259 PointerSpecs == Other.PointerSpecs && 260 StructABIAlignment == Other.StructABIAlignment && 261 StructPrefAlignment == Other.StructPrefAlignment; 262 } 263 264 Expected<DataLayout> DataLayout::parse(StringRef LayoutString) { 265 DataLayout Layout; 266 if (Error Err = Layout.parseLayoutString(LayoutString)) 267 return std::move(Err); 268 return Layout; 269 } 270 271 static Error createSpecFormatError(Twine Format) { 272 return createStringError("malformed specification, must be of the form \"" + 273 Format + "\""); 274 } 275 276 /// Attempts to parse an address space component of a specification. 277 static Error parseAddrSpace(StringRef Str, unsigned &AddrSpace) { 278 if (Str.empty()) 279 return createStringError("address space component cannot be empty"); 280 281 if (!to_integer(Str, AddrSpace, 10) || !isUInt<24>(AddrSpace)) 282 return createStringError("address space must be a 24-bit integer"); 283 284 return Error::success(); 285 } 286 287 /// Attempts to parse a size component of a specification. 288 static Error parseSize(StringRef Str, unsigned &BitWidth, 289 StringRef Name = "size") { 290 if (Str.empty()) 291 return createStringError(Name + " component cannot be empty"); 292 293 if (!to_integer(Str, BitWidth, 10) || BitWidth == 0 || !isUInt<24>(BitWidth)) 294 return createStringError(Name + " must be a non-zero 24-bit integer"); 295 296 return Error::success(); 297 } 298 299 /// Attempts to parse an alignment component of a specification. 300 /// 301 /// On success, returns the value converted to byte amount in \p Alignment. 302 /// If the value is zero and \p AllowZero is true, \p Alignment is set to one. 303 /// 304 /// Return an error in a number of cases: 305 /// - \p Str is empty or contains characters other than decimal digits; 306 /// - the value is zero and \p AllowZero is false; 307 /// - the value is too large; 308 /// - the value is not a multiple of the byte width; 309 /// - the value converted to byte amount is not not a power of two. 310 static Error parseAlignment(StringRef Str, Align &Alignment, StringRef Name, 311 bool AllowZero = false) { 312 if (Str.empty()) 313 return createStringError(Name + " alignment component cannot be empty"); 314 315 unsigned Value; 316 if (!to_integer(Str, Value, 10) || !isUInt<16>(Value)) 317 return createStringError(Name + " alignment must be a 16-bit integer"); 318 319 if (Value == 0) { 320 if (!AllowZero) 321 return createStringError(Name + " alignment must be non-zero"); 322 Alignment = Align(1); 323 return Error::success(); 324 } 325 326 constexpr unsigned ByteWidth = 8; 327 if (Value % ByteWidth || !isPowerOf2_32(Value / ByteWidth)) 328 return createStringError( 329 Name + " alignment must be a power of two times the byte width"); 330 331 Alignment = Align(Value / ByteWidth); 332 return Error::success(); 333 } 334 335 Error DataLayout::parsePrimitiveSpec(StringRef Spec) { 336 // [ifv]<size>:<abi>[:<pref>] 337 SmallVector<StringRef, 3> Components; 338 char Specifier = Spec.front(); 339 assert(Specifier == 'i' || Specifier == 'f' || Specifier == 'v'); 340 Spec.drop_front().split(Components, ':'); 341 342 if (Components.size() < 2 || Components.size() > 3) 343 return createSpecFormatError(Twine(Specifier) + "<size>:<abi>[:<pref>]"); 344 345 // Size. Required, cannot be zero. 346 unsigned BitWidth; 347 if (Error Err = parseSize(Components[0], BitWidth)) 348 return Err; 349 350 // ABI alignment. 351 Align ABIAlign; 352 if (Error Err = parseAlignment(Components[1], ABIAlign, "ABI")) 353 return Err; 354 355 if (Specifier == 'i' && BitWidth == 8 && ABIAlign != 1) 356 return createStringError("i8 must be 8-bit aligned"); 357 358 // Preferred alignment. Optional, defaults to the ABI alignment. 359 Align PrefAlign = ABIAlign; 360 if (Components.size() > 2) 361 if (Error Err = parseAlignment(Components[2], PrefAlign, "preferred")) 362 return Err; 363 364 if (PrefAlign < ABIAlign) 365 return createStringError( 366 "preferred alignment cannot be less than the ABI alignment"); 367 368 setPrimitiveSpec(Specifier, BitWidth, ABIAlign, PrefAlign); 369 return Error::success(); 370 } 371 372 Error DataLayout::parseAggregateSpec(StringRef Spec) { 373 // a<size>:<abi>[:<pref>] 374 SmallVector<StringRef, 3> Components; 375 assert(Spec.front() == 'a'); 376 Spec.drop_front().split(Components, ':'); 377 378 if (Components.size() < 2 || Components.size() > 3) 379 return createSpecFormatError("a:<abi>[:<pref>]"); 380 381 // According to LangRef, <size> component must be absent altogether. 382 // For backward compatibility, allow it to be specified, but require 383 // it to be zero. 384 if (!Components[0].empty()) { 385 unsigned BitWidth; 386 if (!to_integer(Components[0], BitWidth, 10) || BitWidth != 0) 387 return createStringError("size must be zero"); 388 } 389 390 // ABI alignment. Required. Can be zero, meaning use one byte alignment. 391 Align ABIAlign; 392 if (Error Err = 393 parseAlignment(Components[1], ABIAlign, "ABI", /*AllowZero=*/true)) 394 return Err; 395 396 // Preferred alignment. Optional, defaults to the ABI alignment. 397 Align PrefAlign = ABIAlign; 398 if (Components.size() > 2) 399 if (Error Err = parseAlignment(Components[2], PrefAlign, "preferred")) 400 return Err; 401 402 if (PrefAlign < ABIAlign) 403 return createStringError( 404 "preferred alignment cannot be less than the ABI alignment"); 405 406 StructABIAlignment = ABIAlign; 407 StructPrefAlignment = PrefAlign; 408 return Error::success(); 409 } 410 411 Error DataLayout::parsePointerSpec(StringRef Spec) { 412 // p[<n>]:<size>:<abi>[:<pref>[:<idx>]] 413 SmallVector<StringRef, 5> Components; 414 assert(Spec.front() == 'p'); 415 Spec.drop_front().split(Components, ':'); 416 417 if (Components.size() < 3 || Components.size() > 5) 418 return createSpecFormatError("p[<n>]:<size>:<abi>[:<pref>[:<idx>]]"); 419 420 // Address space. Optional, defaults to 0. 421 unsigned AddrSpace = 0; 422 if (!Components[0].empty()) 423 if (Error Err = parseAddrSpace(Components[0], AddrSpace)) 424 return Err; 425 426 // Size. Required, cannot be zero. 427 unsigned BitWidth; 428 if (Error Err = parseSize(Components[1], BitWidth, "pointer size")) 429 return Err; 430 431 // ABI alignment. Required, cannot be zero. 432 Align ABIAlign; 433 if (Error Err = parseAlignment(Components[2], ABIAlign, "ABI")) 434 return Err; 435 436 // Preferred alignment. Optional, defaults to the ABI alignment. 437 // Cannot be zero. 438 Align PrefAlign = ABIAlign; 439 if (Components.size() > 3) 440 if (Error Err = parseAlignment(Components[3], PrefAlign, "preferred")) 441 return Err; 442 443 if (PrefAlign < ABIAlign) 444 return createStringError( 445 "preferred alignment cannot be less than the ABI alignment"); 446 447 // Index size. Optional, defaults to pointer size. Cannot be zero. 448 unsigned IndexBitWidth = BitWidth; 449 if (Components.size() > 4) 450 if (Error Err = parseSize(Components[4], IndexBitWidth, "index size")) 451 return Err; 452 453 if (IndexBitWidth > BitWidth) 454 return createStringError( 455 "index size cannot be larger than the pointer size"); 456 457 setPointerSpec(AddrSpace, BitWidth, ABIAlign, PrefAlign, IndexBitWidth, 458 false); 459 return Error::success(); 460 } 461 462 Error DataLayout::parseSpecification( 463 StringRef Spec, SmallVectorImpl<unsigned> &NonIntegralAddressSpaces) { 464 // The "ni" specifier is the only two-character specifier. Handle it first. 465 if (Spec.starts_with("ni")) { 466 // ni:<address space>[:<address space>]... 467 StringRef Rest = Spec.drop_front(2); 468 469 // Drop the first ':', then split the rest of the string the usual way. 470 if (!Rest.consume_front(":")) 471 return createSpecFormatError("ni:<address space>[:<address space>]..."); 472 473 for (StringRef Str : split(Rest, ':')) { 474 unsigned AddrSpace; 475 if (Error Err = parseAddrSpace(Str, AddrSpace)) 476 return Err; 477 if (AddrSpace == 0) 478 return createStringError("address space 0 cannot be non-integral"); 479 NonIntegralAddressSpaces.push_back(AddrSpace); 480 } 481 return Error::success(); 482 } 483 484 // The rest of the specifiers are single-character. 485 assert(!Spec.empty() && "Empty specification is handled by the caller"); 486 char Specifier = Spec.front(); 487 488 if (Specifier == 'i' || Specifier == 'f' || Specifier == 'v') 489 return parsePrimitiveSpec(Spec); 490 491 if (Specifier == 'a') 492 return parseAggregateSpec(Spec); 493 494 if (Specifier == 'p') 495 return parsePointerSpec(Spec); 496 497 StringRef Rest = Spec.drop_front(); 498 switch (Specifier) { 499 case 's': 500 // Deprecated, but ignoring here to preserve loading older textual llvm 501 // ASM file 502 break; 503 case 'e': 504 case 'E': 505 if (!Rest.empty()) 506 return createStringError( 507 "malformed specification, must be just 'e' or 'E'"); 508 BigEndian = Specifier == 'E'; 509 break; 510 case 'n': // Native integer types. 511 // n<size>[:<size>]... 512 for (StringRef Str : split(Rest, ':')) { 513 unsigned BitWidth; 514 if (Error Err = parseSize(Str, BitWidth)) 515 return Err; 516 LegalIntWidths.push_back(BitWidth); 517 } 518 break; 519 case 'S': { // Stack natural alignment. 520 // S<size> 521 if (Rest.empty()) 522 return createSpecFormatError("S<size>"); 523 Align Alignment; 524 if (Error Err = parseAlignment(Rest, Alignment, "stack natural")) 525 return Err; 526 StackNaturalAlign = Alignment; 527 break; 528 } 529 case 'F': { 530 // F<type><abi> 531 if (Rest.empty()) 532 return createSpecFormatError("F<type><abi>"); 533 char Type = Rest.front(); 534 Rest = Rest.drop_front(); 535 switch (Type) { 536 case 'i': 537 TheFunctionPtrAlignType = FunctionPtrAlignType::Independent; 538 break; 539 case 'n': 540 TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign; 541 break; 542 default: 543 return createStringError("unknown function pointer alignment type '" + 544 Twine(Type) + "'"); 545 } 546 Align Alignment; 547 if (Error Err = parseAlignment(Rest, Alignment, "ABI")) 548 return Err; 549 FunctionPtrAlign = Alignment; 550 break; 551 } 552 case 'P': { // Function address space. 553 if (Rest.empty()) 554 return createSpecFormatError("P<address space>"); 555 if (Error Err = parseAddrSpace(Rest, ProgramAddrSpace)) 556 return Err; 557 break; 558 } 559 case 'A': { // Default stack/alloca address space. 560 if (Rest.empty()) 561 return createSpecFormatError("A<address space>"); 562 if (Error Err = parseAddrSpace(Rest, AllocaAddrSpace)) 563 return Err; 564 break; 565 } 566 case 'G': { // Default address space for global variables. 567 if (Rest.empty()) 568 return createSpecFormatError("G<address space>"); 569 if (Error Err = parseAddrSpace(Rest, DefaultGlobalsAddrSpace)) 570 return Err; 571 break; 572 } 573 case 'm': 574 if (!Rest.consume_front(":") || Rest.empty()) 575 return createSpecFormatError("m:<mangling>"); 576 if (Rest.size() > 1) 577 return createStringError("unknown mangling mode"); 578 switch (Rest[0]) { 579 default: 580 return createStringError("unknown mangling mode"); 581 case 'e': 582 ManglingMode = MM_ELF; 583 break; 584 case 'l': 585 ManglingMode = MM_GOFF; 586 break; 587 case 'o': 588 ManglingMode = MM_MachO; 589 break; 590 case 'm': 591 ManglingMode = MM_Mips; 592 break; 593 case 'w': 594 ManglingMode = MM_WinCOFF; 595 break; 596 case 'x': 597 ManglingMode = MM_WinCOFFX86; 598 break; 599 case 'a': 600 ManglingMode = MM_XCOFF; 601 break; 602 } 603 break; 604 default: 605 return createStringError("unknown specifier '" + Twine(Specifier) + "'"); 606 } 607 608 return Error::success(); 609 } 610 611 Error DataLayout::parseLayoutString(StringRef LayoutString) { 612 StringRepresentation = std::string(LayoutString); 613 614 if (LayoutString.empty()) 615 return Error::success(); 616 617 // Split the data layout string into specifications separated by '-' and 618 // parse each specification individually, updating internal data structures. 619 SmallVector<unsigned, 8> NonIntegralAddressSpaces; 620 for (StringRef Spec : split(LayoutString, '-')) { 621 if (Spec.empty()) 622 return createStringError("empty specification is not allowed"); 623 if (Error Err = parseSpecification(Spec, NonIntegralAddressSpaces)) 624 return Err; 625 } 626 // Mark all address spaces that were qualified as non-integral now. This has 627 // to be done later since the non-integral property is not part of the data 628 // layout pointer specification. 629 for (unsigned AS : NonIntegralAddressSpaces) { 630 // If there is no special spec for a given AS, getPointerSpec(AS) returns 631 // the spec for AS0, and we then update that to mark it non-integral. 632 const PointerSpec &PS = getPointerSpec(AS); 633 setPointerSpec(AS, PS.BitWidth, PS.ABIAlign, PS.PrefAlign, PS.IndexBitWidth, 634 true); 635 } 636 637 return Error::success(); 638 } 639 640 void DataLayout::setPrimitiveSpec(char Specifier, uint32_t BitWidth, 641 Align ABIAlign, Align PrefAlign) { 642 SmallVectorImpl<PrimitiveSpec> *Specs; 643 switch (Specifier) { 644 default: 645 llvm_unreachable("Unexpected specifier"); 646 case 'i': 647 Specs = &IntSpecs; 648 break; 649 case 'f': 650 Specs = &FloatSpecs; 651 break; 652 case 'v': 653 Specs = &VectorSpecs; 654 break; 655 } 656 657 auto I = lower_bound(*Specs, BitWidth, LessPrimitiveBitWidth()); 658 if (I != Specs->end() && I->BitWidth == BitWidth) { 659 // Update the abi, preferred alignments. 660 I->ABIAlign = ABIAlign; 661 I->PrefAlign = PrefAlign; 662 } else { 663 // Insert before I to keep the vector sorted. 664 Specs->insert(I, PrimitiveSpec{BitWidth, ABIAlign, PrefAlign}); 665 } 666 } 667 668 const DataLayout::PointerSpec & 669 DataLayout::getPointerSpec(uint32_t AddrSpace) const { 670 if (AddrSpace != 0) { 671 auto I = lower_bound(PointerSpecs, AddrSpace, LessPointerAddrSpace()); 672 if (I != PointerSpecs.end() && I->AddrSpace == AddrSpace) 673 return *I; 674 } 675 676 assert(PointerSpecs[0].AddrSpace == 0); 677 return PointerSpecs[0]; 678 } 679 680 void DataLayout::setPointerSpec(uint32_t AddrSpace, uint32_t BitWidth, 681 Align ABIAlign, Align PrefAlign, 682 uint32_t IndexBitWidth, bool IsNonIntegral) { 683 auto I = lower_bound(PointerSpecs, AddrSpace, LessPointerAddrSpace()); 684 if (I == PointerSpecs.end() || I->AddrSpace != AddrSpace) { 685 PointerSpecs.insert(I, PointerSpec{AddrSpace, BitWidth, ABIAlign, PrefAlign, 686 IndexBitWidth, IsNonIntegral}); 687 } else { 688 I->BitWidth = BitWidth; 689 I->ABIAlign = ABIAlign; 690 I->PrefAlign = PrefAlign; 691 I->IndexBitWidth = IndexBitWidth; 692 I->IsNonIntegral = IsNonIntegral; 693 } 694 } 695 696 Align DataLayout::getIntegerAlignment(uint32_t BitWidth, 697 bool abi_or_pref) const { 698 auto I = lower_bound(IntSpecs, BitWidth, LessPrimitiveBitWidth()); 699 // If we don't have an exact match, use alignment of next larger integer 700 // type. If there is none, use alignment of largest integer type by going 701 // back one element. 702 if (I == IntSpecs.end()) 703 --I; 704 return abi_or_pref ? I->ABIAlign : I->PrefAlign; 705 } 706 707 DataLayout::~DataLayout() { delete static_cast<StructLayoutMap *>(LayoutMap); } 708 709 const StructLayout *DataLayout::getStructLayout(StructType *Ty) const { 710 if (!LayoutMap) 711 LayoutMap = new StructLayoutMap(); 712 713 StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap); 714 StructLayout *&SL = (*STM)[Ty]; 715 if (SL) return SL; 716 717 // Otherwise, create the struct layout. Because it is variable length, we 718 // malloc it, then use placement new. 719 StructLayout *L = (StructLayout *)safe_malloc( 720 StructLayout::totalSizeToAlloc<TypeSize>(Ty->getNumElements())); 721 722 // Set SL before calling StructLayout's ctor. The ctor could cause other 723 // entries to be added to TheMap, invalidating our reference. 724 SL = L; 725 726 new (L) StructLayout(Ty, *this); 727 728 return L; 729 } 730 731 Align DataLayout::getPointerABIAlignment(unsigned AS) const { 732 return getPointerSpec(AS).ABIAlign; 733 } 734 735 Align DataLayout::getPointerPrefAlignment(unsigned AS) const { 736 return getPointerSpec(AS).PrefAlign; 737 } 738 739 unsigned DataLayout::getPointerSize(unsigned AS) const { 740 return divideCeil(getPointerSpec(AS).BitWidth, 8); 741 } 742 743 unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const { 744 assert(Ty->isPtrOrPtrVectorTy() && 745 "This should only be called with a pointer or pointer vector type"); 746 Ty = Ty->getScalarType(); 747 return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()); 748 } 749 750 unsigned DataLayout::getIndexSize(unsigned AS) const { 751 return divideCeil(getPointerSpec(AS).IndexBitWidth, 8); 752 } 753 754 unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const { 755 assert(Ty->isPtrOrPtrVectorTy() && 756 "This should only be called with a pointer or pointer vector type"); 757 Ty = Ty->getScalarType(); 758 return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace()); 759 } 760 761 /*! 762 \param abi_or_pref Flag that determines which alignment is returned. true 763 returns the ABI alignment, false returns the preferred alignment. 764 \param Ty The underlying type for which alignment is determined. 765 766 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref 767 == false) for the requested type \a Ty. 768 */ 769 Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const { 770 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); 771 switch (Ty->getTypeID()) { 772 // Early escape for the non-numeric types. 773 case Type::LabelTyID: 774 return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0); 775 case Type::PointerTyID: { 776 unsigned AS = cast<PointerType>(Ty)->getAddressSpace(); 777 return abi_or_pref ? getPointerABIAlignment(AS) 778 : getPointerPrefAlignment(AS); 779 } 780 case Type::ArrayTyID: 781 return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); 782 783 case Type::StructTyID: { 784 // Packed structure types always have an ABI alignment of one. 785 if (cast<StructType>(Ty)->isPacked() && abi_or_pref) 786 return Align(1); 787 788 // Get the layout annotation... which is lazily created on demand. 789 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); 790 const Align Align = abi_or_pref ? StructABIAlignment : StructPrefAlignment; 791 return std::max(Align, Layout->getAlignment()); 792 } 793 case Type::IntegerTyID: 794 return getIntegerAlignment(Ty->getIntegerBitWidth(), abi_or_pref); 795 case Type::HalfTyID: 796 case Type::BFloatTyID: 797 case Type::FloatTyID: 798 case Type::DoubleTyID: 799 // PPC_FP128TyID and FP128TyID have different data contents, but the 800 // same size and alignment, so they look the same here. 801 case Type::PPC_FP128TyID: 802 case Type::FP128TyID: 803 case Type::X86_FP80TyID: { 804 unsigned BitWidth = getTypeSizeInBits(Ty).getFixedValue(); 805 auto I = lower_bound(FloatSpecs, BitWidth, LessPrimitiveBitWidth()); 806 if (I != FloatSpecs.end() && I->BitWidth == BitWidth) 807 return abi_or_pref ? I->ABIAlign : I->PrefAlign; 808 809 // If we still couldn't find a reasonable default alignment, fall back 810 // to a simple heuristic that the alignment is the first power of two 811 // greater-or-equal to the store size of the type. This is a reasonable 812 // approximation of reality, and if the user wanted something less 813 // less conservative, they should have specified it explicitly in the data 814 // layout. 815 return Align(PowerOf2Ceil(BitWidth / 8)); 816 } 817 case Type::FixedVectorTyID: 818 case Type::ScalableVectorTyID: { 819 unsigned BitWidth = getTypeSizeInBits(Ty).getKnownMinValue(); 820 auto I = lower_bound(VectorSpecs, BitWidth, LessPrimitiveBitWidth()); 821 if (I != VectorSpecs.end() && I->BitWidth == BitWidth) 822 return abi_or_pref ? I->ABIAlign : I->PrefAlign; 823 824 // By default, use natural alignment for vector types. This is consistent 825 // with what clang and llvm-gcc do. 826 // 827 // We're only calculating a natural alignment, so it doesn't have to be 828 // based on the full size for scalable vectors. Using the minimum element 829 // count should be enough here. 830 return Align(PowerOf2Ceil(getTypeStoreSize(Ty).getKnownMinValue())); 831 } 832 case Type::X86_AMXTyID: 833 return Align(64); 834 case Type::TargetExtTyID: { 835 Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType(); 836 return getAlignment(LayoutTy, abi_or_pref); 837 } 838 default: 839 llvm_unreachable("Bad type for getAlignment!!!"); 840 } 841 } 842 843 Align DataLayout::getABITypeAlign(Type *Ty) const { 844 return getAlignment(Ty, true); 845 } 846 847 Align DataLayout::getPrefTypeAlign(Type *Ty) const { 848 return getAlignment(Ty, false); 849 } 850 851 IntegerType *DataLayout::getIntPtrType(LLVMContext &C, 852 unsigned AddressSpace) const { 853 return IntegerType::get(C, getPointerSizeInBits(AddressSpace)); 854 } 855 856 Type *DataLayout::getIntPtrType(Type *Ty) const { 857 assert(Ty->isPtrOrPtrVectorTy() && 858 "Expected a pointer or pointer vector type."); 859 unsigned NumBits = getPointerTypeSizeInBits(Ty); 860 IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits); 861 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) 862 return VectorType::get(IntTy, VecTy); 863 return IntTy; 864 } 865 866 Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const { 867 for (unsigned LegalIntWidth : LegalIntWidths) 868 if (Width <= LegalIntWidth) 869 return Type::getIntNTy(C, LegalIntWidth); 870 return nullptr; 871 } 872 873 unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const { 874 auto Max = llvm::max_element(LegalIntWidths); 875 return Max != LegalIntWidths.end() ? *Max : 0; 876 } 877 878 IntegerType *DataLayout::getIndexType(LLVMContext &C, 879 unsigned AddressSpace) const { 880 return IntegerType::get(C, getIndexSizeInBits(AddressSpace)); 881 } 882 883 Type *DataLayout::getIndexType(Type *Ty) const { 884 assert(Ty->isPtrOrPtrVectorTy() && 885 "Expected a pointer or pointer vector type."); 886 unsigned NumBits = getIndexTypeSizeInBits(Ty); 887 IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits); 888 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) 889 return VectorType::get(IntTy, VecTy); 890 return IntTy; 891 } 892 893 int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy, 894 ArrayRef<Value *> Indices) const { 895 int64_t Result = 0; 896 897 generic_gep_type_iterator<Value* const*> 898 GTI = gep_type_begin(ElemTy, Indices), 899 GTE = gep_type_end(ElemTy, Indices); 900 for (; GTI != GTE; ++GTI) { 901 Value *Idx = GTI.getOperand(); 902 if (StructType *STy = GTI.getStructTypeOrNull()) { 903 assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx"); 904 unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue(); 905 906 // Get structure layout information... 907 const StructLayout *Layout = getStructLayout(STy); 908 909 // Add in the offset, as calculated by the structure layout info... 910 Result += Layout->getElementOffset(FieldNo); 911 } else { 912 if (int64_t ArrayIdx = cast<ConstantInt>(Idx)->getSExtValue()) 913 Result += ArrayIdx * GTI.getSequentialElementStride(*this); 914 } 915 } 916 917 return Result; 918 } 919 920 static APInt getElementIndex(TypeSize ElemSize, APInt &Offset) { 921 // Skip over scalable or zero size elements. Also skip element sizes larger 922 // than the positive index space, because the arithmetic below may not be 923 // correct in that case. 924 unsigned BitWidth = Offset.getBitWidth(); 925 if (ElemSize.isScalable() || ElemSize == 0 || 926 !isUIntN(BitWidth - 1, ElemSize)) { 927 return APInt::getZero(BitWidth); 928 } 929 930 APInt Index = Offset.sdiv(ElemSize); 931 Offset -= Index * ElemSize; 932 if (Offset.isNegative()) { 933 // Prefer a positive remaining offset to allow struct indexing. 934 --Index; 935 Offset += ElemSize; 936 assert(Offset.isNonNegative() && "Remaining offset shouldn't be negative"); 937 } 938 return Index; 939 } 940 941 std::optional<APInt> DataLayout::getGEPIndexForOffset(Type *&ElemTy, 942 APInt &Offset) const { 943 if (auto *ArrTy = dyn_cast<ArrayType>(ElemTy)) { 944 ElemTy = ArrTy->getElementType(); 945 return getElementIndex(getTypeAllocSize(ElemTy), Offset); 946 } 947 948 if (isa<VectorType>(ElemTy)) { 949 // Vector GEPs are partially broken (e.g. for overaligned element types), 950 // and may be forbidden in the future, so avoid generating GEPs into 951 // vectors. See https://discourse.llvm.org/t/67497 952 return std::nullopt; 953 } 954 955 if (auto *STy = dyn_cast<StructType>(ElemTy)) { 956 const StructLayout *SL = getStructLayout(STy); 957 uint64_t IntOffset = Offset.getZExtValue(); 958 if (IntOffset >= SL->getSizeInBytes()) 959 return std::nullopt; 960 961 unsigned Index = SL->getElementContainingOffset(IntOffset); 962 Offset -= SL->getElementOffset(Index); 963 ElemTy = STy->getElementType(Index); 964 return APInt(32, Index); 965 } 966 967 // Non-aggregate type. 968 return std::nullopt; 969 } 970 971 SmallVector<APInt> DataLayout::getGEPIndicesForOffset(Type *&ElemTy, 972 APInt &Offset) const { 973 assert(ElemTy->isSized() && "Element type must be sized"); 974 SmallVector<APInt> Indices; 975 Indices.push_back(getElementIndex(getTypeAllocSize(ElemTy), Offset)); 976 while (Offset != 0) { 977 std::optional<APInt> Index = getGEPIndexForOffset(ElemTy, Offset); 978 if (!Index) 979 break; 980 Indices.push_back(*Index); 981 } 982 983 return Indices; 984 } 985 986 /// getPreferredAlign - Return the preferred alignment of the specified global. 987 /// This includes an explicitly requested alignment (if the global has one). 988 Align DataLayout::getPreferredAlign(const GlobalVariable *GV) const { 989 MaybeAlign GVAlignment = GV->getAlign(); 990 // If a section is specified, always precisely honor explicit alignment, 991 // so we don't insert padding into a section we don't control. 992 if (GVAlignment && GV->hasSection()) 993 return *GVAlignment; 994 995 // If no explicit alignment is specified, compute the alignment based on 996 // the IR type. If an alignment is specified, increase it to match the ABI 997 // alignment of the IR type. 998 // 999 // FIXME: Not sure it makes sense to use the alignment of the type if 1000 // there's already an explicit alignment specification. 1001 Type *ElemType = GV->getValueType(); 1002 Align Alignment = getPrefTypeAlign(ElemType); 1003 if (GVAlignment) { 1004 if (*GVAlignment >= Alignment) 1005 Alignment = *GVAlignment; 1006 else 1007 Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType)); 1008 } 1009 1010 // If no explicit alignment is specified, and the global is large, increase 1011 // the alignment to 16. 1012 // FIXME: Why 16, specifically? 1013 if (GV->hasInitializer() && !GVAlignment) { 1014 if (Alignment < Align(16)) { 1015 // If the global is not external, see if it is large. If so, give it a 1016 // larger alignment. 1017 if (getTypeSizeInBits(ElemType) > 128) 1018 Alignment = Align(16); // 16-byte alignment. 1019 } 1020 } 1021 return Alignment; 1022 } 1023