xref: /llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h (revision 1753008bbbc317511c07ed30eef21e0494d63de8)
1 //===-- RuntimeDyldMachO.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachO support for MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
14 #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
15 
16 #include "RuntimeDyldImpl.h"
17 #include "llvm/Object/MachO.h"
18 #include "llvm/Support/Format.h"
19 
20 namespace llvm {
21 class RuntimeDyldMachO : public RuntimeDyldImpl {
22 protected:
23   struct SectionOffsetPair {
24     unsigned SectionID;
25     uint64_t Offset;
26   };
27 
28   struct EHFrameRelatedSections {
29     EHFrameRelatedSections()
30         : EHFrameSID(RTDYLD_INVALID_SECTION_ID),
31           TextSID(RTDYLD_INVALID_SECTION_ID),
32           ExceptTabSID(RTDYLD_INVALID_SECTION_ID) {}
33 
34     EHFrameRelatedSections(SID EH, SID T, SID Ex)
35         : EHFrameSID(EH), TextSID(T), ExceptTabSID(Ex) {}
36     SID EHFrameSID;
37     SID TextSID;
38     SID ExceptTabSID;
39   };
40 
41   // When a module is loaded we save the SectionID of the EH frame section
42   // in a table until we receive a request to register all unregistered
43   // EH frame sections with the memory manager.
44   SmallVector<EHFrameRelatedSections, 2> UnregisteredEHFrameSections;
45 
46   RuntimeDyldMachO(RuntimeDyld::MemoryManager &MemMgr,
47                    JITSymbolResolver &Resolver)
48       : RuntimeDyldImpl(MemMgr, Resolver) {}
49 
50   /// This convenience method uses memcpy to extract a contiguous addend (the
51   /// addend size and offset are taken from the corresponding fields of the RE).
52   int64_t memcpyAddend(const RelocationEntry &RE) const;
53 
54   /// Given a relocation_iterator for a non-scattered relocation, construct a
55   /// RelocationEntry and fill in the common fields. The 'Addend' field is *not*
56   /// filled in, since immediate encodings are highly target/opcode specific.
57   /// For targets/opcodes with simple, contiguous immediates (e.g. X86) the
58   /// memcpyAddend method can be used to read the immediate.
59   RelocationEntry getRelocationEntry(unsigned SectionID,
60                                      const ObjectFile &BaseTObj,
61                                      const relocation_iterator &RI) const {
62     const MachOObjectFile &Obj =
63       static_cast<const MachOObjectFile &>(BaseTObj);
64     MachO::any_relocation_info RelInfo =
65       Obj.getRelocation(RI->getRawDataRefImpl());
66 
67     bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
68     unsigned Size = Obj.getAnyRelocationLength(RelInfo);
69     uint64_t Offset = RI->getOffset();
70     MachO::RelocationInfoType RelType =
71       static_cast<MachO::RelocationInfoType>(Obj.getAnyRelocationType(RelInfo));
72 
73     return RelocationEntry(SectionID, Offset, RelType, 0, IsPCRel, Size);
74   }
75 
76   /// Process a scattered vanilla relocation.
77   Expected<relocation_iterator>
78   processScatteredVANILLA(unsigned SectionID, relocation_iterator RelI,
79                           const ObjectFile &BaseObjT,
80                           RuntimeDyldMachO::ObjSectionToIDMap &ObjSectionToID,
81                           bool TargetIsLocalThumbFunc = false);
82 
83   /// Construct a RelocationValueRef representing the relocation target.
84   /// For Symbols in known sections, this will return a RelocationValueRef
85   /// representing a (SectionID, Offset) pair.
86   /// For Symbols whose section is not known, this will return a
87   /// (SymbolName, Offset) pair, where the Offset is taken from the instruction
88   /// immediate (held in RE.Addend).
89   /// In both cases the Addend field is *NOT* fixed up to be PC-relative. That
90   /// should be done by the caller where appropriate by calling makePCRel on
91   /// the RelocationValueRef.
92   Expected<RelocationValueRef>
93   getRelocationValueRef(const ObjectFile &BaseTObj,
94                         const relocation_iterator &RI,
95                         const RelocationEntry &RE,
96                         ObjSectionToIDMap &ObjSectionToID);
97 
98   /// Make the RelocationValueRef addend PC-relative.
99   void makeValueAddendPCRel(RelocationValueRef &Value,
100                             const relocation_iterator &RI,
101                             unsigned OffsetToNextPC);
102 
103   /// Dump information about the relocation entry (RE) and resolved value.
104   void dumpRelocationToResolve(const RelocationEntry &RE, uint64_t Value) const;
105 
106   // Return a section iterator for the section containing the given address.
107   static section_iterator getSectionByAddress(const MachOObjectFile &Obj,
108                                               uint64_t Addr);
109 
110 
111   // Populate __pointers section.
112   Error populateIndirectSymbolPointersSection(const MachOObjectFile &Obj,
113                                               const SectionRef &PTSection,
114                                               unsigned PTSectionID);
115 
116 public:
117 
118   /// Create a RuntimeDyldMachO instance for the given target architecture.
119   static std::unique_ptr<RuntimeDyldMachO>
120   create(Triple::ArchType Arch,
121          RuntimeDyld::MemoryManager &MemMgr,
122          JITSymbolResolver &Resolver);
123 
124   std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
125   loadObject(const object::ObjectFile &O) override;
126 
127   SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; }
128 
129   bool isCompatibleFile(const object::ObjectFile &Obj) const override;
130 };
131 
132 /// RuntimeDyldMachOTarget - Templated base class for generic MachO linker
133 /// algorithms and data structures.
134 ///
135 /// Concrete, target specific sub-classes can be accessed via the impl()
136 /// methods. (i.e. the RuntimeDyldMachO hierarchy uses the Curiously
137 /// Recurring Template Idiom). Concrete subclasses for each target
138 /// can be found in ./Targets.
139 template <typename Impl>
140 class RuntimeDyldMachOCRTPBase : public RuntimeDyldMachO {
141 private:
142   Impl &impl() { return static_cast<Impl &>(*this); }
143   const Impl &impl() const { return static_cast<const Impl &>(*this); }
144 
145   unsigned char *processFDE(uint8_t *P, int64_t DeltaForText,
146                             int64_t DeltaForEH);
147 
148 public:
149   RuntimeDyldMachOCRTPBase(RuntimeDyld::MemoryManager &MemMgr,
150                            JITSymbolResolver &Resolver)
151     : RuntimeDyldMachO(MemMgr, Resolver) {}
152 
153   Error finalizeLoad(const ObjectFile &Obj,
154                      ObjSectionToIDMap &SectionMap) override;
155   void registerEHFrames() override;
156 };
157 
158 } // end namespace llvm
159 
160 #endif // LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
161