xref: /llvm-project/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp (revision eca6d4b638ecc27fe9054590ca11148981b5c633)
1 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCJIT.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ExecutionEngine/GenericValue.h"
13 #include "llvm/ExecutionEngine/JITEventListener.h"
14 #include "llvm/ExecutionEngine/MCJIT.h"
15 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/LegacyPassManager.h"
20 #include "llvm/IR/Mangler.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/Object/Archive.h"
23 #include "llvm/Object/ObjectFile.h"
24 #include "llvm/Support/DynamicLibrary.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/MutexGuard.h"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 static struct RegisterJIT {
34   RegisterJIT() { MCJIT::Register(); }
35 } JITRegistrator;
36 
37 }
38 
39 extern "C" void LLVMLinkInMCJIT() {
40 }
41 
42 ExecutionEngine *
43 MCJIT::createJIT(std::unique_ptr<Module> M, std::string *ErrorStr,
44                  std::shared_ptr<MCJITMemoryManager> MemMgr,
45                  std::shared_ptr<LegacyJITSymbolResolver> Resolver,
46                  std::unique_ptr<TargetMachine> TM) {
47   // Try to register the program as a source of symbols to resolve against.
48   //
49   // FIXME: Don't do this here.
50   sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
51 
52   if (!MemMgr || !Resolver) {
53     auto RTDyldMM = std::make_shared<SectionMemoryManager>();
54     if (!MemMgr)
55       MemMgr = RTDyldMM;
56     if (!Resolver)
57       Resolver = RTDyldMM;
58   }
59 
60   return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
61                    std::move(Resolver));
62 }
63 
64 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
65              std::shared_ptr<MCJITMemoryManager> MemMgr,
66              std::shared_ptr<LegacyJITSymbolResolver> Resolver)
67     : ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
68       Ctx(nullptr), MemMgr(std::move(MemMgr)),
69       Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
70       ObjCache(nullptr) {
71   // FIXME: We are managing our modules, so we do not want the base class
72   // ExecutionEngine to manage them as well. To avoid double destruction
73   // of the first (and only) module added in ExecutionEngine constructor
74   // we remove it from EE and will destruct it ourselves.
75   //
76   // It may make sense to move our module manager (based on SmallStPtr) back
77   // into EE if the JIT and Interpreter can live with it.
78   // If so, additional functions: addModule, removeModule, FindFunctionNamed,
79   // runStaticConstructorsDestructors could be moved back to EE as well.
80   //
81   std::unique_ptr<Module> First = std::move(Modules[0]);
82   Modules.clear();
83 
84   if (First->getDataLayout().isDefault())
85     First->setDataLayout(getDataLayout());
86 
87   OwnedModules.addModule(std::move(First));
88   RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
89 }
90 
91 MCJIT::~MCJIT() {
92   MutexGuard locked(lock);
93 
94   Dyld.deregisterEHFrames();
95 
96   for (auto &Obj : LoadedObjects)
97     if (Obj)
98       notifyFreeingObject(*Obj);
99 
100   Archives.clear();
101 }
102 
103 void MCJIT::addModule(std::unique_ptr<Module> M) {
104   MutexGuard locked(lock);
105 
106   if (M->getDataLayout().isDefault())
107     M->setDataLayout(getDataLayout());
108 
109   OwnedModules.addModule(std::move(M));
110 }
111 
112 bool MCJIT::removeModule(Module *M) {
113   MutexGuard locked(lock);
114   return OwnedModules.removeModule(M);
115 }
116 
117 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
118   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
119   if (Dyld.hasError())
120     report_fatal_error(Dyld.getErrorString());
121 
122   notifyObjectLoaded(*Obj, *L);
123 
124   LoadedObjects.push_back(std::move(Obj));
125 }
126 
127 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
128   std::unique_ptr<object::ObjectFile> ObjFile;
129   std::unique_ptr<MemoryBuffer> MemBuf;
130   std::tie(ObjFile, MemBuf) = Obj.takeBinary();
131   addObjectFile(std::move(ObjFile));
132   Buffers.push_back(std::move(MemBuf));
133 }
134 
135 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
136   Archives.push_back(std::move(A));
137 }
138 
139 void MCJIT::setObjectCache(ObjectCache* NewCache) {
140   MutexGuard locked(lock);
141   ObjCache = NewCache;
142 }
143 
144 std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
145   assert(M && "Can not emit a null module");
146 
147   MutexGuard locked(lock);
148 
149   // Materialize all globals in the module if they have not been
150   // materialized already.
151   cantFail(M->materializeAll());
152 
153   // This must be a module which has already been added but not loaded to this
154   // MCJIT instance, since these conditions are tested by our caller,
155   // generateCodeForModule.
156 
157   legacy::PassManager PM;
158 
159   // The RuntimeDyld will take ownership of this shortly
160   SmallVector<char, 4096> ObjBufferSV;
161   raw_svector_ostream ObjStream(ObjBufferSV);
162 
163   // Turn the machine code intermediate representation into bytes in memory
164   // that may be executed.
165   if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
166     report_fatal_error("Target does not support MC emission!");
167 
168   // Initialize passes.
169   PM.run(*M);
170   // Flush the output buffer to get the generated code into memory
171 
172   std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
173       new SmallVectorMemoryBuffer(std::move(ObjBufferSV)));
174 
175   // If we have an object cache, tell it about the new object.
176   // Note that we're using the compiled image, not the loaded image (as below).
177   if (ObjCache) {
178     // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
179     // to create a temporary object here and delete it after the call.
180     MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
181     ObjCache->notifyObjectCompiled(M, MB);
182   }
183 
184   return CompiledObjBuffer;
185 }
186 
187 void MCJIT::generateCodeForModule(Module *M) {
188   // Get a thread lock to make sure we aren't trying to load multiple times
189   MutexGuard locked(lock);
190 
191   // This must be a module which has already been added to this MCJIT instance.
192   assert(OwnedModules.ownsModule(M) &&
193          "MCJIT::generateCodeForModule: Unknown module.");
194 
195   // Re-compilation is not supported
196   if (OwnedModules.hasModuleBeenLoaded(M))
197     return;
198 
199   std::unique_ptr<MemoryBuffer> ObjectToLoad;
200   // Try to load the pre-compiled object from cache if possible
201   if (ObjCache)
202     ObjectToLoad = ObjCache->getObject(M);
203 
204   assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
205 
206   // If the cache did not contain a suitable object, compile the object
207   if (!ObjectToLoad) {
208     ObjectToLoad = emitObject(M);
209     assert(ObjectToLoad && "Compilation did not produce an object.");
210   }
211 
212   // Load the object into the dynamic linker.
213   // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
214   Expected<std::unique_ptr<object::ObjectFile>> LoadedObject =
215     object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
216   if (!LoadedObject) {
217     std::string Buf;
218     raw_string_ostream OS(Buf);
219     logAllUnhandledErrors(LoadedObject.takeError(), OS);
220     OS.flush();
221     report_fatal_error(Buf);
222   }
223   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
224     Dyld.loadObject(*LoadedObject.get());
225 
226   if (Dyld.hasError())
227     report_fatal_error(Dyld.getErrorString());
228 
229   notifyObjectLoaded(*LoadedObject.get(), *L);
230 
231   Buffers.push_back(std::move(ObjectToLoad));
232   LoadedObjects.push_back(std::move(*LoadedObject));
233 
234   OwnedModules.markModuleAsLoaded(M);
235 }
236 
237 void MCJIT::finalizeLoadedModules() {
238   MutexGuard locked(lock);
239 
240   // Resolve any outstanding relocations.
241   Dyld.resolveRelocations();
242 
243   OwnedModules.markAllLoadedModulesAsFinalized();
244 
245   // Register EH frame data for any module we own which has been loaded
246   Dyld.registerEHFrames();
247 
248   // Set page permissions.
249   MemMgr->finalizeMemory();
250 }
251 
252 // FIXME: Rename this.
253 void MCJIT::finalizeObject() {
254   MutexGuard locked(lock);
255 
256   // Generate code for module is going to move objects out of the 'added' list,
257   // so we need to copy that out before using it:
258   SmallVector<Module*, 16> ModsToAdd;
259   for (auto M : OwnedModules.added())
260     ModsToAdd.push_back(M);
261 
262   for (auto M : ModsToAdd)
263     generateCodeForModule(M);
264 
265   finalizeLoadedModules();
266 }
267 
268 void MCJIT::finalizeModule(Module *M) {
269   MutexGuard locked(lock);
270 
271   // This must be a module which has already been added to this MCJIT instance.
272   assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
273 
274   // If the module hasn't been compiled, just do that.
275   if (!OwnedModules.hasModuleBeenLoaded(M))
276     generateCodeForModule(M);
277 
278   finalizeLoadedModules();
279 }
280 
281 JITSymbol MCJIT::findExistingSymbol(const std::string &Name) {
282   if (void *Addr = getPointerToGlobalIfAvailable(Name))
283     return JITSymbol(static_cast<uint64_t>(
284                          reinterpret_cast<uintptr_t>(Addr)),
285                      JITSymbolFlags::Exported);
286 
287   return Dyld.getSymbol(Name);
288 }
289 
290 Module *MCJIT::findModuleForSymbol(const std::string &Name,
291                                    bool CheckFunctionsOnly) {
292   StringRef DemangledName = Name;
293   if (DemangledName[0] == getDataLayout().getGlobalPrefix())
294     DemangledName = DemangledName.substr(1);
295 
296   MutexGuard locked(lock);
297 
298   // If it hasn't already been generated, see if it's in one of our modules.
299   for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
300                               E = OwnedModules.end_added();
301        I != E; ++I) {
302     Module *M = *I;
303     Function *F = M->getFunction(DemangledName);
304     if (F && !F->isDeclaration())
305       return M;
306     if (!CheckFunctionsOnly) {
307       GlobalVariable *G = M->getGlobalVariable(DemangledName);
308       if (G && !G->isDeclaration())
309         return M;
310       // FIXME: Do we need to worry about global aliases?
311     }
312   }
313   // We didn't find the symbol in any of our modules.
314   return nullptr;
315 }
316 
317 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
318                                  bool CheckFunctionsOnly) {
319   std::string MangledName;
320   {
321     raw_string_ostream MangledNameStream(MangledName);
322     Mangler::getNameWithPrefix(MangledNameStream, Name, getDataLayout());
323   }
324   if (auto Sym = findSymbol(MangledName, CheckFunctionsOnly)) {
325     if (auto AddrOrErr = Sym.getAddress())
326       return *AddrOrErr;
327     else
328       report_fatal_error(AddrOrErr.takeError());
329   } else if (auto Err = Sym.takeError())
330     report_fatal_error(Sym.takeError());
331   return 0;
332 }
333 
334 JITSymbol MCJIT::findSymbol(const std::string &Name,
335                             bool CheckFunctionsOnly) {
336   MutexGuard locked(lock);
337 
338   // First, check to see if we already have this symbol.
339   if (auto Sym = findExistingSymbol(Name))
340     return Sym;
341 
342   for (object::OwningBinary<object::Archive> &OB : Archives) {
343     object::Archive *A = OB.getBinary();
344     // Look for our symbols in each Archive
345     auto OptionalChildOrErr = A->findSym(Name);
346     if (!OptionalChildOrErr)
347       report_fatal_error(OptionalChildOrErr.takeError());
348     auto &OptionalChild = *OptionalChildOrErr;
349     if (OptionalChild) {
350       // FIXME: Support nested archives?
351       Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
352           OptionalChild->getAsBinary();
353       if (!ChildBinOrErr) {
354         // TODO: Actually report errors helpfully.
355         consumeError(ChildBinOrErr.takeError());
356         continue;
357       }
358       std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
359       if (ChildBin->isObject()) {
360         std::unique_ptr<object::ObjectFile> OF(
361             static_cast<object::ObjectFile *>(ChildBin.release()));
362         // This causes the object file to be loaded.
363         addObjectFile(std::move(OF));
364         // The address should be here now.
365         if (auto Sym = findExistingSymbol(Name))
366           return Sym;
367       }
368     }
369   }
370 
371   // If it hasn't already been generated, see if it's in one of our modules.
372   Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
373   if (M) {
374     generateCodeForModule(M);
375 
376     // Check the RuntimeDyld table again, it should be there now.
377     return findExistingSymbol(Name);
378   }
379 
380   // If a LazyFunctionCreator is installed, use it to get/create the function.
381   // FIXME: Should we instead have a LazySymbolCreator callback?
382   if (LazyFunctionCreator) {
383     auto Addr = static_cast<uint64_t>(
384                   reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
385     return JITSymbol(Addr, JITSymbolFlags::Exported);
386   }
387 
388   return nullptr;
389 }
390 
391 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
392   MutexGuard locked(lock);
393   uint64_t Result = getSymbolAddress(Name, false);
394   if (Result != 0)
395     finalizeLoadedModules();
396   return Result;
397 }
398 
399 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
400   MutexGuard locked(lock);
401   uint64_t Result = getSymbolAddress(Name, true);
402   if (Result != 0)
403     finalizeLoadedModules();
404   return Result;
405 }
406 
407 // Deprecated.  Use getFunctionAddress instead.
408 void *MCJIT::getPointerToFunction(Function *F) {
409   MutexGuard locked(lock);
410 
411   Mangler Mang;
412   SmallString<128> Name;
413   TM->getNameWithPrefix(Name, F, Mang);
414 
415   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
416     bool AbortOnFailure = !F->hasExternalWeakLinkage();
417     void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
418     updateGlobalMapping(F, Addr);
419     return Addr;
420   }
421 
422   Module *M = F->getParent();
423   bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
424 
425   // Make sure the relevant module has been compiled and loaded.
426   if (HasBeenAddedButNotLoaded)
427     generateCodeForModule(M);
428   else if (!OwnedModules.hasModuleBeenLoaded(M)) {
429     // If this function doesn't belong to one of our modules, we're done.
430     // FIXME: Asking for the pointer to a function that hasn't been registered,
431     //        and isn't a declaration (which is handled above) should probably
432     //        be an assertion.
433     return nullptr;
434   }
435 
436   // FIXME: Should the Dyld be retaining module information? Probably not.
437   //
438   // This is the accessor for the target address, so make sure to check the
439   // load address of the symbol, not the local address.
440   return (void*)Dyld.getSymbol(Name).getAddress();
441 }
442 
443 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
444     bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
445   for (; I != E; ++I) {
446     ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
447   }
448 }
449 
450 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
451   // Execute global ctors/dtors for each module in the program.
452   runStaticConstructorsDestructorsInModulePtrSet(
453       isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
454   runStaticConstructorsDestructorsInModulePtrSet(
455       isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
456   runStaticConstructorsDestructorsInModulePtrSet(
457       isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
458 }
459 
460 Function *MCJIT::FindFunctionNamedInModulePtrSet(StringRef FnName,
461                                                  ModulePtrSet::iterator I,
462                                                  ModulePtrSet::iterator E) {
463   for (; I != E; ++I) {
464     Function *F = (*I)->getFunction(FnName);
465     if (F && !F->isDeclaration())
466       return F;
467   }
468   return nullptr;
469 }
470 
471 GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(StringRef Name,
472                                                              bool AllowInternal,
473                                                              ModulePtrSet::iterator I,
474                                                              ModulePtrSet::iterator E) {
475   for (; I != E; ++I) {
476     GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
477     if (GV && !GV->isDeclaration())
478       return GV;
479   }
480   return nullptr;
481 }
482 
483 
484 Function *MCJIT::FindFunctionNamed(StringRef FnName) {
485   Function *F = FindFunctionNamedInModulePtrSet(
486       FnName, OwnedModules.begin_added(), OwnedModules.end_added());
487   if (!F)
488     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
489                                         OwnedModules.end_loaded());
490   if (!F)
491     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
492                                         OwnedModules.end_finalized());
493   return F;
494 }
495 
496 GlobalVariable *MCJIT::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
497   GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
498       Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
499   if (!GV)
500     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
501                                         OwnedModules.end_loaded());
502   if (!GV)
503     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
504                                         OwnedModules.end_finalized());
505   return GV;
506 }
507 
508 GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
509   assert(F && "Function *F was null at entry to run()");
510 
511   void *FPtr = getPointerToFunction(F);
512   finalizeModule(F->getParent());
513   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
514   FunctionType *FTy = F->getFunctionType();
515   Type *RetTy = FTy->getReturnType();
516 
517   assert((FTy->getNumParams() == ArgValues.size() ||
518           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
519          "Wrong number of arguments passed into function!");
520   assert(FTy->getNumParams() == ArgValues.size() &&
521          "This doesn't support passing arguments through varargs (yet)!");
522 
523   // Handle some common cases first.  These cases correspond to common `main'
524   // prototypes.
525   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
526     switch (ArgValues.size()) {
527     case 3:
528       if (FTy->getParamType(0)->isIntegerTy(32) &&
529           FTy->getParamType(1)->isPointerTy() &&
530           FTy->getParamType(2)->isPointerTy()) {
531         int (*PF)(int, char **, const char **) =
532           (int(*)(int, char **, const char **))(intptr_t)FPtr;
533 
534         // Call the function.
535         GenericValue rv;
536         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
537                                  (char **)GVTOP(ArgValues[1]),
538                                  (const char **)GVTOP(ArgValues[2])));
539         return rv;
540       }
541       break;
542     case 2:
543       if (FTy->getParamType(0)->isIntegerTy(32) &&
544           FTy->getParamType(1)->isPointerTy()) {
545         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
546 
547         // Call the function.
548         GenericValue rv;
549         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
550                                  (char **)GVTOP(ArgValues[1])));
551         return rv;
552       }
553       break;
554     case 1:
555       if (FTy->getNumParams() == 1 &&
556           FTy->getParamType(0)->isIntegerTy(32)) {
557         GenericValue rv;
558         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
559         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
560         return rv;
561       }
562       break;
563     }
564   }
565 
566   // Handle cases where no arguments are passed first.
567   if (ArgValues.empty()) {
568     GenericValue rv;
569     switch (RetTy->getTypeID()) {
570     default: llvm_unreachable("Unknown return type for function call!");
571     case Type::IntegerTyID: {
572       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
573       if (BitWidth == 1)
574         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
575       else if (BitWidth <= 8)
576         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
577       else if (BitWidth <= 16)
578         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
579       else if (BitWidth <= 32)
580         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
581       else if (BitWidth <= 64)
582         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
583       else
584         llvm_unreachable("Integer types > 64 bits not supported");
585       return rv;
586     }
587     case Type::VoidTyID:
588       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
589       return rv;
590     case Type::FloatTyID:
591       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
592       return rv;
593     case Type::DoubleTyID:
594       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
595       return rv;
596     case Type::X86_FP80TyID:
597     case Type::FP128TyID:
598     case Type::PPC_FP128TyID:
599       llvm_unreachable("long double not supported yet");
600     case Type::PointerTyID:
601       return PTOGV(((void*(*)())(intptr_t)FPtr)());
602     }
603   }
604 
605   report_fatal_error("MCJIT::runFunction does not support full-featured "
606                      "argument passing. Please use "
607                      "ExecutionEngine::getFunctionAddress and cast the result "
608                      "to the desired function pointer type.");
609 }
610 
611 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
612   if (!isSymbolSearchingDisabled()) {
613     if (auto Sym = Resolver.findSymbol(Name)) {
614       if (auto AddrOrErr = Sym.getAddress())
615         return reinterpret_cast<void*>(
616                  static_cast<uintptr_t>(*AddrOrErr));
617     } else if (auto Err = Sym.takeError())
618       report_fatal_error(std::move(Err));
619   }
620 
621   /// If a LazyFunctionCreator is installed, use it to get/create the function.
622   if (LazyFunctionCreator)
623     if (void *RP = LazyFunctionCreator(Name))
624       return RP;
625 
626   if (AbortOnFailure) {
627     report_fatal_error("Program used external function '"+Name+
628                        "' which could not be resolved!");
629   }
630   return nullptr;
631 }
632 
633 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
634   if (!L)
635     return;
636   MutexGuard locked(lock);
637   EventListeners.push_back(L);
638 }
639 
640 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
641   if (!L)
642     return;
643   MutexGuard locked(lock);
644   auto I = find(reverse(EventListeners), L);
645   if (I != EventListeners.rend()) {
646     std::swap(*I, EventListeners.back());
647     EventListeners.pop_back();
648   }
649 }
650 
651 void MCJIT::notifyObjectLoaded(const object::ObjectFile &Obj,
652                                const RuntimeDyld::LoadedObjectInfo &L) {
653   uint64_t Key =
654       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
655   MutexGuard locked(lock);
656   MemMgr->notifyObjectLoaded(this, Obj);
657   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
658     EventListeners[I]->notifyObjectLoaded(Key, Obj, L);
659   }
660 }
661 
662 void MCJIT::notifyFreeingObject(const object::ObjectFile &Obj) {
663   uint64_t Key =
664       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
665   MutexGuard locked(lock);
666   for (JITEventListener *L : EventListeners)
667     L->notifyFreeingObject(Key);
668 }
669 
670 JITSymbol
671 LinkingSymbolResolver::findSymbol(const std::string &Name) {
672   auto Result = ParentEngine.findSymbol(Name, false);
673   if (Result)
674     return Result;
675   if (ParentEngine.isSymbolSearchingDisabled())
676     return nullptr;
677   return ClientResolver->findSymbol(Name);
678 }
679 
680 void LinkingSymbolResolver::anchor() {}
681