xref: /llvm-project/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp (revision 1f4d91ecb8529678a3d3919d7523743bd21942ca)
1 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCJIT.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ExecutionEngine/GenericValue.h"
12 #include "llvm/ExecutionEngine/JITEventListener.h"
13 #include "llvm/ExecutionEngine/MCJIT.h"
14 #include "llvm/ExecutionEngine/ObjectCache.h"
15 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/LegacyPassManager.h"
20 #include "llvm/IR/Mangler.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/Object/Archive.h"
23 #include "llvm/Object/ObjectFile.h"
24 #include "llvm/Support/DynamicLibrary.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/SmallVectorMemoryBuffer.h"
28 #include <mutex>
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 static struct RegisterJIT {
35   RegisterJIT() { MCJIT::Register(); }
36 } JITRegistrator;
37 
38 }
39 
40 extern "C" void LLVMLinkInMCJIT() {
41 }
42 
43 ExecutionEngine *
44 MCJIT::createJIT(std::unique_ptr<Module> M, std::string *ErrorStr,
45                  std::shared_ptr<MCJITMemoryManager> MemMgr,
46                  std::shared_ptr<LegacyJITSymbolResolver> Resolver,
47                  std::unique_ptr<TargetMachine> TM) {
48   // Try to register the program as a source of symbols to resolve against.
49   //
50   // FIXME: Don't do this here.
51   sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
52 
53   if (!MemMgr || !Resolver) {
54     auto RTDyldMM = std::make_shared<SectionMemoryManager>();
55     if (!MemMgr)
56       MemMgr = RTDyldMM;
57     if (!Resolver)
58       Resolver = RTDyldMM;
59   }
60 
61   return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
62                    std::move(Resolver));
63 }
64 
65 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
66              std::shared_ptr<MCJITMemoryManager> MemMgr,
67              std::shared_ptr<LegacyJITSymbolResolver> Resolver)
68     : ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
69       Ctx(nullptr), MemMgr(std::move(MemMgr)),
70       Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
71       ObjCache(nullptr) {
72   // FIXME: We are managing our modules, so we do not want the base class
73   // ExecutionEngine to manage them as well. To avoid double destruction
74   // of the first (and only) module added in ExecutionEngine constructor
75   // we remove it from EE and will destruct it ourselves.
76   //
77   // It may make sense to move our module manager (based on SmallStPtr) back
78   // into EE if the JIT and Interpreter can live with it.
79   // If so, additional functions: addModule, removeModule, FindFunctionNamed,
80   // runStaticConstructorsDestructors could be moved back to EE as well.
81   //
82   std::unique_ptr<Module> First = std::move(Modules[0]);
83   Modules.clear();
84 
85   if (First->getDataLayout().isDefault())
86     First->setDataLayout(getDataLayout());
87 
88   OwnedModules.addModule(std::move(First));
89   RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
90 }
91 
92 MCJIT::~MCJIT() {
93   std::lock_guard<sys::Mutex> locked(lock);
94 
95   Dyld.deregisterEHFrames();
96 
97   for (auto &Obj : LoadedObjects)
98     if (Obj)
99       notifyFreeingObject(*Obj);
100 
101   Archives.clear();
102 }
103 
104 void MCJIT::addModule(std::unique_ptr<Module> M) {
105   std::lock_guard<sys::Mutex> locked(lock);
106 
107   if (M->getDataLayout().isDefault())
108     M->setDataLayout(getDataLayout());
109 
110   OwnedModules.addModule(std::move(M));
111 }
112 
113 bool MCJIT::removeModule(Module *M) {
114   std::lock_guard<sys::Mutex> locked(lock);
115   return OwnedModules.removeModule(M);
116 }
117 
118 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
119   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
120   if (Dyld.hasError())
121     report_fatal_error(Dyld.getErrorString());
122 
123   notifyObjectLoaded(*Obj, *L);
124 
125   LoadedObjects.push_back(std::move(Obj));
126 }
127 
128 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
129   std::unique_ptr<object::ObjectFile> ObjFile;
130   std::unique_ptr<MemoryBuffer> MemBuf;
131   std::tie(ObjFile, MemBuf) = Obj.takeBinary();
132   addObjectFile(std::move(ObjFile));
133   Buffers.push_back(std::move(MemBuf));
134 }
135 
136 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
137   Archives.push_back(std::move(A));
138 }
139 
140 void MCJIT::setObjectCache(ObjectCache* NewCache) {
141   std::lock_guard<sys::Mutex> locked(lock);
142   ObjCache = NewCache;
143 }
144 
145 std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
146   assert(M && "Can not emit a null module");
147 
148   std::lock_guard<sys::Mutex> locked(lock);
149 
150   // Materialize all globals in the module if they have not been
151   // materialized already.
152   cantFail(M->materializeAll());
153 
154   // This must be a module which has already been added but not loaded to this
155   // MCJIT instance, since these conditions are tested by our caller,
156   // generateCodeForModule.
157 
158   legacy::PassManager PM;
159 
160   // The RuntimeDyld will take ownership of this shortly
161   SmallVector<char, 4096> ObjBufferSV;
162   raw_svector_ostream ObjStream(ObjBufferSV);
163 
164   // Turn the machine code intermediate representation into bytes in memory
165   // that may be executed.
166   if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
167     report_fatal_error("Target does not support MC emission!");
168 
169   // Initialize passes.
170   PM.run(*M);
171   // Flush the output buffer to get the generated code into memory
172 
173   auto CompiledObjBuffer = std::make_unique<SmallVectorMemoryBuffer>(
174       std::move(ObjBufferSV), /*RequiresNullTerminator=*/false);
175 
176   // If we have an object cache, tell it about the new object.
177   // Note that we're using the compiled image, not the loaded image (as below).
178   if (ObjCache) {
179     // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
180     // to create a temporary object here and delete it after the call.
181     MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
182     ObjCache->notifyObjectCompiled(M, MB);
183   }
184 
185   return CompiledObjBuffer;
186 }
187 
188 void MCJIT::generateCodeForModule(Module *M) {
189   // Get a thread lock to make sure we aren't trying to load multiple times
190   std::lock_guard<sys::Mutex> locked(lock);
191 
192   // This must be a module which has already been added to this MCJIT instance.
193   assert(OwnedModules.ownsModule(M) &&
194          "MCJIT::generateCodeForModule: Unknown module.");
195 
196   // Re-compilation is not supported
197   if (OwnedModules.hasModuleBeenLoaded(M))
198     return;
199 
200   std::unique_ptr<MemoryBuffer> ObjectToLoad;
201   // Try to load the pre-compiled object from cache if possible
202   if (ObjCache)
203     ObjectToLoad = ObjCache->getObject(M);
204 
205   assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
206 
207   // If the cache did not contain a suitable object, compile the object
208   if (!ObjectToLoad) {
209     ObjectToLoad = emitObject(M);
210     assert(ObjectToLoad && "Compilation did not produce an object.");
211   }
212 
213   // Load the object into the dynamic linker.
214   // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
215   Expected<std::unique_ptr<object::ObjectFile>> LoadedObject =
216     object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
217   if (!LoadedObject) {
218     std::string Buf;
219     raw_string_ostream OS(Buf);
220     logAllUnhandledErrors(LoadedObject.takeError(), OS);
221     report_fatal_error(Twine(Buf));
222   }
223   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
224     Dyld.loadObject(*LoadedObject.get());
225 
226   if (Dyld.hasError())
227     report_fatal_error(Dyld.getErrorString());
228 
229   notifyObjectLoaded(*LoadedObject.get(), *L);
230 
231   Buffers.push_back(std::move(ObjectToLoad));
232   LoadedObjects.push_back(std::move(*LoadedObject));
233 
234   OwnedModules.markModuleAsLoaded(M);
235 }
236 
237 void MCJIT::finalizeLoadedModules() {
238   std::lock_guard<sys::Mutex> locked(lock);
239 
240   // Resolve any outstanding relocations.
241   Dyld.resolveRelocations();
242 
243   // Check for Dyld error.
244   if (Dyld.hasError())
245     ErrMsg = Dyld.getErrorString().str();
246 
247   OwnedModules.markAllLoadedModulesAsFinalized();
248 
249   // Register EH frame data for any module we own which has been loaded
250   Dyld.registerEHFrames();
251 
252   // Set page permissions.
253   MemMgr->finalizeMemory();
254 }
255 
256 // FIXME: Rename this.
257 void MCJIT::finalizeObject() {
258   std::lock_guard<sys::Mutex> locked(lock);
259 
260   // Generate code for module is going to move objects out of the 'added' list,
261   // so we need to copy that out before using it:
262   SmallVector<Module *, 16> ModsToAdd(OwnedModules.added());
263 
264   for (auto *M : ModsToAdd)
265     generateCodeForModule(M);
266 
267   finalizeLoadedModules();
268 }
269 
270 void MCJIT::finalizeModule(Module *M) {
271   std::lock_guard<sys::Mutex> locked(lock);
272 
273   // This must be a module which has already been added to this MCJIT instance.
274   assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
275 
276   // If the module hasn't been compiled, just do that.
277   if (!OwnedModules.hasModuleBeenLoaded(M))
278     generateCodeForModule(M);
279 
280   finalizeLoadedModules();
281 }
282 
283 JITSymbol MCJIT::findExistingSymbol(const std::string &Name) {
284   if (void *Addr = getPointerToGlobalIfAvailable(Name))
285     return JITSymbol(static_cast<uint64_t>(
286                          reinterpret_cast<uintptr_t>(Addr)),
287                      JITSymbolFlags::Exported);
288 
289   return Dyld.getSymbol(Name);
290 }
291 
292 Module *MCJIT::findModuleForSymbol(const std::string &Name,
293                                    bool CheckFunctionsOnly) {
294   StringRef DemangledName = Name;
295   if (DemangledName[0] == getDataLayout().getGlobalPrefix())
296     DemangledName = DemangledName.substr(1);
297 
298   std::lock_guard<sys::Mutex> locked(lock);
299 
300   // If it hasn't already been generated, see if it's in one of our modules.
301   for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
302                               E = OwnedModules.end_added();
303        I != E; ++I) {
304     Module *M = *I;
305     Function *F = M->getFunction(DemangledName);
306     if (F && !F->isDeclaration())
307       return M;
308     if (!CheckFunctionsOnly) {
309       GlobalVariable *G = M->getGlobalVariable(DemangledName);
310       if (G && !G->isDeclaration())
311         return M;
312       // FIXME: Do we need to worry about global aliases?
313     }
314   }
315   // We didn't find the symbol in any of our modules.
316   return nullptr;
317 }
318 
319 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
320                                  bool CheckFunctionsOnly) {
321   std::string MangledName;
322   {
323     raw_string_ostream MangledNameStream(MangledName);
324     Mangler::getNameWithPrefix(MangledNameStream, Name, getDataLayout());
325   }
326   if (auto Sym = findSymbol(MangledName, CheckFunctionsOnly)) {
327     if (auto AddrOrErr = Sym.getAddress())
328       return *AddrOrErr;
329     else
330       report_fatal_error(AddrOrErr.takeError());
331   } else if (auto Err = Sym.takeError())
332     report_fatal_error(Sym.takeError());
333   return 0;
334 }
335 
336 JITSymbol MCJIT::findSymbol(const std::string &Name,
337                             bool CheckFunctionsOnly) {
338   std::lock_guard<sys::Mutex> locked(lock);
339 
340   // First, check to see if we already have this symbol.
341   if (auto Sym = findExistingSymbol(Name))
342     return Sym;
343 
344   for (object::OwningBinary<object::Archive> &OB : Archives) {
345     object::Archive *A = OB.getBinary();
346     // Look for our symbols in each Archive
347     auto OptionalChildOrErr = A->findSym(Name);
348     if (!OptionalChildOrErr)
349       report_fatal_error(OptionalChildOrErr.takeError());
350     auto &OptionalChild = *OptionalChildOrErr;
351     if (OptionalChild) {
352       // FIXME: Support nested archives?
353       Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
354           OptionalChild->getAsBinary();
355       if (!ChildBinOrErr) {
356         // TODO: Actually report errors helpfully.
357         consumeError(ChildBinOrErr.takeError());
358         continue;
359       }
360       std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
361       if (ChildBin->isObject()) {
362         std::unique_ptr<object::ObjectFile> OF(
363             static_cast<object::ObjectFile *>(ChildBin.release()));
364         // This causes the object file to be loaded.
365         addObjectFile(std::move(OF));
366         // The address should be here now.
367         if (auto Sym = findExistingSymbol(Name))
368           return Sym;
369       }
370     }
371   }
372 
373   // If it hasn't already been generated, see if it's in one of our modules.
374   Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
375   if (M) {
376     generateCodeForModule(M);
377 
378     // Check the RuntimeDyld table again, it should be there now.
379     return findExistingSymbol(Name);
380   }
381 
382   // If a LazyFunctionCreator is installed, use it to get/create the function.
383   // FIXME: Should we instead have a LazySymbolCreator callback?
384   if (LazyFunctionCreator) {
385     auto Addr = static_cast<uint64_t>(
386                   reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
387     return JITSymbol(Addr, JITSymbolFlags::Exported);
388   }
389 
390   return nullptr;
391 }
392 
393 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
394   std::lock_guard<sys::Mutex> locked(lock);
395   uint64_t Result = getSymbolAddress(Name, false);
396   if (Result != 0)
397     finalizeLoadedModules();
398   return Result;
399 }
400 
401 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
402   std::lock_guard<sys::Mutex> locked(lock);
403   uint64_t Result = getSymbolAddress(Name, true);
404   if (Result != 0)
405     finalizeLoadedModules();
406   return Result;
407 }
408 
409 // Deprecated.  Use getFunctionAddress instead.
410 void *MCJIT::getPointerToFunction(Function *F) {
411   std::lock_guard<sys::Mutex> locked(lock);
412 
413   Mangler Mang;
414   SmallString<128> Name;
415   TM->getNameWithPrefix(Name, F, Mang);
416 
417   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
418     bool AbortOnFailure = !F->hasExternalWeakLinkage();
419     void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
420     updateGlobalMapping(F, Addr);
421     return Addr;
422   }
423 
424   Module *M = F->getParent();
425   bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
426 
427   // Make sure the relevant module has been compiled and loaded.
428   if (HasBeenAddedButNotLoaded)
429     generateCodeForModule(M);
430   else if (!OwnedModules.hasModuleBeenLoaded(M)) {
431     // If this function doesn't belong to one of our modules, we're done.
432     // FIXME: Asking for the pointer to a function that hasn't been registered,
433     //        and isn't a declaration (which is handled above) should probably
434     //        be an assertion.
435     return nullptr;
436   }
437 
438   // FIXME: Should the Dyld be retaining module information? Probably not.
439   //
440   // This is the accessor for the target address, so make sure to check the
441   // load address of the symbol, not the local address.
442   return (void*)Dyld.getSymbol(Name).getAddress();
443 }
444 
445 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
446     bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
447   for (; I != E; ++I) {
448     ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
449   }
450 }
451 
452 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
453   // Execute global ctors/dtors for each module in the program.
454   runStaticConstructorsDestructorsInModulePtrSet(
455       isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
456   runStaticConstructorsDestructorsInModulePtrSet(
457       isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
458   runStaticConstructorsDestructorsInModulePtrSet(
459       isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
460 }
461 
462 Function *MCJIT::FindFunctionNamedInModulePtrSet(StringRef FnName,
463                                                  ModulePtrSet::iterator I,
464                                                  ModulePtrSet::iterator E) {
465   for (; I != E; ++I) {
466     Function *F = (*I)->getFunction(FnName);
467     if (F && !F->isDeclaration())
468       return F;
469   }
470   return nullptr;
471 }
472 
473 GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(StringRef Name,
474                                                              bool AllowInternal,
475                                                              ModulePtrSet::iterator I,
476                                                              ModulePtrSet::iterator E) {
477   for (; I != E; ++I) {
478     GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
479     if (GV && !GV->isDeclaration())
480       return GV;
481   }
482   return nullptr;
483 }
484 
485 
486 Function *MCJIT::FindFunctionNamed(StringRef FnName) {
487   Function *F = FindFunctionNamedInModulePtrSet(
488       FnName, OwnedModules.begin_added(), OwnedModules.end_added());
489   if (!F)
490     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
491                                         OwnedModules.end_loaded());
492   if (!F)
493     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
494                                         OwnedModules.end_finalized());
495   return F;
496 }
497 
498 GlobalVariable *MCJIT::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
499   GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
500       Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
501   if (!GV)
502     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
503                                         OwnedModules.end_loaded());
504   if (!GV)
505     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
506                                         OwnedModules.end_finalized());
507   return GV;
508 }
509 
510 GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
511   assert(F && "Function *F was null at entry to run()");
512 
513   void *FPtr = getPointerToFunction(F);
514   finalizeModule(F->getParent());
515   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
516   FunctionType *FTy = F->getFunctionType();
517   Type *RetTy = FTy->getReturnType();
518 
519   assert((FTy->getNumParams() == ArgValues.size() ||
520           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
521          "Wrong number of arguments passed into function!");
522   assert(FTy->getNumParams() == ArgValues.size() &&
523          "This doesn't support passing arguments through varargs (yet)!");
524 
525   // Handle some common cases first.  These cases correspond to common `main'
526   // prototypes.
527   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
528     switch (ArgValues.size()) {
529     case 3:
530       if (FTy->getParamType(0)->isIntegerTy(32) &&
531           FTy->getParamType(1)->isPointerTy() &&
532           FTy->getParamType(2)->isPointerTy()) {
533         int (*PF)(int, char **, const char **) =
534           (int(*)(int, char **, const char **))(intptr_t)FPtr;
535 
536         // Call the function.
537         GenericValue rv;
538         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
539                                  (char **)GVTOP(ArgValues[1]),
540                                  (const char **)GVTOP(ArgValues[2])));
541         return rv;
542       }
543       break;
544     case 2:
545       if (FTy->getParamType(0)->isIntegerTy(32) &&
546           FTy->getParamType(1)->isPointerTy()) {
547         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
548 
549         // Call the function.
550         GenericValue rv;
551         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
552                                  (char **)GVTOP(ArgValues[1])));
553         return rv;
554       }
555       break;
556     case 1:
557       if (FTy->getNumParams() == 1 &&
558           FTy->getParamType(0)->isIntegerTy(32)) {
559         GenericValue rv;
560         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
561         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
562         return rv;
563       }
564       break;
565     }
566   }
567 
568   // Handle cases where no arguments are passed first.
569   if (ArgValues.empty()) {
570     GenericValue rv;
571     switch (RetTy->getTypeID()) {
572     default: llvm_unreachable("Unknown return type for function call!");
573     case Type::IntegerTyID: {
574       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
575       if (BitWidth == 1)
576         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
577       else if (BitWidth <= 8)
578         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
579       else if (BitWidth <= 16)
580         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
581       else if (BitWidth <= 32)
582         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
583       else if (BitWidth <= 64)
584         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
585       else
586         llvm_unreachable("Integer types > 64 bits not supported");
587       return rv;
588     }
589     case Type::VoidTyID:
590       rv.IntVal = APInt(32, ((int (*)())(intptr_t)FPtr)(), true);
591       return rv;
592     case Type::FloatTyID:
593       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
594       return rv;
595     case Type::DoubleTyID:
596       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
597       return rv;
598     case Type::X86_FP80TyID:
599     case Type::FP128TyID:
600     case Type::PPC_FP128TyID:
601       llvm_unreachable("long double not supported yet");
602     case Type::PointerTyID:
603       return PTOGV(((void*(*)())(intptr_t)FPtr)());
604     }
605   }
606 
607   report_fatal_error("MCJIT::runFunction does not support full-featured "
608                      "argument passing. Please use "
609                      "ExecutionEngine::getFunctionAddress and cast the result "
610                      "to the desired function pointer type.");
611 }
612 
613 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
614   if (!isSymbolSearchingDisabled()) {
615     if (auto Sym = Resolver.findSymbol(std::string(Name))) {
616       if (auto AddrOrErr = Sym.getAddress())
617         return reinterpret_cast<void*>(
618                  static_cast<uintptr_t>(*AddrOrErr));
619     } else if (auto Err = Sym.takeError())
620       report_fatal_error(std::move(Err));
621   }
622 
623   /// If a LazyFunctionCreator is installed, use it to get/create the function.
624   if (LazyFunctionCreator)
625     if (void *RP = LazyFunctionCreator(std::string(Name)))
626       return RP;
627 
628   if (AbortOnFailure) {
629     report_fatal_error("Program used external function '"+Name+
630                        "' which could not be resolved!");
631   }
632   return nullptr;
633 }
634 
635 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
636   if (!L)
637     return;
638   std::lock_guard<sys::Mutex> locked(lock);
639   EventListeners.push_back(L);
640 }
641 
642 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
643   if (!L)
644     return;
645   std::lock_guard<sys::Mutex> locked(lock);
646   auto I = find(reverse(EventListeners), L);
647   if (I != EventListeners.rend()) {
648     std::swap(*I, EventListeners.back());
649     EventListeners.pop_back();
650   }
651 }
652 
653 void MCJIT::notifyObjectLoaded(const object::ObjectFile &Obj,
654                                const RuntimeDyld::LoadedObjectInfo &L) {
655   uint64_t Key =
656       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
657   std::lock_guard<sys::Mutex> locked(lock);
658   MemMgr->notifyObjectLoaded(this, Obj);
659   for (JITEventListener *EL : EventListeners)
660     EL->notifyObjectLoaded(Key, Obj, L);
661 }
662 
663 void MCJIT::notifyFreeingObject(const object::ObjectFile &Obj) {
664   uint64_t Key =
665       static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
666   std::lock_guard<sys::Mutex> locked(lock);
667   for (JITEventListener *L : EventListeners)
668     L->notifyFreeingObject(Key);
669 }
670 
671 JITSymbol
672 LinkingSymbolResolver::findSymbol(const std::string &Name) {
673   auto Result = ParentEngine.findSymbol(Name, false);
674   if (Result)
675     return Result;
676   if (ParentEngine.isSymbolSearchingDisabled())
677     return nullptr;
678   return ClientResolver->findSymbol(Name);
679 }
680 
681 void LinkingSymbolResolver::anchor() {}
682