1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/System/Host.h" 27 #include "llvm/Target/TargetData.h" 28 #include <math.h> 29 using namespace llvm; 30 31 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 32 STATISTIC(NumGlobals , "Number of global vars initialized"); 33 34 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 35 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 36 37 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 38 LazyCompilationDisabled = false; 39 Modules.push_back(P); 40 assert(P && "ModuleProvider is null?"); 41 } 42 43 ExecutionEngine::~ExecutionEngine() { 44 clearAllGlobalMappings(); 45 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 46 delete Modules[i]; 47 } 48 49 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 50 /// Release module from ModuleProvider. 51 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 52 std::string *ErrInfo) { 53 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 54 E = Modules.end(); I != E; ++I) { 55 ModuleProvider *MP = *I; 56 if (MP == P) { 57 Modules.erase(I); 58 return MP->releaseModule(ErrInfo); 59 } 60 } 61 return NULL; 62 } 63 64 /// FindFunctionNamed - Search all of the active modules to find the one that 65 /// defines FnName. This is very slow operation and shouldn't be used for 66 /// general code. 67 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 68 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 69 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 70 return F; 71 } 72 return 0; 73 } 74 75 76 /// addGlobalMapping - Tell the execution engine that the specified global is 77 /// at the specified location. This is used internally as functions are JIT'd 78 /// and as global variables are laid out in memory. It can and should also be 79 /// used by clients of the EE that want to have an LLVM global overlay 80 /// existing data in memory. 81 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 82 MutexGuard locked(lock); 83 84 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 85 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 86 CurVal = Addr; 87 88 // If we are using the reverse mapping, add it too 89 if (!state.getGlobalAddressReverseMap(locked).empty()) { 90 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 91 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 92 V = GV; 93 } 94 } 95 96 /// clearAllGlobalMappings - Clear all global mappings and start over again 97 /// use in dynamic compilation scenarios when you want to move globals 98 void ExecutionEngine::clearAllGlobalMappings() { 99 MutexGuard locked(lock); 100 101 state.getGlobalAddressMap(locked).clear(); 102 state.getGlobalAddressReverseMap(locked).clear(); 103 } 104 105 /// updateGlobalMapping - Replace an existing mapping for GV with a new 106 /// address. This updates both maps as required. If "Addr" is null, the 107 /// entry for the global is removed from the mappings. 108 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 109 MutexGuard locked(lock); 110 111 // Deleting from the mapping? 112 if (Addr == 0) { 113 state.getGlobalAddressMap(locked).erase(GV); 114 if (!state.getGlobalAddressReverseMap(locked).empty()) 115 state.getGlobalAddressReverseMap(locked).erase(Addr); 116 return; 117 } 118 119 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 120 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 121 state.getGlobalAddressReverseMap(locked).erase(CurVal); 122 CurVal = Addr; 123 124 // If we are using the reverse mapping, add it too 125 if (!state.getGlobalAddressReverseMap(locked).empty()) { 126 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 127 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 128 V = GV; 129 } 130 } 131 132 /// getPointerToGlobalIfAvailable - This returns the address of the specified 133 /// global value if it is has already been codegen'd, otherwise it returns null. 134 /// 135 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 136 MutexGuard locked(lock); 137 138 std::map<const GlobalValue*, void*>::iterator I = 139 state.getGlobalAddressMap(locked).find(GV); 140 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 141 } 142 143 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 144 /// at the specified address. 145 /// 146 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 147 MutexGuard locked(lock); 148 149 // If we haven't computed the reverse mapping yet, do so first. 150 if (state.getGlobalAddressReverseMap(locked).empty()) { 151 for (std::map<const GlobalValue*, void *>::iterator 152 I = state.getGlobalAddressMap(locked).begin(), 153 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 154 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 155 I->first)); 156 } 157 158 std::map<void *, const GlobalValue*>::iterator I = 159 state.getGlobalAddressReverseMap(locked).find(Addr); 160 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 161 } 162 163 // CreateArgv - Turn a vector of strings into a nice argv style array of 164 // pointers to null terminated strings. 165 // 166 static void *CreateArgv(ExecutionEngine *EE, 167 const std::vector<std::string> &InputArgv) { 168 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 169 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 170 171 DOUT << "ARGV = " << (void*)Result << "\n"; 172 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 173 174 for (unsigned i = 0; i != InputArgv.size(); ++i) { 175 unsigned Size = InputArgv[i].size()+1; 176 char *Dest = new char[Size]; 177 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 178 179 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 180 Dest[Size-1] = 0; 181 182 // Endian safe: Result[i] = (PointerTy)Dest; 183 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 184 SBytePtr); 185 } 186 187 // Null terminate it 188 EE->StoreValueToMemory(PTOGV(0), 189 (GenericValue*)(Result+InputArgv.size()*PtrSize), 190 SBytePtr); 191 return Result; 192 } 193 194 195 /// runStaticConstructorsDestructors - This method is used to execute all of 196 /// the static constructors or destructors for a program, depending on the 197 /// value of isDtors. 198 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 199 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 200 201 // Execute global ctors/dtors for each module in the program. 202 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 203 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 204 205 // If this global has internal linkage, or if it has a use, then it must be 206 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 207 // this is the case, don't execute any of the global ctors, __main will do 208 // it. 209 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 210 211 // Should be an array of '{ int, void ()* }' structs. The first value is 212 // the init priority, which we ignore. 213 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 214 if (!InitList) continue; 215 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 216 if (ConstantStruct *CS = 217 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 218 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 219 220 Constant *FP = CS->getOperand(1); 221 if (FP->isNullValue()) 222 break; // Found a null terminator, exit. 223 224 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 225 if (CE->isCast()) 226 FP = CE->getOperand(0); 227 if (Function *F = dyn_cast<Function>(FP)) { 228 // Execute the ctor/dtor function! 229 runFunction(F, std::vector<GenericValue>()); 230 } 231 } 232 } 233 } 234 235 /// runFunctionAsMain - This is a helper function which wraps runFunction to 236 /// handle the common task of starting up main with the specified argc, argv, 237 /// and envp parameters. 238 int ExecutionEngine::runFunctionAsMain(Function *Fn, 239 const std::vector<std::string> &argv, 240 const char * const * envp) { 241 std::vector<GenericValue> GVArgs; 242 GenericValue GVArgc; 243 GVArgc.IntVal = APInt(32, argv.size()); 244 245 // Check main() type 246 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 247 const FunctionType *FTy = Fn->getFunctionType(); 248 const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); 249 switch (NumArgs) { 250 case 3: 251 if (FTy->getParamType(2) != PPInt8Ty) { 252 cerr << "Invalid type for third argument of main() supplied\n"; 253 abort(); 254 } 255 // FALLS THROUGH 256 case 2: 257 if (FTy->getParamType(1) != PPInt8Ty) { 258 cerr << "Invalid type for second argument of main() supplied\n"; 259 abort(); 260 } 261 // FALLS THROUGH 262 case 1: 263 if (FTy->getParamType(0) != Type::Int32Ty) { 264 cerr << "Invalid type for first argument of main() supplied\n"; 265 abort(); 266 } 267 // FALLS THROUGH 268 case 0: 269 if (FTy->getReturnType() != Type::Int32Ty && 270 FTy->getReturnType() != Type::VoidTy) { 271 cerr << "Invalid return type of main() supplied\n"; 272 abort(); 273 } 274 break; 275 default: 276 cerr << "Invalid number of arguments of main() supplied\n"; 277 abort(); 278 } 279 280 if (NumArgs) { 281 GVArgs.push_back(GVArgc); // Arg #0 = argc. 282 if (NumArgs > 1) { 283 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 284 assert(((char **)GVTOP(GVArgs[1]))[0] && 285 "argv[0] was null after CreateArgv"); 286 if (NumArgs > 2) { 287 std::vector<std::string> EnvVars; 288 for (unsigned i = 0; envp[i]; ++i) 289 EnvVars.push_back(envp[i]); 290 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 291 } 292 } 293 } 294 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 295 } 296 297 /// If possible, create a JIT, unless the caller specifically requests an 298 /// Interpreter or there's an error. If even an Interpreter cannot be created, 299 /// NULL is returned. 300 /// 301 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 302 bool ForceInterpreter, 303 std::string *ErrorStr) { 304 ExecutionEngine *EE = 0; 305 306 // Unless the interpreter was explicitly selected, try making a JIT. 307 if (!ForceInterpreter && JITCtor) 308 EE = JITCtor(MP, ErrorStr); 309 310 // If we can't make a JIT, make an interpreter instead. 311 if (EE == 0 && InterpCtor) 312 EE = InterpCtor(MP, ErrorStr); 313 314 if (EE) { 315 // Make sure we can resolve symbols in the program as well. The zero arg 316 // to the function tells DynamicLibrary to load the program, not a library. 317 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) { 318 delete EE; 319 return 0; 320 } 321 } 322 323 return EE; 324 } 325 326 ExecutionEngine *ExecutionEngine::create(Module *M) { 327 return create(new ExistingModuleProvider(M)); 328 } 329 330 /// getPointerToGlobal - This returns the address of the specified global 331 /// value. This may involve code generation if it's a function. 332 /// 333 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 334 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 335 return getPointerToFunction(F); 336 337 MutexGuard locked(lock); 338 void *p = state.getGlobalAddressMap(locked)[GV]; 339 if (p) 340 return p; 341 342 // Global variable might have been added since interpreter started. 343 if (GlobalVariable *GVar = 344 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 345 EmitGlobalVariable(GVar); 346 else 347 assert(0 && "Global hasn't had an address allocated yet!"); 348 return state.getGlobalAddressMap(locked)[GV]; 349 } 350 351 /// This function converts a Constant* into a GenericValue. The interesting 352 /// part is if C is a ConstantExpr. 353 /// @brief Get a GenericValue for a Constant* 354 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 355 // If its undefined, return the garbage. 356 if (isa<UndefValue>(C)) 357 return GenericValue(); 358 359 // If the value is a ConstantExpr 360 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 361 Constant *Op0 = CE->getOperand(0); 362 switch (CE->getOpcode()) { 363 case Instruction::GetElementPtr: { 364 // Compute the index 365 GenericValue Result = getConstantValue(Op0); 366 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 367 uint64_t Offset = 368 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 369 370 char* tmp = (char*) Result.PointerVal; 371 Result = PTOGV(tmp + Offset); 372 return Result; 373 } 374 case Instruction::Trunc: { 375 GenericValue GV = getConstantValue(Op0); 376 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 377 GV.IntVal = GV.IntVal.trunc(BitWidth); 378 return GV; 379 } 380 case Instruction::ZExt: { 381 GenericValue GV = getConstantValue(Op0); 382 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 383 GV.IntVal = GV.IntVal.zext(BitWidth); 384 return GV; 385 } 386 case Instruction::SExt: { 387 GenericValue GV = getConstantValue(Op0); 388 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 389 GV.IntVal = GV.IntVal.sext(BitWidth); 390 return GV; 391 } 392 case Instruction::FPTrunc: { 393 // FIXME long double 394 GenericValue GV = getConstantValue(Op0); 395 GV.FloatVal = float(GV.DoubleVal); 396 return GV; 397 } 398 case Instruction::FPExt:{ 399 // FIXME long double 400 GenericValue GV = getConstantValue(Op0); 401 GV.DoubleVal = double(GV.FloatVal); 402 return GV; 403 } 404 case Instruction::UIToFP: { 405 GenericValue GV = getConstantValue(Op0); 406 if (CE->getType() == Type::FloatTy) 407 GV.FloatVal = float(GV.IntVal.roundToDouble()); 408 else if (CE->getType() == Type::DoubleTy) 409 GV.DoubleVal = GV.IntVal.roundToDouble(); 410 else if (CE->getType() == Type::X86_FP80Ty) { 411 const uint64_t zero[] = {0, 0}; 412 APFloat apf = APFloat(APInt(80, 2, zero)); 413 (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(), 414 GV.IntVal.getBitWidth(), false, 415 APFloat::rmNearestTiesToEven); 416 GV.IntVal = apf.convertToAPInt(); 417 } 418 return GV; 419 } 420 case Instruction::SIToFP: { 421 GenericValue GV = getConstantValue(Op0); 422 if (CE->getType() == Type::FloatTy) 423 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 424 else if (CE->getType() == Type::DoubleTy) 425 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 426 else if (CE->getType() == Type::X86_FP80Ty) { 427 const uint64_t zero[] = { 0, 0}; 428 APFloat apf = APFloat(APInt(80, 2, zero)); 429 (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(), 430 GV.IntVal.getBitWidth(), true, 431 APFloat::rmNearestTiesToEven); 432 GV.IntVal = apf.convertToAPInt(); 433 } 434 return GV; 435 } 436 case Instruction::FPToUI: // double->APInt conversion handles sign 437 case Instruction::FPToSI: { 438 GenericValue GV = getConstantValue(Op0); 439 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 440 if (Op0->getType() == Type::FloatTy) 441 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 442 else if (Op0->getType() == Type::DoubleTy) 443 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 444 else if (Op0->getType() == Type::X86_FP80Ty) { 445 APFloat apf = APFloat(GV.IntVal); 446 uint64_t v; 447 (void)apf.convertToInteger(&v, BitWidth, 448 CE->getOpcode()==Instruction::FPToSI, 449 APFloat::rmTowardZero); 450 GV.IntVal = v; // endian? 451 } 452 return GV; 453 } 454 case Instruction::PtrToInt: { 455 GenericValue GV = getConstantValue(Op0); 456 uint32_t PtrWidth = TD->getPointerSizeInBits(); 457 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 458 return GV; 459 } 460 case Instruction::IntToPtr: { 461 GenericValue GV = getConstantValue(Op0); 462 uint32_t PtrWidth = TD->getPointerSizeInBits(); 463 if (PtrWidth != GV.IntVal.getBitWidth()) 464 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 465 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 466 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 467 return GV; 468 } 469 case Instruction::BitCast: { 470 GenericValue GV = getConstantValue(Op0); 471 const Type* DestTy = CE->getType(); 472 switch (Op0->getType()->getTypeID()) { 473 default: assert(0 && "Invalid bitcast operand"); 474 case Type::IntegerTyID: 475 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 476 if (DestTy == Type::FloatTy) 477 GV.FloatVal = GV.IntVal.bitsToFloat(); 478 else if (DestTy == Type::DoubleTy) 479 GV.DoubleVal = GV.IntVal.bitsToDouble(); 480 break; 481 case Type::FloatTyID: 482 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 483 GV.IntVal.floatToBits(GV.FloatVal); 484 break; 485 case Type::DoubleTyID: 486 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 487 GV.IntVal.doubleToBits(GV.DoubleVal); 488 break; 489 case Type::PointerTyID: 490 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 491 break; // getConstantValue(Op0) above already converted it 492 } 493 return GV; 494 } 495 case Instruction::Add: 496 case Instruction::Sub: 497 case Instruction::Mul: 498 case Instruction::UDiv: 499 case Instruction::SDiv: 500 case Instruction::URem: 501 case Instruction::SRem: 502 case Instruction::And: 503 case Instruction::Or: 504 case Instruction::Xor: { 505 GenericValue LHS = getConstantValue(Op0); 506 GenericValue RHS = getConstantValue(CE->getOperand(1)); 507 GenericValue GV; 508 switch (CE->getOperand(0)->getType()->getTypeID()) { 509 default: assert(0 && "Bad add type!"); abort(); 510 case Type::IntegerTyID: 511 switch (CE->getOpcode()) { 512 default: assert(0 && "Invalid integer opcode"); 513 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 514 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 515 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 516 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 517 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 518 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 519 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 520 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 521 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 522 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 523 } 524 break; 525 case Type::FloatTyID: 526 switch (CE->getOpcode()) { 527 default: assert(0 && "Invalid float opcode"); abort(); 528 case Instruction::Add: 529 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 530 case Instruction::Sub: 531 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 532 case Instruction::Mul: 533 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 534 case Instruction::FDiv: 535 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 536 case Instruction::FRem: 537 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 538 } 539 break; 540 case Type::DoubleTyID: 541 switch (CE->getOpcode()) { 542 default: assert(0 && "Invalid double opcode"); abort(); 543 case Instruction::Add: 544 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 545 case Instruction::Sub: 546 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 547 case Instruction::Mul: 548 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 549 case Instruction::FDiv: 550 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 551 case Instruction::FRem: 552 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 553 } 554 break; 555 case Type::X86_FP80TyID: 556 case Type::PPC_FP128TyID: 557 case Type::FP128TyID: { 558 APFloat apfLHS = APFloat(LHS.IntVal); 559 switch (CE->getOpcode()) { 560 default: assert(0 && "Invalid long double opcode"); abort(); 561 case Instruction::Add: 562 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 563 GV.IntVal = apfLHS.convertToAPInt(); 564 break; 565 case Instruction::Sub: 566 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 567 GV.IntVal = apfLHS.convertToAPInt(); 568 break; 569 case Instruction::Mul: 570 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 571 GV.IntVal = apfLHS.convertToAPInt(); 572 break; 573 case Instruction::FDiv: 574 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 575 GV.IntVal = apfLHS.convertToAPInt(); 576 break; 577 case Instruction::FRem: 578 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 579 GV.IntVal = apfLHS.convertToAPInt(); 580 break; 581 } 582 } 583 break; 584 } 585 return GV; 586 } 587 default: 588 break; 589 } 590 cerr << "ConstantExpr not handled: " << *CE << "\n"; 591 abort(); 592 } 593 594 GenericValue Result; 595 switch (C->getType()->getTypeID()) { 596 case Type::FloatTyID: 597 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 598 break; 599 case Type::DoubleTyID: 600 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 601 break; 602 case Type::X86_FP80TyID: 603 case Type::FP128TyID: 604 case Type::PPC_FP128TyID: 605 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt(); 606 break; 607 case Type::IntegerTyID: 608 Result.IntVal = cast<ConstantInt>(C)->getValue(); 609 break; 610 case Type::PointerTyID: 611 if (isa<ConstantPointerNull>(C)) 612 Result.PointerVal = 0; 613 else if (const Function *F = dyn_cast<Function>(C)) 614 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 615 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 616 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 617 else 618 assert(0 && "Unknown constant pointer type!"); 619 break; 620 default: 621 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 622 abort(); 623 } 624 return Result; 625 } 626 627 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 628 /// is the address of the memory at which to store Val, cast to GenericValue *. 629 /// It is not a pointer to a GenericValue containing the address at which to 630 /// store Val. 631 /// 632 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 633 const Type *Ty) { 634 switch (Ty->getTypeID()) { 635 case Type::IntegerTyID: { 636 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 637 unsigned StoreBytes = (BitWidth + 7)/8; 638 uint8_t *Src = (uint8_t *)Val.IntVal.getRawData(); 639 uint8_t *Dst = (uint8_t *)Ptr; 640 641 if (sys::littleEndianHost()) 642 // Little-endian host - the source is ordered from LSB to MSB. 643 // Order the destination from LSB to MSB: Do a straight copy. 644 memcpy(Dst, Src, StoreBytes); 645 else { 646 // Big-endian host - the source is an array of 64 bit words ordered from 647 // LSW to MSW. Each word is ordered from MSB to LSB. 648 // Order the destination from MSB to LSB: Reverse the word order, but not 649 // the bytes in a word. 650 while (StoreBytes > sizeof(uint64_t)) { 651 StoreBytes -= sizeof(uint64_t); 652 // May not be aligned so use memcpy. 653 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 654 Src += sizeof(uint64_t); 655 } 656 657 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 658 } 659 break; 660 } 661 case Type::FloatTyID: 662 *((float*)Ptr) = Val.FloatVal; 663 break; 664 case Type::DoubleTyID: 665 *((double*)Ptr) = Val.DoubleVal; 666 break; 667 case Type::X86_FP80TyID: { 668 uint16_t *Dest = (uint16_t*)Ptr; 669 const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData(); 670 // This is endian dependent, but it will only work on x86 anyway. 671 Dest[0] = Src[4]; 672 Dest[1] = Src[0]; 673 Dest[2] = Src[1]; 674 Dest[3] = Src[2]; 675 Dest[4] = Src[3]; 676 break; 677 } 678 case Type::PointerTyID: 679 *((PointerTy*)Ptr) = Val.PointerVal; 680 break; 681 default: 682 cerr << "Cannot store value of type " << *Ty << "!\n"; 683 } 684 } 685 686 /// FIXME: document 687 /// 688 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 689 GenericValue *Ptr, 690 const Type *Ty) { 691 switch (Ty->getTypeID()) { 692 case Type::IntegerTyID: { 693 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 694 unsigned LoadBytes = (BitWidth + 7)/8; 695 696 // An APInt with all words initially zero. 697 Result.IntVal = APInt(BitWidth, 0); 698 699 uint8_t *Src = (uint8_t *)Ptr; 700 uint8_t *Dst = (uint8_t *)Result.IntVal.getRawData(); 701 702 if (sys::littleEndianHost()) 703 // Little-endian host - the destination must be ordered from LSB to MSB. 704 // The source is ordered from LSB to MSB: Do a straight copy. 705 memcpy(Dst, Src, LoadBytes); 706 else { 707 // Big-endian - the destination is an array of 64 bit words ordered from 708 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 709 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 710 // a word. 711 while (LoadBytes > sizeof(uint64_t)) { 712 LoadBytes -= sizeof(uint64_t); 713 // May not be aligned so use memcpy. 714 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 715 Dst += sizeof(uint64_t); 716 } 717 718 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 719 } 720 break; 721 } 722 case Type::FloatTyID: 723 Result.FloatVal = *((float*)Ptr); 724 break; 725 case Type::DoubleTyID: 726 Result.DoubleVal = *((double*)Ptr); 727 break; 728 case Type::PointerTyID: 729 Result.PointerVal = *((PointerTy*)Ptr); 730 break; 731 case Type::X86_FP80TyID: { 732 // This is endian dependent, but it will only work on x86 anyway. 733 uint16_t *p = (uint16_t*)Ptr; 734 union { 735 uint16_t x[8]; 736 uint64_t y[2]; 737 }; 738 x[0] = p[1]; 739 x[1] = p[2]; 740 x[2] = p[3]; 741 x[3] = p[4]; 742 x[4] = p[0]; 743 Result.IntVal = APInt(80, 2, y); 744 break; 745 } 746 default: 747 cerr << "Cannot load value of type " << *Ty << "!\n"; 748 abort(); 749 } 750 } 751 752 // InitializeMemory - Recursive function to apply a Constant value into the 753 // specified memory location... 754 // 755 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 756 if (isa<UndefValue>(Init)) { 757 return; 758 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 759 unsigned ElementSize = 760 getTargetData()->getABITypeSize(CP->getType()->getElementType()); 761 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 762 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 763 return; 764 } else if (Init->getType()->isFirstClassType()) { 765 GenericValue Val = getConstantValue(Init); 766 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 767 return; 768 } else if (isa<ConstantAggregateZero>(Init)) { 769 memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType())); 770 return; 771 } 772 773 switch (Init->getType()->getTypeID()) { 774 case Type::ArrayTyID: { 775 const ConstantArray *CPA = cast<ConstantArray>(Init); 776 unsigned ElementSize = 777 getTargetData()->getABITypeSize(CPA->getType()->getElementType()); 778 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 779 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 780 return; 781 } 782 783 case Type::StructTyID: { 784 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 785 const StructLayout *SL = 786 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 787 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 788 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 789 return; 790 } 791 792 default: 793 cerr << "Bad Type: " << *Init->getType() << "\n"; 794 assert(0 && "Unknown constant type to initialize memory with!"); 795 } 796 } 797 798 /// EmitGlobals - Emit all of the global variables to memory, storing their 799 /// addresses into GlobalAddress. This must make sure to copy the contents of 800 /// their initializers into the memory. 801 /// 802 void ExecutionEngine::emitGlobals() { 803 const TargetData *TD = getTargetData(); 804 805 // Loop over all of the global variables in the program, allocating the memory 806 // to hold them. If there is more than one module, do a prepass over globals 807 // to figure out how the different modules should link together. 808 // 809 std::map<std::pair<std::string, const Type*>, 810 const GlobalValue*> LinkedGlobalsMap; 811 812 if (Modules.size() != 1) { 813 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 814 Module &M = *Modules[m]->getModule(); 815 for (Module::const_global_iterator I = M.global_begin(), 816 E = M.global_end(); I != E; ++I) { 817 const GlobalValue *GV = I; 818 if (GV->hasInternalLinkage() || GV->isDeclaration() || 819 GV->hasAppendingLinkage() || !GV->hasName()) 820 continue;// Ignore external globals and globals with internal linkage. 821 822 const GlobalValue *&GVEntry = 823 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 824 825 // If this is the first time we've seen this global, it is the canonical 826 // version. 827 if (!GVEntry) { 828 GVEntry = GV; 829 continue; 830 } 831 832 // If the existing global is strong, never replace it. 833 if (GVEntry->hasExternalLinkage() || 834 GVEntry->hasDLLImportLinkage() || 835 GVEntry->hasDLLExportLinkage()) 836 continue; 837 838 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 839 // symbol. 840 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 841 GVEntry = GV; 842 } 843 } 844 } 845 846 std::vector<const GlobalValue*> NonCanonicalGlobals; 847 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 848 Module &M = *Modules[m]->getModule(); 849 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 850 I != E; ++I) { 851 // In the multi-module case, see what this global maps to. 852 if (!LinkedGlobalsMap.empty()) { 853 if (const GlobalValue *GVEntry = 854 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 855 // If something else is the canonical global, ignore this one. 856 if (GVEntry != &*I) { 857 NonCanonicalGlobals.push_back(I); 858 continue; 859 } 860 } 861 } 862 863 if (!I->isDeclaration()) { 864 // Get the type of the global. 865 const Type *Ty = I->getType()->getElementType(); 866 867 // Allocate some memory for it! 868 unsigned Size = TD->getABITypeSize(Ty); 869 addGlobalMapping(I, new char[Size]); 870 } else { 871 // External variable reference. Try to use the dynamic loader to 872 // get a pointer to it. 873 if (void *SymAddr = 874 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 875 addGlobalMapping(I, SymAddr); 876 else { 877 cerr << "Could not resolve external global address: " 878 << I->getName() << "\n"; 879 abort(); 880 } 881 } 882 } 883 884 // If there are multiple modules, map the non-canonical globals to their 885 // canonical location. 886 if (!NonCanonicalGlobals.empty()) { 887 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 888 const GlobalValue *GV = NonCanonicalGlobals[i]; 889 const GlobalValue *CGV = 890 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 891 void *Ptr = getPointerToGlobalIfAvailable(CGV); 892 assert(Ptr && "Canonical global wasn't codegen'd!"); 893 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 894 } 895 } 896 897 // Now that all of the globals are set up in memory, loop through them all 898 // and initialize their contents. 899 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 900 I != E; ++I) { 901 if (!I->isDeclaration()) { 902 if (!LinkedGlobalsMap.empty()) { 903 if (const GlobalValue *GVEntry = 904 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 905 if (GVEntry != &*I) // Not the canonical variable. 906 continue; 907 } 908 EmitGlobalVariable(I); 909 } 910 } 911 } 912 } 913 914 // EmitGlobalVariable - This method emits the specified global variable to the 915 // address specified in GlobalAddresses, or allocates new memory if it's not 916 // already in the map. 917 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 918 void *GA = getPointerToGlobalIfAvailable(GV); 919 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 920 921 const Type *ElTy = GV->getType()->getElementType(); 922 size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy); 923 if (GA == 0) { 924 // If it's not already specified, allocate memory for the global. 925 GA = new char[GVSize]; 926 addGlobalMapping(GV, GA); 927 } 928 929 InitializeMemory(GV->getInitializer(), GA); 930 NumInitBytes += (unsigned)GVSize; 931 ++NumGlobals; 932 } 933