1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the common interface used by the various execution engine 10 // subclasses. 11 // 12 // FIXME: This file needs to be updated to support scalable vectors 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/ObjectCache.h" 22 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Mangler.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/MC/TargetRegistry.h" 31 #include "llvm/Object/Archive.h" 32 #include "llvm/Object/ObjectFile.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DynamicLibrary.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/TargetParser/Host.h" 39 #include <cmath> 40 #include <cstring> 41 #include <mutex> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "jit" 45 46 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 47 STATISTIC(NumGlobals , "Number of global vars initialized"); 48 49 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 50 std::unique_ptr<Module> M, std::string *ErrorStr, 51 std::shared_ptr<MCJITMemoryManager> MemMgr, 52 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 53 std::unique_ptr<TargetMachine> TM) = nullptr; 54 55 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 56 std::string *ErrorStr) =nullptr; 57 58 void JITEventListener::anchor() {} 59 60 void ObjectCache::anchor() {} 61 62 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 63 CompilingLazily = false; 64 GVCompilationDisabled = false; 65 SymbolSearchingDisabled = false; 66 67 // IR module verification is enabled by default in debug builds, and disabled 68 // by default in release builds. 69 #ifndef NDEBUG 70 VerifyModules = true; 71 #else 72 VerifyModules = false; 73 #endif 74 75 assert(M && "Module is null?"); 76 Modules.push_back(std::move(M)); 77 } 78 79 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 80 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 81 Init(std::move(M)); 82 } 83 84 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 85 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 86 Init(std::move(M)); 87 } 88 89 ExecutionEngine::~ExecutionEngine() { 90 clearAllGlobalMappings(); 91 } 92 93 namespace { 94 /// Helper class which uses a value handler to automatically deletes the 95 /// memory block when the GlobalVariable is destroyed. 96 class GVMemoryBlock final : public CallbackVH { 97 GVMemoryBlock(const GlobalVariable *GV) 98 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 99 100 public: 101 /// Returns the address the GlobalVariable should be written into. The 102 /// GVMemoryBlock object prefixes that. 103 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 104 Type *ElTy = GV->getValueType(); 105 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 106 void *RawMemory = ::operator new( 107 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize); 108 new(RawMemory) GVMemoryBlock(GV); 109 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 110 } 111 112 void deleted() override { 113 // We allocated with operator new and with some extra memory hanging off the 114 // end, so don't just delete this. I'm not sure if this is actually 115 // required. 116 this->~GVMemoryBlock(); 117 ::operator delete(this); 118 } 119 }; 120 } // anonymous namespace 121 122 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 123 return GVMemoryBlock::Create(GV, getDataLayout()); 124 } 125 126 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 127 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 128 } 129 130 void 131 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 132 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 133 } 134 135 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 136 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 137 } 138 139 bool ExecutionEngine::removeModule(Module *M) { 140 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 141 Module *Found = I->get(); 142 if (Found == M) { 143 I->release(); 144 Modules.erase(I); 145 clearGlobalMappingsFromModule(M); 146 return true; 147 } 148 } 149 return false; 150 } 151 152 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { 153 for (const auto &M : Modules) { 154 Function *F = M->getFunction(FnName); 155 if (F && !F->isDeclaration()) 156 return F; 157 } 158 return nullptr; 159 } 160 161 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { 162 for (const auto &M : Modules) { 163 GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal); 164 if (GV && !GV->isDeclaration()) 165 return GV; 166 } 167 return nullptr; 168 } 169 170 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 171 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 172 uint64_t OldVal; 173 174 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 175 // GlobalAddressMap. 176 if (I == GlobalAddressMap.end()) 177 OldVal = 0; 178 else { 179 GlobalAddressReverseMap.erase(I->second); 180 OldVal = I->second; 181 GlobalAddressMap.erase(I); 182 } 183 184 return OldVal; 185 } 186 187 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 188 assert(GV->hasName() && "Global must have name."); 189 190 std::lock_guard<sys::Mutex> locked(lock); 191 SmallString<128> FullName; 192 193 const DataLayout &DL = 194 GV->getDataLayout().isDefault() 195 ? getDataLayout() 196 : GV->getDataLayout(); 197 198 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 199 return std::string(FullName); 200 } 201 202 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 203 std::lock_guard<sys::Mutex> locked(lock); 204 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 205 } 206 207 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 208 std::lock_guard<sys::Mutex> locked(lock); 209 210 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 211 212 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 213 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 214 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 215 CurVal = Addr; 216 217 // If we are using the reverse mapping, add it too. 218 if (!EEState.getGlobalAddressReverseMap().empty()) { 219 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 220 assert((!V.empty() || !Name.empty()) && 221 "GlobalMapping already established!"); 222 V = std::string(Name); 223 } 224 } 225 226 void ExecutionEngine::clearAllGlobalMappings() { 227 std::lock_guard<sys::Mutex> locked(lock); 228 229 EEState.getGlobalAddressMap().clear(); 230 EEState.getGlobalAddressReverseMap().clear(); 231 } 232 233 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 234 std::lock_guard<sys::Mutex> locked(lock); 235 236 for (GlobalObject &GO : M->global_objects()) 237 EEState.RemoveMapping(getMangledName(&GO)); 238 } 239 240 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 241 void *Addr) { 242 std::lock_guard<sys::Mutex> locked(lock); 243 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 244 } 245 246 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 247 std::lock_guard<sys::Mutex> locked(lock); 248 249 ExecutionEngineState::GlobalAddressMapTy &Map = 250 EEState.getGlobalAddressMap(); 251 252 // Deleting from the mapping? 253 if (!Addr) 254 return EEState.RemoveMapping(Name); 255 256 uint64_t &CurVal = Map[Name]; 257 uint64_t OldVal = CurVal; 258 259 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 260 EEState.getGlobalAddressReverseMap().erase(CurVal); 261 CurVal = Addr; 262 263 // If we are using the reverse mapping, add it too. 264 if (!EEState.getGlobalAddressReverseMap().empty()) { 265 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 266 assert((!V.empty() || !Name.empty()) && 267 "GlobalMapping already established!"); 268 V = std::string(Name); 269 } 270 return OldVal; 271 } 272 273 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 274 std::lock_guard<sys::Mutex> locked(lock); 275 uint64_t Address = 0; 276 ExecutionEngineState::GlobalAddressMapTy::iterator I = 277 EEState.getGlobalAddressMap().find(S); 278 if (I != EEState.getGlobalAddressMap().end()) 279 Address = I->second; 280 return Address; 281 } 282 283 284 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 285 std::lock_guard<sys::Mutex> locked(lock); 286 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 287 return Address; 288 return nullptr; 289 } 290 291 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 292 std::lock_guard<sys::Mutex> locked(lock); 293 return getPointerToGlobalIfAvailable(getMangledName(GV)); 294 } 295 296 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 297 std::lock_guard<sys::Mutex> locked(lock); 298 299 // If we haven't computed the reverse mapping yet, do so first. 300 if (EEState.getGlobalAddressReverseMap().empty()) { 301 for (ExecutionEngineState::GlobalAddressMapTy::iterator 302 I = EEState.getGlobalAddressMap().begin(), 303 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 304 StringRef Name = I->first(); 305 uint64_t Addr = I->second; 306 EEState.getGlobalAddressReverseMap().insert( 307 std::make_pair(Addr, std::string(Name))); 308 } 309 } 310 311 std::map<uint64_t, std::string>::iterator I = 312 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 313 314 if (I != EEState.getGlobalAddressReverseMap().end()) { 315 StringRef Name = I->second; 316 for (const auto &M : Modules) 317 if (GlobalValue *GV = M->getNamedValue(Name)) 318 return GV; 319 } 320 return nullptr; 321 } 322 323 namespace { 324 class ArgvArray { 325 std::unique_ptr<char[]> Array; 326 std::vector<std::unique_ptr<char[]>> Values; 327 public: 328 /// Turn a vector of strings into a nice argv style array of pointers to null 329 /// terminated strings. 330 void *reset(LLVMContext &C, ExecutionEngine *EE, 331 const std::vector<std::string> &InputArgv); 332 }; 333 } // anonymous namespace 334 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 335 const std::vector<std::string> &InputArgv) { 336 Values.clear(); // Free the old contents. 337 Values.reserve(InputArgv.size()); 338 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 339 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize); 340 341 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); 342 Type *SBytePtr = PointerType::getUnqual(C); 343 344 for (unsigned i = 0; i != InputArgv.size(); ++i) { 345 unsigned Size = InputArgv[i].size()+1; 346 auto Dest = std::make_unique<char[]>(Size); 347 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() 348 << "\n"); 349 350 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 351 Dest[Size-1] = 0; 352 353 // Endian safe: Array[i] = (PointerTy)Dest; 354 EE->StoreValueToMemory(PTOGV(Dest.get()), 355 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 356 Values.push_back(std::move(Dest)); 357 } 358 359 // Null terminate it 360 EE->StoreValueToMemory(PTOGV(nullptr), 361 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 362 SBytePtr); 363 return Array.get(); 364 } 365 366 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 367 bool isDtors) { 368 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); 369 GlobalVariable *GV = module.getNamedGlobal(Name); 370 371 // If this global has internal linkage, or if it has a use, then it must be 372 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 373 // this is the case, don't execute any of the global ctors, __main will do 374 // it. 375 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 376 377 // Should be an array of '{ i32, void ()* }' structs. The first value is 378 // the init priority, which we ignore. 379 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 380 if (!InitList) 381 return; 382 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 383 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 384 if (!CS) continue; 385 386 Constant *FP = CS->getOperand(1); 387 if (FP->isNullValue()) 388 continue; // Found a sentinel value, ignore. 389 390 // Strip off constant expression casts. 391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 392 if (CE->isCast()) 393 FP = CE->getOperand(0); 394 395 // Execute the ctor/dtor function! 396 if (Function *F = dyn_cast<Function>(FP)) 397 runFunction(F, {}); 398 399 // FIXME: It is marginally lame that we just do nothing here if we see an 400 // entry we don't recognize. It might not be unreasonable for the verifier 401 // to not even allow this and just assert here. 402 } 403 } 404 405 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 406 // Execute global ctors/dtors for each module in the program. 407 for (std::unique_ptr<Module> &M : Modules) 408 runStaticConstructorsDestructors(*M, isDtors); 409 } 410 411 #ifndef NDEBUG 412 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 413 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 414 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 415 for (unsigned i = 0; i < PtrSize; ++i) 416 if (*(i + (uint8_t*)Loc)) 417 return false; 418 return true; 419 } 420 #endif 421 422 int ExecutionEngine::runFunctionAsMain(Function *Fn, 423 const std::vector<std::string> &argv, 424 const char * const * envp) { 425 std::vector<GenericValue> GVArgs; 426 GenericValue GVArgc; 427 GVArgc.IntVal = APInt(32, argv.size()); 428 429 // Check main() type 430 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 431 FunctionType *FTy = Fn->getFunctionType(); 432 Type *PPInt8Ty = PointerType::get(Fn->getContext(), 0); 433 434 // Check the argument types. 435 if (NumArgs > 3) 436 report_fatal_error("Invalid number of arguments of main() supplied"); 437 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 438 report_fatal_error("Invalid type for third argument of main() supplied"); 439 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 440 report_fatal_error("Invalid type for second argument of main() supplied"); 441 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 442 report_fatal_error("Invalid type for first argument of main() supplied"); 443 if (!FTy->getReturnType()->isIntegerTy() && 444 !FTy->getReturnType()->isVoidTy()) 445 report_fatal_error("Invalid return type of main() supplied"); 446 447 ArgvArray CArgv; 448 ArgvArray CEnv; 449 if (NumArgs) { 450 GVArgs.push_back(GVArgc); // Arg #0 = argc. 451 if (NumArgs > 1) { 452 // Arg #1 = argv. 453 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 454 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 455 "argv[0] was null after CreateArgv"); 456 if (NumArgs > 2) { 457 std::vector<std::string> EnvVars; 458 for (unsigned i = 0; envp[i]; ++i) 459 EnvVars.emplace_back(envp[i]); 460 // Arg #2 = envp. 461 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 462 } 463 } 464 } 465 466 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 467 } 468 469 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 470 471 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 472 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 473 OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) { 474 // IR module verification is enabled by default in debug builds, and disabled 475 // by default in release builds. 476 #ifndef NDEBUG 477 VerifyModules = true; 478 #else 479 VerifyModules = false; 480 #endif 481 } 482 483 EngineBuilder::~EngineBuilder() = default; 484 485 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 486 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 487 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 488 MemMgr = SharedMM; 489 Resolver = SharedMM; 490 return *this; 491 } 492 493 EngineBuilder& 494 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 495 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 496 return *this; 497 } 498 499 EngineBuilder & 500 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { 501 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); 502 return *this; 503 } 504 505 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 506 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 507 508 // Make sure we can resolve symbols in the program as well. The zero arg 509 // to the function tells DynamicLibrary to load the program, not a library. 510 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 511 return nullptr; 512 513 // If the user specified a memory manager but didn't specify which engine to 514 // create, we assume they only want the JIT, and we fail if they only want 515 // the interpreter. 516 if (MemMgr) { 517 if (WhichEngine & EngineKind::JIT) 518 WhichEngine = EngineKind::JIT; 519 else { 520 if (ErrorStr) 521 *ErrorStr = "Cannot create an interpreter with a memory manager."; 522 return nullptr; 523 } 524 } 525 526 // Unless the interpreter was explicitly selected or the JIT is not linked, 527 // try making a JIT. 528 if ((WhichEngine & EngineKind::JIT) && TheTM) { 529 if (!TM->getTarget().hasJIT()) { 530 errs() << "WARNING: This target JIT is not designed for the host" 531 << " you are running. If bad things happen, please choose" 532 << " a different -march switch.\n"; 533 } 534 535 ExecutionEngine *EE = nullptr; 536 if (ExecutionEngine::MCJITCtor) 537 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 538 std::move(Resolver), std::move(TheTM)); 539 540 if (EE) { 541 EE->setVerifyModules(VerifyModules); 542 return EE; 543 } 544 } 545 546 // If we can't make a JIT and we didn't request one specifically, try making 547 // an interpreter instead. 548 if (WhichEngine & EngineKind::Interpreter) { 549 if (ExecutionEngine::InterpCtor) 550 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 551 if (ErrorStr) 552 *ErrorStr = "Interpreter has not been linked in."; 553 return nullptr; 554 } 555 556 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 557 if (ErrorStr) 558 *ErrorStr = "JIT has not been linked in."; 559 } 560 561 return nullptr; 562 } 563 564 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 565 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 566 return getPointerToFunction(F); 567 568 std::lock_guard<sys::Mutex> locked(lock); 569 if (void* P = getPointerToGlobalIfAvailable(GV)) 570 return P; 571 572 // Global variable might have been added since interpreter started. 573 if (GlobalVariable *GVar = 574 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 575 emitGlobalVariable(GVar); 576 else 577 llvm_unreachable("Global hasn't had an address allocated yet!"); 578 579 return getPointerToGlobalIfAvailable(GV); 580 } 581 582 /// Converts a Constant* into a GenericValue, including handling of 583 /// ConstantExpr values. 584 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 585 // If its undefined, return the garbage. 586 if (isa<UndefValue>(C)) { 587 GenericValue Result; 588 switch (C->getType()->getTypeID()) { 589 default: 590 break; 591 case Type::IntegerTyID: 592 case Type::X86_FP80TyID: 593 case Type::FP128TyID: 594 case Type::PPC_FP128TyID: 595 // Although the value is undefined, we still have to construct an APInt 596 // with the correct bit width. 597 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 598 break; 599 case Type::StructTyID: { 600 // if the whole struct is 'undef' just reserve memory for the value. 601 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 602 unsigned int elemNum = STy->getNumElements(); 603 Result.AggregateVal.resize(elemNum); 604 for (unsigned int i = 0; i < elemNum; ++i) { 605 Type *ElemTy = STy->getElementType(i); 606 if (ElemTy->isIntegerTy()) 607 Result.AggregateVal[i].IntVal = 608 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 609 else if (ElemTy->isAggregateType()) { 610 const Constant *ElemUndef = UndefValue::get(ElemTy); 611 Result.AggregateVal[i] = getConstantValue(ElemUndef); 612 } 613 } 614 } 615 } 616 break; 617 case Type::ScalableVectorTyID: 618 report_fatal_error( 619 "Scalable vector support not yet implemented in ExecutionEngine"); 620 case Type::ArrayTyID: { 621 auto *ArrTy = cast<ArrayType>(C->getType()); 622 Type *ElemTy = ArrTy->getElementType(); 623 unsigned int elemNum = ArrTy->getNumElements(); 624 Result.AggregateVal.resize(elemNum); 625 if (ElemTy->isIntegerTy()) 626 for (unsigned int i = 0; i < elemNum; ++i) 627 Result.AggregateVal[i].IntVal = 628 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 629 break; 630 } 631 case Type::FixedVectorTyID: { 632 // if the whole vector is 'undef' just reserve memory for the value. 633 auto *VTy = cast<FixedVectorType>(C->getType()); 634 Type *ElemTy = VTy->getElementType(); 635 unsigned int elemNum = VTy->getNumElements(); 636 Result.AggregateVal.resize(elemNum); 637 if (ElemTy->isIntegerTy()) 638 for (unsigned int i = 0; i < elemNum; ++i) 639 Result.AggregateVal[i].IntVal = 640 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 641 break; 642 } 643 } 644 return Result; 645 } 646 647 // Otherwise, if the value is a ConstantExpr... 648 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 649 Constant *Op0 = CE->getOperand(0); 650 switch (CE->getOpcode()) { 651 case Instruction::GetElementPtr: { 652 // Compute the index 653 GenericValue Result = getConstantValue(Op0); 654 APInt Offset(DL.getPointerSizeInBits(), 0); 655 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 656 657 char* tmp = (char*) Result.PointerVal; 658 Result = PTOGV(tmp + Offset.getSExtValue()); 659 return Result; 660 } 661 case Instruction::Trunc: { 662 GenericValue GV = getConstantValue(Op0); 663 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 664 GV.IntVal = GV.IntVal.trunc(BitWidth); 665 return GV; 666 } 667 case Instruction::ZExt: { 668 GenericValue GV = getConstantValue(Op0); 669 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 670 GV.IntVal = GV.IntVal.zext(BitWidth); 671 return GV; 672 } 673 case Instruction::SExt: { 674 GenericValue GV = getConstantValue(Op0); 675 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 676 GV.IntVal = GV.IntVal.sext(BitWidth); 677 return GV; 678 } 679 case Instruction::FPTrunc: { 680 // FIXME long double 681 GenericValue GV = getConstantValue(Op0); 682 GV.FloatVal = float(GV.DoubleVal); 683 return GV; 684 } 685 case Instruction::FPExt:{ 686 // FIXME long double 687 GenericValue GV = getConstantValue(Op0); 688 GV.DoubleVal = double(GV.FloatVal); 689 return GV; 690 } 691 case Instruction::UIToFP: { 692 GenericValue GV = getConstantValue(Op0); 693 if (CE->getType()->isFloatTy()) 694 GV.FloatVal = float(GV.IntVal.roundToDouble()); 695 else if (CE->getType()->isDoubleTy()) 696 GV.DoubleVal = GV.IntVal.roundToDouble(); 697 else if (CE->getType()->isX86_FP80Ty()) { 698 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 699 (void)apf.convertFromAPInt(GV.IntVal, 700 false, 701 APFloat::rmNearestTiesToEven); 702 GV.IntVal = apf.bitcastToAPInt(); 703 } 704 return GV; 705 } 706 case Instruction::SIToFP: { 707 GenericValue GV = getConstantValue(Op0); 708 if (CE->getType()->isFloatTy()) 709 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 710 else if (CE->getType()->isDoubleTy()) 711 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 712 else if (CE->getType()->isX86_FP80Ty()) { 713 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 714 (void)apf.convertFromAPInt(GV.IntVal, 715 true, 716 APFloat::rmNearestTiesToEven); 717 GV.IntVal = apf.bitcastToAPInt(); 718 } 719 return GV; 720 } 721 case Instruction::FPToUI: // double->APInt conversion handles sign 722 case Instruction::FPToSI: { 723 GenericValue GV = getConstantValue(Op0); 724 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 725 if (Op0->getType()->isFloatTy()) 726 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 727 else if (Op0->getType()->isDoubleTy()) 728 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 729 else if (Op0->getType()->isX86_FP80Ty()) { 730 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); 731 uint64_t v; 732 bool ignored; 733 (void)apf.convertToInteger(MutableArrayRef(v), BitWidth, 734 CE->getOpcode()==Instruction::FPToSI, 735 APFloat::rmTowardZero, &ignored); 736 GV.IntVal = v; // endian? 737 } 738 return GV; 739 } 740 case Instruction::PtrToInt: { 741 GenericValue GV = getConstantValue(Op0); 742 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 743 assert(PtrWidth <= 64 && "Bad pointer width"); 744 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 745 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 746 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 747 return GV; 748 } 749 case Instruction::IntToPtr: { 750 GenericValue GV = getConstantValue(Op0); 751 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 752 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 753 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 754 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 755 return GV; 756 } 757 case Instruction::BitCast: { 758 GenericValue GV = getConstantValue(Op0); 759 Type* DestTy = CE->getType(); 760 switch (Op0->getType()->getTypeID()) { 761 default: llvm_unreachable("Invalid bitcast operand"); 762 case Type::IntegerTyID: 763 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 764 if (DestTy->isFloatTy()) 765 GV.FloatVal = GV.IntVal.bitsToFloat(); 766 else if (DestTy->isDoubleTy()) 767 GV.DoubleVal = GV.IntVal.bitsToDouble(); 768 break; 769 case Type::FloatTyID: 770 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 771 GV.IntVal = APInt::floatToBits(GV.FloatVal); 772 break; 773 case Type::DoubleTyID: 774 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 775 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 776 break; 777 case Type::PointerTyID: 778 assert(DestTy->isPointerTy() && "Invalid bitcast"); 779 break; // getConstantValue(Op0) above already converted it 780 } 781 return GV; 782 } 783 case Instruction::Add: 784 case Instruction::FAdd: 785 case Instruction::Sub: 786 case Instruction::FSub: 787 case Instruction::Mul: 788 case Instruction::FMul: 789 case Instruction::UDiv: 790 case Instruction::SDiv: 791 case Instruction::URem: 792 case Instruction::SRem: 793 case Instruction::And: 794 case Instruction::Or: 795 case Instruction::Xor: { 796 GenericValue LHS = getConstantValue(Op0); 797 GenericValue RHS = getConstantValue(CE->getOperand(1)); 798 GenericValue GV; 799 switch (CE->getOperand(0)->getType()->getTypeID()) { 800 default: llvm_unreachable("Bad add type!"); 801 case Type::IntegerTyID: 802 switch (CE->getOpcode()) { 803 default: llvm_unreachable("Invalid integer opcode"); 804 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 805 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 806 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 807 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 808 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 809 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 810 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 811 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 812 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 813 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 814 } 815 break; 816 case Type::FloatTyID: 817 switch (CE->getOpcode()) { 818 default: llvm_unreachable("Invalid float opcode"); 819 case Instruction::FAdd: 820 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 821 case Instruction::FSub: 822 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 823 case Instruction::FMul: 824 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 825 case Instruction::FDiv: 826 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 827 case Instruction::FRem: 828 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 829 } 830 break; 831 case Type::DoubleTyID: 832 switch (CE->getOpcode()) { 833 default: llvm_unreachable("Invalid double opcode"); 834 case Instruction::FAdd: 835 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 836 case Instruction::FSub: 837 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 838 case Instruction::FMul: 839 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 840 case Instruction::FDiv: 841 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 842 case Instruction::FRem: 843 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 844 } 845 break; 846 case Type::X86_FP80TyID: 847 case Type::PPC_FP128TyID: 848 case Type::FP128TyID: { 849 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 850 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 851 switch (CE->getOpcode()) { 852 default: llvm_unreachable("Invalid long double opcode"); 853 case Instruction::FAdd: 854 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 855 GV.IntVal = apfLHS.bitcastToAPInt(); 856 break; 857 case Instruction::FSub: 858 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 859 APFloat::rmNearestTiesToEven); 860 GV.IntVal = apfLHS.bitcastToAPInt(); 861 break; 862 case Instruction::FMul: 863 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 864 APFloat::rmNearestTiesToEven); 865 GV.IntVal = apfLHS.bitcastToAPInt(); 866 break; 867 case Instruction::FDiv: 868 apfLHS.divide(APFloat(Sem, RHS.IntVal), 869 APFloat::rmNearestTiesToEven); 870 GV.IntVal = apfLHS.bitcastToAPInt(); 871 break; 872 case Instruction::FRem: 873 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 874 GV.IntVal = apfLHS.bitcastToAPInt(); 875 break; 876 } 877 } 878 break; 879 } 880 return GV; 881 } 882 default: 883 break; 884 } 885 886 SmallString<256> Msg; 887 raw_svector_ostream OS(Msg); 888 OS << "ConstantExpr not handled: " << *CE; 889 report_fatal_error(OS.str()); 890 } 891 892 if (auto *TETy = dyn_cast<TargetExtType>(C->getType())) { 893 assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() && 894 "TargetExtType only supports null constant value"); 895 C = Constant::getNullValue(TETy->getLayoutType()); 896 } 897 898 // Otherwise, we have a simple constant. 899 GenericValue Result; 900 switch (C->getType()->getTypeID()) { 901 case Type::FloatTyID: 902 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 903 break; 904 case Type::DoubleTyID: 905 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 906 break; 907 case Type::X86_FP80TyID: 908 case Type::FP128TyID: 909 case Type::PPC_FP128TyID: 910 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 911 break; 912 case Type::IntegerTyID: 913 Result.IntVal = cast<ConstantInt>(C)->getValue(); 914 break; 915 case Type::PointerTyID: 916 while (auto *A = dyn_cast<GlobalAlias>(C)) { 917 C = A->getAliasee(); 918 } 919 if (isa<ConstantPointerNull>(C)) 920 Result.PointerVal = nullptr; 921 else if (const Function *F = dyn_cast<Function>(C)) 922 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 923 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 924 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 925 else 926 llvm_unreachable("Unknown constant pointer type!"); 927 break; 928 case Type::ScalableVectorTyID: 929 report_fatal_error( 930 "Scalable vector support not yet implemented in ExecutionEngine"); 931 case Type::FixedVectorTyID: { 932 unsigned elemNum; 933 Type* ElemTy; 934 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 935 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 936 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 937 938 if (CDV) { 939 elemNum = CDV->getNumElements(); 940 ElemTy = CDV->getElementType(); 941 } else if (CV || CAZ) { 942 auto *VTy = cast<FixedVectorType>(C->getType()); 943 elemNum = VTy->getNumElements(); 944 ElemTy = VTy->getElementType(); 945 } else { 946 llvm_unreachable("Unknown constant vector type!"); 947 } 948 949 Result.AggregateVal.resize(elemNum); 950 // Check if vector holds floats. 951 if(ElemTy->isFloatTy()) { 952 if (CAZ) { 953 GenericValue floatZero; 954 floatZero.FloatVal = 0.f; 955 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 956 floatZero); 957 break; 958 } 959 if(CV) { 960 for (unsigned i = 0; i < elemNum; ++i) 961 if (!isa<UndefValue>(CV->getOperand(i))) 962 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 963 CV->getOperand(i))->getValueAPF().convertToFloat(); 964 break; 965 } 966 if(CDV) 967 for (unsigned i = 0; i < elemNum; ++i) 968 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 969 970 break; 971 } 972 // Check if vector holds doubles. 973 if (ElemTy->isDoubleTy()) { 974 if (CAZ) { 975 GenericValue doubleZero; 976 doubleZero.DoubleVal = 0.0; 977 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 978 doubleZero); 979 break; 980 } 981 if(CV) { 982 for (unsigned i = 0; i < elemNum; ++i) 983 if (!isa<UndefValue>(CV->getOperand(i))) 984 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 985 CV->getOperand(i))->getValueAPF().convertToDouble(); 986 break; 987 } 988 if(CDV) 989 for (unsigned i = 0; i < elemNum; ++i) 990 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 991 992 break; 993 } 994 // Check if vector holds integers. 995 if (ElemTy->isIntegerTy()) { 996 if (CAZ) { 997 GenericValue intZero; 998 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 999 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 1000 intZero); 1001 break; 1002 } 1003 if(CV) { 1004 for (unsigned i = 0; i < elemNum; ++i) 1005 if (!isa<UndefValue>(CV->getOperand(i))) 1006 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 1007 CV->getOperand(i))->getValue(); 1008 else { 1009 Result.AggregateVal[i].IntVal = 1010 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 1011 } 1012 break; 1013 } 1014 if(CDV) 1015 for (unsigned i = 0; i < elemNum; ++i) 1016 Result.AggregateVal[i].IntVal = APInt( 1017 CDV->getElementType()->getPrimitiveSizeInBits(), 1018 CDV->getElementAsInteger(i)); 1019 1020 break; 1021 } 1022 llvm_unreachable("Unknown constant pointer type!"); 1023 } break; 1024 1025 default: 1026 SmallString<256> Msg; 1027 raw_svector_ostream OS(Msg); 1028 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1029 report_fatal_error(OS.str()); 1030 } 1031 1032 return Result; 1033 } 1034 1035 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1036 GenericValue *Ptr, Type *Ty) { 1037 // It is safe to treat TargetExtType as its layout type since the underlying 1038 // bits are only copied and are not inspected. 1039 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 1040 Ty = TETy->getLayoutType(); 1041 1042 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1043 1044 switch (Ty->getTypeID()) { 1045 default: 1046 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1047 break; 1048 case Type::IntegerTyID: 1049 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1050 break; 1051 case Type::FloatTyID: 1052 *((float*)Ptr) = Val.FloatVal; 1053 break; 1054 case Type::DoubleTyID: 1055 *((double*)Ptr) = Val.DoubleVal; 1056 break; 1057 case Type::X86_FP80TyID: 1058 memcpy(static_cast<void *>(Ptr), Val.IntVal.getRawData(), 10); 1059 break; 1060 case Type::PointerTyID: 1061 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1062 if (StoreBytes != sizeof(PointerTy)) 1063 memset(&(Ptr->PointerVal), 0, StoreBytes); 1064 1065 *((PointerTy*)Ptr) = Val.PointerVal; 1066 break; 1067 case Type::FixedVectorTyID: 1068 case Type::ScalableVectorTyID: 1069 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1070 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1071 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1072 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1073 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1074 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1075 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1076 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1077 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1078 } 1079 } 1080 break; 1081 } 1082 1083 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1084 // Host and target are different endian - reverse the stored bytes. 1085 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1086 } 1087 1088 /// FIXME: document 1089 /// 1090 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1091 GenericValue *Ptr, 1092 Type *Ty) { 1093 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 1094 Ty = TETy->getLayoutType(); 1095 1096 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1097 1098 switch (Ty->getTypeID()) { 1099 case Type::IntegerTyID: 1100 // An APInt with all words initially zero. 1101 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1102 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1103 break; 1104 case Type::FloatTyID: 1105 Result.FloatVal = *((float*)Ptr); 1106 break; 1107 case Type::DoubleTyID: 1108 Result.DoubleVal = *((double*)Ptr); 1109 break; 1110 case Type::PointerTyID: 1111 Result.PointerVal = *((PointerTy*)Ptr); 1112 break; 1113 case Type::X86_FP80TyID: { 1114 // This is endian dependent, but it will only work on x86 anyway. 1115 // FIXME: Will not trap if loading a signaling NaN. 1116 uint64_t y[2]; 1117 memcpy(y, Ptr, 10); 1118 Result.IntVal = APInt(80, y); 1119 break; 1120 } 1121 case Type::ScalableVectorTyID: 1122 report_fatal_error( 1123 "Scalable vector support not yet implemented in ExecutionEngine"); 1124 case Type::FixedVectorTyID: { 1125 auto *VT = cast<FixedVectorType>(Ty); 1126 Type *ElemT = VT->getElementType(); 1127 const unsigned numElems = VT->getNumElements(); 1128 if (ElemT->isFloatTy()) { 1129 Result.AggregateVal.resize(numElems); 1130 for (unsigned i = 0; i < numElems; ++i) 1131 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1132 } 1133 if (ElemT->isDoubleTy()) { 1134 Result.AggregateVal.resize(numElems); 1135 for (unsigned i = 0; i < numElems; ++i) 1136 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1137 } 1138 if (ElemT->isIntegerTy()) { 1139 GenericValue intZero; 1140 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1141 intZero.IntVal = APInt(elemBitWidth, 0); 1142 Result.AggregateVal.resize(numElems, intZero); 1143 for (unsigned i = 0; i < numElems; ++i) 1144 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1145 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1146 } 1147 break; 1148 } 1149 default: 1150 SmallString<256> Msg; 1151 raw_svector_ostream OS(Msg); 1152 OS << "Cannot load value of type " << *Ty << "!"; 1153 report_fatal_error(OS.str()); 1154 } 1155 } 1156 1157 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1158 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1159 LLVM_DEBUG(Init->dump()); 1160 if (isa<UndefValue>(Init)) 1161 return; 1162 1163 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1164 unsigned ElementSize = 1165 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1166 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1167 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1168 return; 1169 } 1170 1171 if (isa<ConstantAggregateZero>(Init)) { 1172 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1173 return; 1174 } 1175 1176 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1177 unsigned ElementSize = 1178 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1179 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1180 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1181 return; 1182 } 1183 1184 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1185 const StructLayout *SL = 1186 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1187 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1188 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1189 return; 1190 } 1191 1192 if (const ConstantDataSequential *CDS = 1193 dyn_cast<ConstantDataSequential>(Init)) { 1194 // CDS is already laid out in host memory order. 1195 StringRef Data = CDS->getRawDataValues(); 1196 memcpy(Addr, Data.data(), Data.size()); 1197 return; 1198 } 1199 1200 if (Init->getType()->isFirstClassType()) { 1201 GenericValue Val = getConstantValue(Init); 1202 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1203 return; 1204 } 1205 1206 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1207 llvm_unreachable("Unknown constant type to initialize memory with!"); 1208 } 1209 1210 /// EmitGlobals - Emit all of the global variables to memory, storing their 1211 /// addresses into GlobalAddress. This must make sure to copy the contents of 1212 /// their initializers into the memory. 1213 void ExecutionEngine::emitGlobals() { 1214 // Loop over all of the global variables in the program, allocating the memory 1215 // to hold them. If there is more than one module, do a prepass over globals 1216 // to figure out how the different modules should link together. 1217 std::map<std::pair<std::string, Type*>, 1218 const GlobalValue*> LinkedGlobalsMap; 1219 1220 if (Modules.size() != 1) { 1221 for (const auto &M : Modules) { 1222 for (const auto &GV : M->globals()) { 1223 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1224 GV.hasAppendingLinkage() || !GV.hasName()) 1225 continue;// Ignore external globals and globals with internal linkage. 1226 1227 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( 1228 std::string(GV.getName()), GV.getType())]; 1229 1230 // If this is the first time we've seen this global, it is the canonical 1231 // version. 1232 if (!GVEntry) { 1233 GVEntry = &GV; 1234 continue; 1235 } 1236 1237 // If the existing global is strong, never replace it. 1238 if (GVEntry->hasExternalLinkage()) 1239 continue; 1240 1241 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1242 // symbol. FIXME is this right for common? 1243 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1244 GVEntry = &GV; 1245 } 1246 } 1247 } 1248 1249 std::vector<const GlobalValue*> NonCanonicalGlobals; 1250 for (const auto &M : Modules) { 1251 for (const auto &GV : M->globals()) { 1252 // In the multi-module case, see what this global maps to. 1253 if (!LinkedGlobalsMap.empty()) { 1254 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( 1255 std::string(GV.getName()), GV.getType())]) { 1256 // If something else is the canonical global, ignore this one. 1257 if (GVEntry != &GV) { 1258 NonCanonicalGlobals.push_back(&GV); 1259 continue; 1260 } 1261 } 1262 } 1263 1264 if (!GV.isDeclaration()) { 1265 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1266 } else { 1267 // External variable reference. Try to use the dynamic loader to 1268 // get a pointer to it. 1269 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 1270 std::string(GV.getName()))) 1271 addGlobalMapping(&GV, SymAddr); 1272 else { 1273 report_fatal_error("Could not resolve external global address: " 1274 +GV.getName()); 1275 } 1276 } 1277 } 1278 1279 // If there are multiple modules, map the non-canonical globals to their 1280 // canonical location. 1281 if (!NonCanonicalGlobals.empty()) { 1282 for (const GlobalValue *GV : NonCanonicalGlobals) { 1283 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( 1284 std::string(GV->getName()), GV->getType())]; 1285 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1286 assert(Ptr && "Canonical global wasn't codegen'd!"); 1287 addGlobalMapping(GV, Ptr); 1288 } 1289 } 1290 1291 // Now that all of the globals are set up in memory, loop through them all 1292 // and initialize their contents. 1293 for (const auto &GV : M->globals()) { 1294 if (!GV.isDeclaration()) { 1295 if (!LinkedGlobalsMap.empty()) { 1296 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( 1297 std::string(GV.getName()), GV.getType())]) 1298 if (GVEntry != &GV) // Not the canonical variable. 1299 continue; 1300 } 1301 emitGlobalVariable(&GV); 1302 } 1303 } 1304 } 1305 } 1306 1307 // EmitGlobalVariable - This method emits the specified global variable to the 1308 // address specified in GlobalAddresses, or allocates new memory if it's not 1309 // already in the map. 1310 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { 1311 void *GA = getPointerToGlobalIfAvailable(GV); 1312 1313 if (!GA) { 1314 // If it's not already specified, allocate memory for the global. 1315 GA = getMemoryForGV(GV); 1316 1317 // If we failed to allocate memory for this global, return. 1318 if (!GA) return; 1319 1320 addGlobalMapping(GV, GA); 1321 } 1322 1323 // Don't initialize if it's thread local, let the client do it. 1324 if (!GV->isThreadLocal()) 1325 InitializeMemory(GV->getInitializer(), GA); 1326 1327 Type *ElTy = GV->getValueType(); 1328 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1329 NumInitBytes += (unsigned)GVSize; 1330 ++NumGlobals; 1331 } 1332