1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/DynamicLibrary.h" 30 #include "llvm/System/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(ModuleProvider *P) 50 : EEState(*this), 51 LazyFunctionCreator(0) { 52 LazyCompilationDisabled = false; 53 GVCompilationDisabled = false; 54 SymbolSearchingDisabled = false; 55 DlsymStubsEnabled = false; 56 Modules.push_back(P); 57 assert(P && "ModuleProvider is null?"); 58 } 59 60 ExecutionEngine::~ExecutionEngine() { 61 clearAllGlobalMappings(); 62 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 63 delete Modules[i]; 64 } 65 66 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 67 const Type *ElTy = GV->getType()->getElementType(); 68 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 69 return new char[GVSize]; 70 } 71 72 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 73 /// Relases the Module from the ModuleProvider, materializing it in the 74 /// process, and returns the materialized Module. 75 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 76 std::string *ErrInfo) { 77 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 78 E = Modules.end(); I != E; ++I) { 79 ModuleProvider *MP = *I; 80 if (MP == P) { 81 Modules.erase(I); 82 clearGlobalMappingsFromModule(MP->getModule()); 83 return MP->releaseModule(ErrInfo); 84 } 85 } 86 return NULL; 87 } 88 89 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 90 /// and deletes the ModuleProvider and owned Module. Avoids materializing 91 /// the underlying module. 92 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 93 std::string *ErrInfo) { 94 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 95 E = Modules.end(); I != E; ++I) { 96 ModuleProvider *MP = *I; 97 if (MP == P) { 98 Modules.erase(I); 99 clearGlobalMappingsFromModule(MP->getModule()); 100 delete MP; 101 return; 102 } 103 } 104 } 105 106 /// FindFunctionNamed - Search all of the active modules to find the one that 107 /// defines FnName. This is very slow operation and shouldn't be used for 108 /// general code. 109 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 110 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 111 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 112 return F; 113 } 114 return 0; 115 } 116 117 118 void *ExecutionEngineState::RemoveMapping( 119 const MutexGuard &, const GlobalValue *ToUnmap) { 120 std::map<MapUpdatingCVH, void *>::iterator I = 121 GlobalAddressMap.find(getVH(ToUnmap)); 122 void *OldVal; 123 if (I == GlobalAddressMap.end()) 124 OldVal = 0; 125 else { 126 OldVal = I->second; 127 GlobalAddressMap.erase(I); 128 } 129 130 GlobalAddressReverseMap.erase(OldVal); 131 return OldVal; 132 } 133 134 /// addGlobalMapping - Tell the execution engine that the specified global is 135 /// at the specified location. This is used internally as functions are JIT'd 136 /// and as global variables are laid out in memory. It can and should also be 137 /// used by clients of the EE that want to have an LLVM global overlay 138 /// existing data in memory. 139 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 140 MutexGuard locked(lock); 141 142 DEBUG(errs() << "JIT: Map \'" << GV->getName() 143 << "\' to [" << Addr << "]\n";); 144 void *&CurVal = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)]; 145 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 146 CurVal = Addr; 147 148 // If we are using the reverse mapping, add it too 149 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 150 AssertingVH<const GlobalValue> &V = 151 EEState.getGlobalAddressReverseMap(locked)[Addr]; 152 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 153 V = GV; 154 } 155 } 156 157 /// clearAllGlobalMappings - Clear all global mappings and start over again 158 /// use in dynamic compilation scenarios when you want to move globals 159 void ExecutionEngine::clearAllGlobalMappings() { 160 MutexGuard locked(lock); 161 162 EEState.getGlobalAddressMap(locked).clear(); 163 EEState.getGlobalAddressReverseMap(locked).clear(); 164 } 165 166 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 167 /// particular module, because it has been removed from the JIT. 168 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 169 MutexGuard locked(lock); 170 171 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 172 EEState.RemoveMapping(locked, FI); 173 } 174 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 175 GI != GE; ++GI) { 176 EEState.RemoveMapping(locked, GI); 177 } 178 } 179 180 /// updateGlobalMapping - Replace an existing mapping for GV with a new 181 /// address. This updates both maps as required. If "Addr" is null, the 182 /// entry for the global is removed from the mappings. 183 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 184 MutexGuard locked(lock); 185 186 std::map<ExecutionEngineState::MapUpdatingCVH, void *> &Map = 187 EEState.getGlobalAddressMap(locked); 188 189 // Deleting from the mapping? 190 if (Addr == 0) { 191 return EEState.RemoveMapping(locked, GV); 192 } 193 194 void *&CurVal = Map[EEState.getVH(GV)]; 195 void *OldVal = CurVal; 196 197 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 198 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 199 CurVal = Addr; 200 201 // If we are using the reverse mapping, add it too 202 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 203 AssertingVH<const GlobalValue> &V = 204 EEState.getGlobalAddressReverseMap(locked)[Addr]; 205 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 206 V = GV; 207 } 208 return OldVal; 209 } 210 211 /// getPointerToGlobalIfAvailable - This returns the address of the specified 212 /// global value if it is has already been codegen'd, otherwise it returns null. 213 /// 214 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 215 MutexGuard locked(lock); 216 217 std::map<ExecutionEngineState::MapUpdatingCVH, void*>::iterator I = 218 EEState.getGlobalAddressMap(locked).find(EEState.getVH(GV)); 219 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 220 } 221 222 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 223 /// at the specified address. 224 /// 225 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 226 MutexGuard locked(lock); 227 228 // If we haven't computed the reverse mapping yet, do so first. 229 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 230 for (std::map<ExecutionEngineState::MapUpdatingCVH, void *>::iterator 231 I = EEState.getGlobalAddressMap(locked).begin(), 232 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 233 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 234 I->first)); 235 } 236 237 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 238 EEState.getGlobalAddressReverseMap(locked).find(Addr); 239 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 240 } 241 242 // CreateArgv - Turn a vector of strings into a nice argv style array of 243 // pointers to null terminated strings. 244 // 245 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 246 const std::vector<std::string> &InputArgv) { 247 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 248 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 249 250 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); 251 const Type *SBytePtr = Type::getInt8PtrTy(C); 252 253 for (unsigned i = 0; i != InputArgv.size(); ++i) { 254 unsigned Size = InputArgv[i].size()+1; 255 char *Dest = new char[Size]; 256 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 257 258 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 259 Dest[Size-1] = 0; 260 261 // Endian safe: Result[i] = (PointerTy)Dest; 262 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 263 SBytePtr); 264 } 265 266 // Null terminate it 267 EE->StoreValueToMemory(PTOGV(0), 268 (GenericValue*)(Result+InputArgv.size()*PtrSize), 269 SBytePtr); 270 return Result; 271 } 272 273 274 /// runStaticConstructorsDestructors - This method is used to execute all of 275 /// the static constructors or destructors for a module, depending on the 276 /// value of isDtors. 277 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 278 bool isDtors) { 279 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 280 281 // Execute global ctors/dtors for each module in the program. 282 283 GlobalVariable *GV = module->getNamedGlobal(Name); 284 285 // If this global has internal linkage, or if it has a use, then it must be 286 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 287 // this is the case, don't execute any of the global ctors, __main will do 288 // it. 289 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 290 291 // Should be an array of '{ int, void ()* }' structs. The first value is 292 // the init priority, which we ignore. 293 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 294 if (!InitList) return; 295 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 296 if (ConstantStruct *CS = 297 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 298 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 299 300 Constant *FP = CS->getOperand(1); 301 if (FP->isNullValue()) 302 break; // Found a null terminator, exit. 303 304 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 305 if (CE->isCast()) 306 FP = CE->getOperand(0); 307 if (Function *F = dyn_cast<Function>(FP)) { 308 // Execute the ctor/dtor function! 309 runFunction(F, std::vector<GenericValue>()); 310 } 311 } 312 } 313 314 /// runStaticConstructorsDestructors - This method is used to execute all of 315 /// the static constructors or destructors for a program, depending on the 316 /// value of isDtors. 317 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 318 // Execute global ctors/dtors for each module in the program. 319 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 320 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 321 } 322 323 #ifndef NDEBUG 324 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 325 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 326 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 327 for (unsigned i = 0; i < PtrSize; ++i) 328 if (*(i + (uint8_t*)Loc)) 329 return false; 330 return true; 331 } 332 #endif 333 334 /// runFunctionAsMain - This is a helper function which wraps runFunction to 335 /// handle the common task of starting up main with the specified argc, argv, 336 /// and envp parameters. 337 int ExecutionEngine::runFunctionAsMain(Function *Fn, 338 const std::vector<std::string> &argv, 339 const char * const * envp) { 340 std::vector<GenericValue> GVArgs; 341 GenericValue GVArgc; 342 GVArgc.IntVal = APInt(32, argv.size()); 343 344 // Check main() type 345 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 346 const FunctionType *FTy = Fn->getFunctionType(); 347 const Type* PPInt8Ty = 348 PointerType::getUnqual(PointerType::getUnqual( 349 Type::getInt8Ty(Fn->getContext()))); 350 switch (NumArgs) { 351 case 3: 352 if (FTy->getParamType(2) != PPInt8Ty) { 353 llvm_report_error("Invalid type for third argument of main() supplied"); 354 } 355 // FALLS THROUGH 356 case 2: 357 if (FTy->getParamType(1) != PPInt8Ty) { 358 llvm_report_error("Invalid type for second argument of main() supplied"); 359 } 360 // FALLS THROUGH 361 case 1: 362 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 363 llvm_report_error("Invalid type for first argument of main() supplied"); 364 } 365 // FALLS THROUGH 366 case 0: 367 if (!isa<IntegerType>(FTy->getReturnType()) && 368 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 369 llvm_report_error("Invalid return type of main() supplied"); 370 } 371 break; 372 default: 373 llvm_report_error("Invalid number of arguments of main() supplied"); 374 } 375 376 if (NumArgs) { 377 GVArgs.push_back(GVArgc); // Arg #0 = argc. 378 if (NumArgs > 1) { 379 // Arg #1 = argv. 380 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 381 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 382 "argv[0] was null after CreateArgv"); 383 if (NumArgs > 2) { 384 std::vector<std::string> EnvVars; 385 for (unsigned i = 0; envp[i]; ++i) 386 EnvVars.push_back(envp[i]); 387 // Arg #2 = envp. 388 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 389 } 390 } 391 } 392 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 393 } 394 395 /// If possible, create a JIT, unless the caller specifically requests an 396 /// Interpreter or there's an error. If even an Interpreter cannot be created, 397 /// NULL is returned. 398 /// 399 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 400 bool ForceInterpreter, 401 std::string *ErrorStr, 402 CodeGenOpt::Level OptLevel, 403 bool GVsWithCode) { 404 return EngineBuilder(MP) 405 .setEngineKind(ForceInterpreter 406 ? EngineKind::Interpreter 407 : EngineKind::JIT) 408 .setErrorStr(ErrorStr) 409 .setOptLevel(OptLevel) 410 .setAllocateGVsWithCode(GVsWithCode) 411 .create(); 412 } 413 414 ExecutionEngine *ExecutionEngine::create(Module *M) { 415 return EngineBuilder(M).create(); 416 } 417 418 /// EngineBuilder - Overloaded constructor that automatically creates an 419 /// ExistingModuleProvider for an existing module. 420 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 421 InitEngine(); 422 } 423 424 ExecutionEngine *EngineBuilder::create() { 425 // Make sure we can resolve symbols in the program as well. The zero arg 426 // to the function tells DynamicLibrary to load the program, not a library. 427 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 428 return 0; 429 430 // If the user specified a memory manager but didn't specify which engine to 431 // create, we assume they only want the JIT, and we fail if they only want 432 // the interpreter. 433 if (JMM) { 434 if (WhichEngine & EngineKind::JIT) 435 WhichEngine = EngineKind::JIT; 436 else { 437 if (ErrorStr) 438 *ErrorStr = "Cannot create an interpreter with a memory manager."; 439 return 0; 440 } 441 } 442 443 // Unless the interpreter was explicitly selected or the JIT is not linked, 444 // try making a JIT. 445 if (WhichEngine & EngineKind::JIT) { 446 if (ExecutionEngine::JITCtor) { 447 ExecutionEngine *EE = 448 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 449 AllocateGVsWithCode); 450 if (EE) return EE; 451 } 452 } 453 454 // If we can't make a JIT and we didn't request one specifically, try making 455 // an interpreter instead. 456 if (WhichEngine & EngineKind::Interpreter) { 457 if (ExecutionEngine::InterpCtor) 458 return ExecutionEngine::InterpCtor(MP, ErrorStr); 459 if (ErrorStr) 460 *ErrorStr = "Interpreter has not been linked in."; 461 return 0; 462 } 463 464 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 465 if (ErrorStr) 466 *ErrorStr = "JIT has not been linked in."; 467 } 468 return 0; 469 } 470 471 /// getPointerToGlobal - This returns the address of the specified global 472 /// value. This may involve code generation if it's a function. 473 /// 474 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 475 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 476 return getPointerToFunction(F); 477 478 MutexGuard locked(lock); 479 void *p = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)]; 480 if (p) 481 return p; 482 483 // Global variable might have been added since interpreter started. 484 if (GlobalVariable *GVar = 485 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 486 EmitGlobalVariable(GVar); 487 else 488 llvm_unreachable("Global hasn't had an address allocated yet!"); 489 return EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)]; 490 } 491 492 /// This function converts a Constant* into a GenericValue. The interesting 493 /// part is if C is a ConstantExpr. 494 /// @brief Get a GenericValue for a Constant* 495 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 496 // If its undefined, return the garbage. 497 if (isa<UndefValue>(C)) 498 return GenericValue(); 499 500 // If the value is a ConstantExpr 501 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 502 Constant *Op0 = CE->getOperand(0); 503 switch (CE->getOpcode()) { 504 case Instruction::GetElementPtr: { 505 // Compute the index 506 GenericValue Result = getConstantValue(Op0); 507 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 508 uint64_t Offset = 509 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 510 511 char* tmp = (char*) Result.PointerVal; 512 Result = PTOGV(tmp + Offset); 513 return Result; 514 } 515 case Instruction::Trunc: { 516 GenericValue GV = getConstantValue(Op0); 517 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 518 GV.IntVal = GV.IntVal.trunc(BitWidth); 519 return GV; 520 } 521 case Instruction::ZExt: { 522 GenericValue GV = getConstantValue(Op0); 523 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 524 GV.IntVal = GV.IntVal.zext(BitWidth); 525 return GV; 526 } 527 case Instruction::SExt: { 528 GenericValue GV = getConstantValue(Op0); 529 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 530 GV.IntVal = GV.IntVal.sext(BitWidth); 531 return GV; 532 } 533 case Instruction::FPTrunc: { 534 // FIXME long double 535 GenericValue GV = getConstantValue(Op0); 536 GV.FloatVal = float(GV.DoubleVal); 537 return GV; 538 } 539 case Instruction::FPExt:{ 540 // FIXME long double 541 GenericValue GV = getConstantValue(Op0); 542 GV.DoubleVal = double(GV.FloatVal); 543 return GV; 544 } 545 case Instruction::UIToFP: { 546 GenericValue GV = getConstantValue(Op0); 547 if (CE->getType()->isFloatTy()) 548 GV.FloatVal = float(GV.IntVal.roundToDouble()); 549 else if (CE->getType()->isDoubleTy()) 550 GV.DoubleVal = GV.IntVal.roundToDouble(); 551 else if (CE->getType()->isX86_FP80Ty()) { 552 const uint64_t zero[] = {0, 0}; 553 APFloat apf = APFloat(APInt(80, 2, zero)); 554 (void)apf.convertFromAPInt(GV.IntVal, 555 false, 556 APFloat::rmNearestTiesToEven); 557 GV.IntVal = apf.bitcastToAPInt(); 558 } 559 return GV; 560 } 561 case Instruction::SIToFP: { 562 GenericValue GV = getConstantValue(Op0); 563 if (CE->getType()->isFloatTy()) 564 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 565 else if (CE->getType()->isDoubleTy()) 566 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 567 else if (CE->getType()->isX86_FP80Ty()) { 568 const uint64_t zero[] = { 0, 0}; 569 APFloat apf = APFloat(APInt(80, 2, zero)); 570 (void)apf.convertFromAPInt(GV.IntVal, 571 true, 572 APFloat::rmNearestTiesToEven); 573 GV.IntVal = apf.bitcastToAPInt(); 574 } 575 return GV; 576 } 577 case Instruction::FPToUI: // double->APInt conversion handles sign 578 case Instruction::FPToSI: { 579 GenericValue GV = getConstantValue(Op0); 580 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 581 if (Op0->getType()->isFloatTy()) 582 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 583 else if (Op0->getType()->isDoubleTy()) 584 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 585 else if (Op0->getType()->isX86_FP80Ty()) { 586 APFloat apf = APFloat(GV.IntVal); 587 uint64_t v; 588 bool ignored; 589 (void)apf.convertToInteger(&v, BitWidth, 590 CE->getOpcode()==Instruction::FPToSI, 591 APFloat::rmTowardZero, &ignored); 592 GV.IntVal = v; // endian? 593 } 594 return GV; 595 } 596 case Instruction::PtrToInt: { 597 GenericValue GV = getConstantValue(Op0); 598 uint32_t PtrWidth = TD->getPointerSizeInBits(); 599 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 600 return GV; 601 } 602 case Instruction::IntToPtr: { 603 GenericValue GV = getConstantValue(Op0); 604 uint32_t PtrWidth = TD->getPointerSizeInBits(); 605 if (PtrWidth != GV.IntVal.getBitWidth()) 606 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 607 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 608 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 609 return GV; 610 } 611 case Instruction::BitCast: { 612 GenericValue GV = getConstantValue(Op0); 613 const Type* DestTy = CE->getType(); 614 switch (Op0->getType()->getTypeID()) { 615 default: llvm_unreachable("Invalid bitcast operand"); 616 case Type::IntegerTyID: 617 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 618 if (DestTy->isFloatTy()) 619 GV.FloatVal = GV.IntVal.bitsToFloat(); 620 else if (DestTy->isDoubleTy()) 621 GV.DoubleVal = GV.IntVal.bitsToDouble(); 622 break; 623 case Type::FloatTyID: 624 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 625 "Invalid bitcast"); 626 GV.IntVal.floatToBits(GV.FloatVal); 627 break; 628 case Type::DoubleTyID: 629 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 630 "Invalid bitcast"); 631 GV.IntVal.doubleToBits(GV.DoubleVal); 632 break; 633 case Type::PointerTyID: 634 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 635 break; // getConstantValue(Op0) above already converted it 636 } 637 return GV; 638 } 639 case Instruction::Add: 640 case Instruction::FAdd: 641 case Instruction::Sub: 642 case Instruction::FSub: 643 case Instruction::Mul: 644 case Instruction::FMul: 645 case Instruction::UDiv: 646 case Instruction::SDiv: 647 case Instruction::URem: 648 case Instruction::SRem: 649 case Instruction::And: 650 case Instruction::Or: 651 case Instruction::Xor: { 652 GenericValue LHS = getConstantValue(Op0); 653 GenericValue RHS = getConstantValue(CE->getOperand(1)); 654 GenericValue GV; 655 switch (CE->getOperand(0)->getType()->getTypeID()) { 656 default: llvm_unreachable("Bad add type!"); 657 case Type::IntegerTyID: 658 switch (CE->getOpcode()) { 659 default: llvm_unreachable("Invalid integer opcode"); 660 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 661 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 662 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 663 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 664 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 665 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 666 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 667 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 668 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 669 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 670 } 671 break; 672 case Type::FloatTyID: 673 switch (CE->getOpcode()) { 674 default: llvm_unreachable("Invalid float opcode"); 675 case Instruction::FAdd: 676 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 677 case Instruction::FSub: 678 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 679 case Instruction::FMul: 680 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 681 case Instruction::FDiv: 682 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 683 case Instruction::FRem: 684 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 685 } 686 break; 687 case Type::DoubleTyID: 688 switch (CE->getOpcode()) { 689 default: llvm_unreachable("Invalid double opcode"); 690 case Instruction::FAdd: 691 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 692 case Instruction::FSub: 693 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 694 case Instruction::FMul: 695 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 696 case Instruction::FDiv: 697 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 698 case Instruction::FRem: 699 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 700 } 701 break; 702 case Type::X86_FP80TyID: 703 case Type::PPC_FP128TyID: 704 case Type::FP128TyID: { 705 APFloat apfLHS = APFloat(LHS.IntVal); 706 switch (CE->getOpcode()) { 707 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 708 case Instruction::FAdd: 709 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 710 GV.IntVal = apfLHS.bitcastToAPInt(); 711 break; 712 case Instruction::FSub: 713 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 714 GV.IntVal = apfLHS.bitcastToAPInt(); 715 break; 716 case Instruction::FMul: 717 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 718 GV.IntVal = apfLHS.bitcastToAPInt(); 719 break; 720 case Instruction::FDiv: 721 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 722 GV.IntVal = apfLHS.bitcastToAPInt(); 723 break; 724 case Instruction::FRem: 725 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 726 GV.IntVal = apfLHS.bitcastToAPInt(); 727 break; 728 } 729 } 730 break; 731 } 732 return GV; 733 } 734 default: 735 break; 736 } 737 std::string msg; 738 raw_string_ostream Msg(msg); 739 Msg << "ConstantExpr not handled: " << *CE; 740 llvm_report_error(Msg.str()); 741 } 742 743 GenericValue Result; 744 switch (C->getType()->getTypeID()) { 745 case Type::FloatTyID: 746 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 747 break; 748 case Type::DoubleTyID: 749 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 750 break; 751 case Type::X86_FP80TyID: 752 case Type::FP128TyID: 753 case Type::PPC_FP128TyID: 754 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 755 break; 756 case Type::IntegerTyID: 757 Result.IntVal = cast<ConstantInt>(C)->getValue(); 758 break; 759 case Type::PointerTyID: 760 if (isa<ConstantPointerNull>(C)) 761 Result.PointerVal = 0; 762 else if (const Function *F = dyn_cast<Function>(C)) 763 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 764 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 765 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 766 else 767 llvm_unreachable("Unknown constant pointer type!"); 768 break; 769 default: 770 std::string msg; 771 raw_string_ostream Msg(msg); 772 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 773 llvm_report_error(Msg.str()); 774 } 775 return Result; 776 } 777 778 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 779 /// with the integer held in IntVal. 780 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 781 unsigned StoreBytes) { 782 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 783 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 784 785 if (sys::isLittleEndianHost()) 786 // Little-endian host - the source is ordered from LSB to MSB. Order the 787 // destination from LSB to MSB: Do a straight copy. 788 memcpy(Dst, Src, StoreBytes); 789 else { 790 // Big-endian host - the source is an array of 64 bit words ordered from 791 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 792 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 793 while (StoreBytes > sizeof(uint64_t)) { 794 StoreBytes -= sizeof(uint64_t); 795 // May not be aligned so use memcpy. 796 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 797 Src += sizeof(uint64_t); 798 } 799 800 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 801 } 802 } 803 804 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 805 /// is the address of the memory at which to store Val, cast to GenericValue *. 806 /// It is not a pointer to a GenericValue containing the address at which to 807 /// store Val. 808 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 809 GenericValue *Ptr, const Type *Ty) { 810 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 811 812 switch (Ty->getTypeID()) { 813 case Type::IntegerTyID: 814 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 815 break; 816 case Type::FloatTyID: 817 *((float*)Ptr) = Val.FloatVal; 818 break; 819 case Type::DoubleTyID: 820 *((double*)Ptr) = Val.DoubleVal; 821 break; 822 case Type::X86_FP80TyID: 823 memcpy(Ptr, Val.IntVal.getRawData(), 10); 824 break; 825 case Type::PointerTyID: 826 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 827 if (StoreBytes != sizeof(PointerTy)) 828 memset(Ptr, 0, StoreBytes); 829 830 *((PointerTy*)Ptr) = Val.PointerVal; 831 break; 832 default: 833 errs() << "Cannot store value of type " << *Ty << "!\n"; 834 } 835 836 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 837 // Host and target are different endian - reverse the stored bytes. 838 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 839 } 840 841 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 842 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 843 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 844 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 845 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 846 847 if (sys::isLittleEndianHost()) 848 // Little-endian host - the destination must be ordered from LSB to MSB. 849 // The source is ordered from LSB to MSB: Do a straight copy. 850 memcpy(Dst, Src, LoadBytes); 851 else { 852 // Big-endian - the destination is an array of 64 bit words ordered from 853 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 854 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 855 // a word. 856 while (LoadBytes > sizeof(uint64_t)) { 857 LoadBytes -= sizeof(uint64_t); 858 // May not be aligned so use memcpy. 859 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 860 Dst += sizeof(uint64_t); 861 } 862 863 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 864 } 865 } 866 867 /// FIXME: document 868 /// 869 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 870 GenericValue *Ptr, 871 const Type *Ty) { 872 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 873 874 switch (Ty->getTypeID()) { 875 case Type::IntegerTyID: 876 // An APInt with all words initially zero. 877 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 878 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 879 break; 880 case Type::FloatTyID: 881 Result.FloatVal = *((float*)Ptr); 882 break; 883 case Type::DoubleTyID: 884 Result.DoubleVal = *((double*)Ptr); 885 break; 886 case Type::PointerTyID: 887 Result.PointerVal = *((PointerTy*)Ptr); 888 break; 889 case Type::X86_FP80TyID: { 890 // This is endian dependent, but it will only work on x86 anyway. 891 // FIXME: Will not trap if loading a signaling NaN. 892 uint64_t y[2]; 893 memcpy(y, Ptr, 10); 894 Result.IntVal = APInt(80, 2, y); 895 break; 896 } 897 default: 898 std::string msg; 899 raw_string_ostream Msg(msg); 900 Msg << "Cannot load value of type " << *Ty << "!"; 901 llvm_report_error(Msg.str()); 902 } 903 } 904 905 // InitializeMemory - Recursive function to apply a Constant value into the 906 // specified memory location... 907 // 908 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 909 DEBUG(errs() << "JIT: Initializing " << Addr << " "); 910 DEBUG(Init->dump()); 911 if (isa<UndefValue>(Init)) { 912 return; 913 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 914 unsigned ElementSize = 915 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 916 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 917 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 918 return; 919 } else if (isa<ConstantAggregateZero>(Init)) { 920 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 921 return; 922 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 923 unsigned ElementSize = 924 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 925 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 926 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 927 return; 928 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 929 const StructLayout *SL = 930 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 931 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 932 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 933 return; 934 } else if (Init->getType()->isFirstClassType()) { 935 GenericValue Val = getConstantValue(Init); 936 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 937 return; 938 } 939 940 errs() << "Bad Type: " << *Init->getType() << "\n"; 941 llvm_unreachable("Unknown constant type to initialize memory with!"); 942 } 943 944 /// EmitGlobals - Emit all of the global variables to memory, storing their 945 /// addresses into GlobalAddress. This must make sure to copy the contents of 946 /// their initializers into the memory. 947 /// 948 void ExecutionEngine::emitGlobals() { 949 950 // Loop over all of the global variables in the program, allocating the memory 951 // to hold them. If there is more than one module, do a prepass over globals 952 // to figure out how the different modules should link together. 953 // 954 std::map<std::pair<std::string, const Type*>, 955 const GlobalValue*> LinkedGlobalsMap; 956 957 if (Modules.size() != 1) { 958 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 959 Module &M = *Modules[m]->getModule(); 960 for (Module::const_global_iterator I = M.global_begin(), 961 E = M.global_end(); I != E; ++I) { 962 const GlobalValue *GV = I; 963 if (GV->hasLocalLinkage() || GV->isDeclaration() || 964 GV->hasAppendingLinkage() || !GV->hasName()) 965 continue;// Ignore external globals and globals with internal linkage. 966 967 const GlobalValue *&GVEntry = 968 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 969 970 // If this is the first time we've seen this global, it is the canonical 971 // version. 972 if (!GVEntry) { 973 GVEntry = GV; 974 continue; 975 } 976 977 // If the existing global is strong, never replace it. 978 if (GVEntry->hasExternalLinkage() || 979 GVEntry->hasDLLImportLinkage() || 980 GVEntry->hasDLLExportLinkage()) 981 continue; 982 983 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 984 // symbol. FIXME is this right for common? 985 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 986 GVEntry = GV; 987 } 988 } 989 } 990 991 std::vector<const GlobalValue*> NonCanonicalGlobals; 992 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 993 Module &M = *Modules[m]->getModule(); 994 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 995 I != E; ++I) { 996 // In the multi-module case, see what this global maps to. 997 if (!LinkedGlobalsMap.empty()) { 998 if (const GlobalValue *GVEntry = 999 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1000 // If something else is the canonical global, ignore this one. 1001 if (GVEntry != &*I) { 1002 NonCanonicalGlobals.push_back(I); 1003 continue; 1004 } 1005 } 1006 } 1007 1008 if (!I->isDeclaration()) { 1009 addGlobalMapping(I, getMemoryForGV(I)); 1010 } else { 1011 // External variable reference. Try to use the dynamic loader to 1012 // get a pointer to it. 1013 if (void *SymAddr = 1014 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1015 addGlobalMapping(I, SymAddr); 1016 else { 1017 llvm_report_error("Could not resolve external global address: " 1018 +I->getName()); 1019 } 1020 } 1021 } 1022 1023 // If there are multiple modules, map the non-canonical globals to their 1024 // canonical location. 1025 if (!NonCanonicalGlobals.empty()) { 1026 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1027 const GlobalValue *GV = NonCanonicalGlobals[i]; 1028 const GlobalValue *CGV = 1029 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1030 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1031 assert(Ptr && "Canonical global wasn't codegen'd!"); 1032 addGlobalMapping(GV, Ptr); 1033 } 1034 } 1035 1036 // Now that all of the globals are set up in memory, loop through them all 1037 // and initialize their contents. 1038 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1039 I != E; ++I) { 1040 if (!I->isDeclaration()) { 1041 if (!LinkedGlobalsMap.empty()) { 1042 if (const GlobalValue *GVEntry = 1043 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1044 if (GVEntry != &*I) // Not the canonical variable. 1045 continue; 1046 } 1047 EmitGlobalVariable(I); 1048 } 1049 } 1050 } 1051 } 1052 1053 // EmitGlobalVariable - This method emits the specified global variable to the 1054 // address specified in GlobalAddresses, or allocates new memory if it's not 1055 // already in the map. 1056 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1057 void *GA = getPointerToGlobalIfAvailable(GV); 1058 1059 if (GA == 0) { 1060 // If it's not already specified, allocate memory for the global. 1061 GA = getMemoryForGV(GV); 1062 addGlobalMapping(GV, GA); 1063 } 1064 1065 // Don't initialize if it's thread local, let the client do it. 1066 if (!GV->isThreadLocal()) 1067 InitializeMemory(GV->getInitializer(), GA); 1068 1069 const Type *ElTy = GV->getType()->getElementType(); 1070 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1071 NumInitBytes += (unsigned)GVSize; 1072 ++NumGlobals; 1073 } 1074 1075 ExecutionEngineState::MapUpdatingCVH::MapUpdatingCVH( 1076 ExecutionEngineState &EES, const GlobalValue *GV) 1077 : CallbackVH(const_cast<GlobalValue*>(GV)), EES(EES) {} 1078 1079 void ExecutionEngineState::MapUpdatingCVH::deleted() { 1080 MutexGuard locked(EES.EE.lock); 1081 EES.RemoveMapping(locked, *this); // Destroys *this. 1082 } 1083 1084 void ExecutionEngineState::MapUpdatingCVH::allUsesReplacedWith( 1085 Value *new_value) { 1086 assert(false && "The ExecutionEngine doesn't know how to handle a" 1087 " RAUW on a value it has a global mapping for."); 1088 } 1089