1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/Archive.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Host.h" 33 #include "llvm/Support/MutexGuard.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <cmath> 38 #include <cstring> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jit" 42 43 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 44 STATISTIC(NumGlobals , "Number of global vars initialized"); 45 46 // Pin the vtable to this file. 47 void ObjectCache::anchor() {} 48 void ObjectBuffer::anchor() {} 49 void ObjectBufferStream::anchor() {} 50 51 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 52 Module *M, 53 std::string *ErrorStr, 54 RTDyldMemoryManager *MCJMM, 55 TargetMachine *TM) = nullptr; 56 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 57 std::string *ErrorStr) =nullptr; 58 59 ExecutionEngine::ExecutionEngine(Module *M) 60 : EEState(*this), 61 LazyFunctionCreator(nullptr) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 66 // IR module verification is enabled by default in debug builds, and disabled 67 // by default in release builds. 68 #ifndef NDEBUG 69 VerifyModules = true; 70 #else 71 VerifyModules = false; 72 #endif 73 74 Modules.push_back(M); 75 assert(M && "Module is null?"); 76 } 77 78 ExecutionEngine::~ExecutionEngine() { 79 clearAllGlobalMappings(); 80 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 81 delete Modules[i]; 82 } 83 84 namespace { 85 /// \brief Helper class which uses a value handler to automatically deletes the 86 /// memory block when the GlobalVariable is destroyed. 87 class GVMemoryBlock : public CallbackVH { 88 GVMemoryBlock(const GlobalVariable *GV) 89 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 90 91 public: 92 /// \brief Returns the address the GlobalVariable should be written into. The 93 /// GVMemoryBlock object prefixes that. 94 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 95 Type *ElTy = GV->getType()->getElementType(); 96 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 97 void *RawMemory = ::operator new( 98 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 99 TD.getPreferredAlignment(GV)) 100 + GVSize); 101 new(RawMemory) GVMemoryBlock(GV); 102 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 103 } 104 105 void deleted() override { 106 // We allocated with operator new and with some extra memory hanging off the 107 // end, so don't just delete this. I'm not sure if this is actually 108 // required. 109 this->~GVMemoryBlock(); 110 ::operator delete(this); 111 } 112 }; 113 } // anonymous namespace 114 115 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 116 return GVMemoryBlock::Create(GV, *getDataLayout()); 117 } 118 119 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 120 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 121 } 122 123 void ExecutionEngine::addArchive(std::unique_ptr<object::Archive> A) { 124 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 125 } 126 127 bool ExecutionEngine::removeModule(Module *M) { 128 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 129 E = Modules.end(); I != E; ++I) { 130 Module *Found = *I; 131 if (Found == M) { 132 Modules.erase(I); 133 clearGlobalMappingsFromModule(M); 134 return true; 135 } 136 } 137 return false; 138 } 139 140 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 141 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 142 if (Function *F = Modules[i]->getFunction(FnName)) 143 return F; 144 } 145 return nullptr; 146 } 147 148 149 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 150 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 151 void *OldVal; 152 153 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 154 // GlobalAddressMap. 155 if (I == GlobalAddressMap.end()) 156 OldVal = nullptr; 157 else { 158 OldVal = I->second; 159 GlobalAddressMap.erase(I); 160 } 161 162 GlobalAddressReverseMap.erase(OldVal); 163 return OldVal; 164 } 165 166 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 167 MutexGuard locked(lock); 168 169 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 170 << "\' to [" << Addr << "]\n";); 171 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 172 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 173 CurVal = Addr; 174 175 // If we are using the reverse mapping, add it too. 176 if (!EEState.getGlobalAddressReverseMap().empty()) { 177 AssertingVH<const GlobalValue> &V = 178 EEState.getGlobalAddressReverseMap()[Addr]; 179 assert((!V || !GV) && "GlobalMapping already established!"); 180 V = GV; 181 } 182 } 183 184 void ExecutionEngine::clearAllGlobalMappings() { 185 MutexGuard locked(lock); 186 187 EEState.getGlobalAddressMap().clear(); 188 EEState.getGlobalAddressReverseMap().clear(); 189 } 190 191 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 192 MutexGuard locked(lock); 193 194 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 195 EEState.RemoveMapping(FI); 196 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 197 GI != GE; ++GI) 198 EEState.RemoveMapping(GI); 199 } 200 201 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 202 MutexGuard locked(lock); 203 204 ExecutionEngineState::GlobalAddressMapTy &Map = 205 EEState.getGlobalAddressMap(); 206 207 // Deleting from the mapping? 208 if (!Addr) 209 return EEState.RemoveMapping(GV); 210 211 void *&CurVal = Map[GV]; 212 void *OldVal = CurVal; 213 214 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 215 EEState.getGlobalAddressReverseMap().erase(CurVal); 216 CurVal = Addr; 217 218 // If we are using the reverse mapping, add it too. 219 if (!EEState.getGlobalAddressReverseMap().empty()) { 220 AssertingVH<const GlobalValue> &V = 221 EEState.getGlobalAddressReverseMap()[Addr]; 222 assert((!V || !GV) && "GlobalMapping already established!"); 223 V = GV; 224 } 225 return OldVal; 226 } 227 228 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 229 MutexGuard locked(lock); 230 231 ExecutionEngineState::GlobalAddressMapTy::iterator I = 232 EEState.getGlobalAddressMap().find(GV); 233 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 234 } 235 236 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 237 MutexGuard locked(lock); 238 239 // If we haven't computed the reverse mapping yet, do so first. 240 if (EEState.getGlobalAddressReverseMap().empty()) { 241 for (ExecutionEngineState::GlobalAddressMapTy::iterator 242 I = EEState.getGlobalAddressMap().begin(), 243 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 244 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 245 I->second, I->first)); 246 } 247 248 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 249 EEState.getGlobalAddressReverseMap().find(Addr); 250 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 251 } 252 253 namespace { 254 class ArgvArray { 255 char *Array; 256 std::vector<char*> Values; 257 public: 258 ArgvArray() : Array(nullptr) {} 259 ~ArgvArray() { clear(); } 260 void clear() { 261 delete[] Array; 262 Array = nullptr; 263 for (size_t I = 0, E = Values.size(); I != E; ++I) { 264 delete[] Values[I]; 265 } 266 Values.clear(); 267 } 268 /// Turn a vector of strings into a nice argv style array of pointers to null 269 /// terminated strings. 270 void *reset(LLVMContext &C, ExecutionEngine *EE, 271 const std::vector<std::string> &InputArgv); 272 }; 273 } // anonymous namespace 274 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 275 const std::vector<std::string> &InputArgv) { 276 clear(); // Free the old contents. 277 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 278 Array = new char[(InputArgv.size()+1)*PtrSize]; 279 280 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 281 Type *SBytePtr = Type::getInt8PtrTy(C); 282 283 for (unsigned i = 0; i != InputArgv.size(); ++i) { 284 unsigned Size = InputArgv[i].size()+1; 285 char *Dest = new char[Size]; 286 Values.push_back(Dest); 287 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 288 289 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 290 Dest[Size-1] = 0; 291 292 // Endian safe: Array[i] = (PointerTy)Dest; 293 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 294 SBytePtr); 295 } 296 297 // Null terminate it 298 EE->StoreValueToMemory(PTOGV(nullptr), 299 (GenericValue*)(Array+InputArgv.size()*PtrSize), 300 SBytePtr); 301 return Array; 302 } 303 304 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 305 bool isDtors) { 306 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 307 GlobalVariable *GV = module->getNamedGlobal(Name); 308 309 // If this global has internal linkage, or if it has a use, then it must be 310 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 311 // this is the case, don't execute any of the global ctors, __main will do 312 // it. 313 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 314 315 // Should be an array of '{ i32, void ()* }' structs. The first value is 316 // the init priority, which we ignore. 317 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 318 if (!InitList) 319 return; 320 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 321 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 322 if (!CS) continue; 323 324 Constant *FP = CS->getOperand(1); 325 if (FP->isNullValue()) 326 continue; // Found a sentinal value, ignore. 327 328 // Strip off constant expression casts. 329 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 330 if (CE->isCast()) 331 FP = CE->getOperand(0); 332 333 // Execute the ctor/dtor function! 334 if (Function *F = dyn_cast<Function>(FP)) 335 runFunction(F, std::vector<GenericValue>()); 336 337 // FIXME: It is marginally lame that we just do nothing here if we see an 338 // entry we don't recognize. It might not be unreasonable for the verifier 339 // to not even allow this and just assert here. 340 } 341 } 342 343 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 344 // Execute global ctors/dtors for each module in the program. 345 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 346 runStaticConstructorsDestructors(Modules[i], isDtors); 347 } 348 349 #ifndef NDEBUG 350 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 351 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 352 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 353 for (unsigned i = 0; i < PtrSize; ++i) 354 if (*(i + (uint8_t*)Loc)) 355 return false; 356 return true; 357 } 358 #endif 359 360 int ExecutionEngine::runFunctionAsMain(Function *Fn, 361 const std::vector<std::string> &argv, 362 const char * const * envp) { 363 std::vector<GenericValue> GVArgs; 364 GenericValue GVArgc; 365 GVArgc.IntVal = APInt(32, argv.size()); 366 367 // Check main() type 368 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 369 FunctionType *FTy = Fn->getFunctionType(); 370 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 371 372 // Check the argument types. 373 if (NumArgs > 3) 374 report_fatal_error("Invalid number of arguments of main() supplied"); 375 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 376 report_fatal_error("Invalid type for third argument of main() supplied"); 377 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 378 report_fatal_error("Invalid type for second argument of main() supplied"); 379 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 380 report_fatal_error("Invalid type for first argument of main() supplied"); 381 if (!FTy->getReturnType()->isIntegerTy() && 382 !FTy->getReturnType()->isVoidTy()) 383 report_fatal_error("Invalid return type of main() supplied"); 384 385 ArgvArray CArgv; 386 ArgvArray CEnv; 387 if (NumArgs) { 388 GVArgs.push_back(GVArgc); // Arg #0 = argc. 389 if (NumArgs > 1) { 390 // Arg #1 = argv. 391 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 392 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 393 "argv[0] was null after CreateArgv"); 394 if (NumArgs > 2) { 395 std::vector<std::string> EnvVars; 396 for (unsigned i = 0; envp[i]; ++i) 397 EnvVars.push_back(envp[i]); 398 // Arg #2 = envp. 399 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 400 } 401 } 402 } 403 404 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 405 } 406 407 void EngineBuilder::InitEngine() { 408 WhichEngine = EngineKind::Either; 409 ErrorStr = nullptr; 410 OptLevel = CodeGenOpt::Default; 411 MCJMM = nullptr; 412 JMM = nullptr; 413 Options = TargetOptions(); 414 RelocModel = Reloc::Default; 415 CMModel = CodeModel::JITDefault; 416 417 // IR module verification is enabled by default in debug builds, and disabled 418 // by default in release builds. 419 #ifndef NDEBUG 420 VerifyModules = true; 421 #else 422 VerifyModules = false; 423 #endif 424 } 425 426 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 427 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 428 429 // Make sure we can resolve symbols in the program as well. The zero arg 430 // to the function tells DynamicLibrary to load the program, not a library. 431 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 432 return nullptr; 433 434 assert(!(JMM && MCJMM)); 435 436 // If the user specified a memory manager but didn't specify which engine to 437 // create, we assume they only want the JIT, and we fail if they only want 438 // the interpreter. 439 if (JMM || MCJMM) { 440 if (WhichEngine & EngineKind::JIT) 441 WhichEngine = EngineKind::JIT; 442 else { 443 if (ErrorStr) 444 *ErrorStr = "Cannot create an interpreter with a memory manager."; 445 return nullptr; 446 } 447 } 448 449 // Unless the interpreter was explicitly selected or the JIT is not linked, 450 // try making a JIT. 451 if ((WhichEngine & EngineKind::JIT) && TheTM) { 452 Triple TT(M->getTargetTriple()); 453 if (!TM->getTarget().hasJIT()) { 454 errs() << "WARNING: This target JIT is not designed for the host" 455 << " you are running. If bad things happen, please choose" 456 << " a different -march switch.\n"; 457 } 458 459 ExecutionEngine *EE = nullptr; 460 if (ExecutionEngine::MCJITCtor) 461 EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 462 TheTM.release()); 463 464 if (EE) { 465 EE->setVerifyModules(VerifyModules); 466 return EE; 467 } 468 } 469 470 // If we can't make a JIT and we didn't request one specifically, try making 471 // an interpreter instead. 472 if (WhichEngine & EngineKind::Interpreter) { 473 if (ExecutionEngine::InterpCtor) 474 return ExecutionEngine::InterpCtor(M, ErrorStr); 475 if (ErrorStr) 476 *ErrorStr = "Interpreter has not been linked in."; 477 return nullptr; 478 } 479 480 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 481 if (ErrorStr) 482 *ErrorStr = "JIT has not been linked in."; 483 } 484 485 return nullptr; 486 } 487 488 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 489 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 490 return getPointerToFunction(F); 491 492 MutexGuard locked(lock); 493 if (void *P = EEState.getGlobalAddressMap()[GV]) 494 return P; 495 496 // Global variable might have been added since interpreter started. 497 if (GlobalVariable *GVar = 498 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 499 EmitGlobalVariable(GVar); 500 else 501 llvm_unreachable("Global hasn't had an address allocated yet!"); 502 503 return EEState.getGlobalAddressMap()[GV]; 504 } 505 506 /// \brief Converts a Constant* into a GenericValue, including handling of 507 /// ConstantExpr values. 508 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 509 // If its undefined, return the garbage. 510 if (isa<UndefValue>(C)) { 511 GenericValue Result; 512 switch (C->getType()->getTypeID()) { 513 default: 514 break; 515 case Type::IntegerTyID: 516 case Type::X86_FP80TyID: 517 case Type::FP128TyID: 518 case Type::PPC_FP128TyID: 519 // Although the value is undefined, we still have to construct an APInt 520 // with the correct bit width. 521 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 522 break; 523 case Type::StructTyID: { 524 // if the whole struct is 'undef' just reserve memory for the value. 525 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 526 unsigned int elemNum = STy->getNumElements(); 527 Result.AggregateVal.resize(elemNum); 528 for (unsigned int i = 0; i < elemNum; ++i) { 529 Type *ElemTy = STy->getElementType(i); 530 if (ElemTy->isIntegerTy()) 531 Result.AggregateVal[i].IntVal = 532 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 533 else if (ElemTy->isAggregateType()) { 534 const Constant *ElemUndef = UndefValue::get(ElemTy); 535 Result.AggregateVal[i] = getConstantValue(ElemUndef); 536 } 537 } 538 } 539 } 540 break; 541 case Type::VectorTyID: 542 // if the whole vector is 'undef' just reserve memory for the value. 543 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 544 const Type *ElemTy = VTy->getElementType(); 545 unsigned int elemNum = VTy->getNumElements(); 546 Result.AggregateVal.resize(elemNum); 547 if (ElemTy->isIntegerTy()) 548 for (unsigned int i = 0; i < elemNum; ++i) 549 Result.AggregateVal[i].IntVal = 550 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 551 break; 552 } 553 return Result; 554 } 555 556 // Otherwise, if the value is a ConstantExpr... 557 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 558 Constant *Op0 = CE->getOperand(0); 559 switch (CE->getOpcode()) { 560 case Instruction::GetElementPtr: { 561 // Compute the index 562 GenericValue Result = getConstantValue(Op0); 563 APInt Offset(DL->getPointerSizeInBits(), 0); 564 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 565 566 char* tmp = (char*) Result.PointerVal; 567 Result = PTOGV(tmp + Offset.getSExtValue()); 568 return Result; 569 } 570 case Instruction::Trunc: { 571 GenericValue GV = getConstantValue(Op0); 572 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 573 GV.IntVal = GV.IntVal.trunc(BitWidth); 574 return GV; 575 } 576 case Instruction::ZExt: { 577 GenericValue GV = getConstantValue(Op0); 578 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 579 GV.IntVal = GV.IntVal.zext(BitWidth); 580 return GV; 581 } 582 case Instruction::SExt: { 583 GenericValue GV = getConstantValue(Op0); 584 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 585 GV.IntVal = GV.IntVal.sext(BitWidth); 586 return GV; 587 } 588 case Instruction::FPTrunc: { 589 // FIXME long double 590 GenericValue GV = getConstantValue(Op0); 591 GV.FloatVal = float(GV.DoubleVal); 592 return GV; 593 } 594 case Instruction::FPExt:{ 595 // FIXME long double 596 GenericValue GV = getConstantValue(Op0); 597 GV.DoubleVal = double(GV.FloatVal); 598 return GV; 599 } 600 case Instruction::UIToFP: { 601 GenericValue GV = getConstantValue(Op0); 602 if (CE->getType()->isFloatTy()) 603 GV.FloatVal = float(GV.IntVal.roundToDouble()); 604 else if (CE->getType()->isDoubleTy()) 605 GV.DoubleVal = GV.IntVal.roundToDouble(); 606 else if (CE->getType()->isX86_FP80Ty()) { 607 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 608 (void)apf.convertFromAPInt(GV.IntVal, 609 false, 610 APFloat::rmNearestTiesToEven); 611 GV.IntVal = apf.bitcastToAPInt(); 612 } 613 return GV; 614 } 615 case Instruction::SIToFP: { 616 GenericValue GV = getConstantValue(Op0); 617 if (CE->getType()->isFloatTy()) 618 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 619 else if (CE->getType()->isDoubleTy()) 620 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 621 else if (CE->getType()->isX86_FP80Ty()) { 622 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 623 (void)apf.convertFromAPInt(GV.IntVal, 624 true, 625 APFloat::rmNearestTiesToEven); 626 GV.IntVal = apf.bitcastToAPInt(); 627 } 628 return GV; 629 } 630 case Instruction::FPToUI: // double->APInt conversion handles sign 631 case Instruction::FPToSI: { 632 GenericValue GV = getConstantValue(Op0); 633 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 634 if (Op0->getType()->isFloatTy()) 635 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 636 else if (Op0->getType()->isDoubleTy()) 637 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 638 else if (Op0->getType()->isX86_FP80Ty()) { 639 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 640 uint64_t v; 641 bool ignored; 642 (void)apf.convertToInteger(&v, BitWidth, 643 CE->getOpcode()==Instruction::FPToSI, 644 APFloat::rmTowardZero, &ignored); 645 GV.IntVal = v; // endian? 646 } 647 return GV; 648 } 649 case Instruction::PtrToInt: { 650 GenericValue GV = getConstantValue(Op0); 651 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 652 assert(PtrWidth <= 64 && "Bad pointer width"); 653 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 654 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 655 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 656 return GV; 657 } 658 case Instruction::IntToPtr: { 659 GenericValue GV = getConstantValue(Op0); 660 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 661 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 662 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 663 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 664 return GV; 665 } 666 case Instruction::BitCast: { 667 GenericValue GV = getConstantValue(Op0); 668 Type* DestTy = CE->getType(); 669 switch (Op0->getType()->getTypeID()) { 670 default: llvm_unreachable("Invalid bitcast operand"); 671 case Type::IntegerTyID: 672 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 673 if (DestTy->isFloatTy()) 674 GV.FloatVal = GV.IntVal.bitsToFloat(); 675 else if (DestTy->isDoubleTy()) 676 GV.DoubleVal = GV.IntVal.bitsToDouble(); 677 break; 678 case Type::FloatTyID: 679 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 680 GV.IntVal = APInt::floatToBits(GV.FloatVal); 681 break; 682 case Type::DoubleTyID: 683 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 684 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 685 break; 686 case Type::PointerTyID: 687 assert(DestTy->isPointerTy() && "Invalid bitcast"); 688 break; // getConstantValue(Op0) above already converted it 689 } 690 return GV; 691 } 692 case Instruction::Add: 693 case Instruction::FAdd: 694 case Instruction::Sub: 695 case Instruction::FSub: 696 case Instruction::Mul: 697 case Instruction::FMul: 698 case Instruction::UDiv: 699 case Instruction::SDiv: 700 case Instruction::URem: 701 case Instruction::SRem: 702 case Instruction::And: 703 case Instruction::Or: 704 case Instruction::Xor: { 705 GenericValue LHS = getConstantValue(Op0); 706 GenericValue RHS = getConstantValue(CE->getOperand(1)); 707 GenericValue GV; 708 switch (CE->getOperand(0)->getType()->getTypeID()) { 709 default: llvm_unreachable("Bad add type!"); 710 case Type::IntegerTyID: 711 switch (CE->getOpcode()) { 712 default: llvm_unreachable("Invalid integer opcode"); 713 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 714 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 715 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 716 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 717 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 718 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 719 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 720 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 721 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 722 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 723 } 724 break; 725 case Type::FloatTyID: 726 switch (CE->getOpcode()) { 727 default: llvm_unreachable("Invalid float opcode"); 728 case Instruction::FAdd: 729 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 730 case Instruction::FSub: 731 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 732 case Instruction::FMul: 733 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 734 case Instruction::FDiv: 735 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 736 case Instruction::FRem: 737 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 738 } 739 break; 740 case Type::DoubleTyID: 741 switch (CE->getOpcode()) { 742 default: llvm_unreachable("Invalid double opcode"); 743 case Instruction::FAdd: 744 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 745 case Instruction::FSub: 746 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 747 case Instruction::FMul: 748 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 749 case Instruction::FDiv: 750 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 751 case Instruction::FRem: 752 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 753 } 754 break; 755 case Type::X86_FP80TyID: 756 case Type::PPC_FP128TyID: 757 case Type::FP128TyID: { 758 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 759 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 760 switch (CE->getOpcode()) { 761 default: llvm_unreachable("Invalid long double opcode"); 762 case Instruction::FAdd: 763 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 764 GV.IntVal = apfLHS.bitcastToAPInt(); 765 break; 766 case Instruction::FSub: 767 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 768 APFloat::rmNearestTiesToEven); 769 GV.IntVal = apfLHS.bitcastToAPInt(); 770 break; 771 case Instruction::FMul: 772 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 773 APFloat::rmNearestTiesToEven); 774 GV.IntVal = apfLHS.bitcastToAPInt(); 775 break; 776 case Instruction::FDiv: 777 apfLHS.divide(APFloat(Sem, RHS.IntVal), 778 APFloat::rmNearestTiesToEven); 779 GV.IntVal = apfLHS.bitcastToAPInt(); 780 break; 781 case Instruction::FRem: 782 apfLHS.mod(APFloat(Sem, RHS.IntVal), 783 APFloat::rmNearestTiesToEven); 784 GV.IntVal = apfLHS.bitcastToAPInt(); 785 break; 786 } 787 } 788 break; 789 } 790 return GV; 791 } 792 default: 793 break; 794 } 795 796 SmallString<256> Msg; 797 raw_svector_ostream OS(Msg); 798 OS << "ConstantExpr not handled: " << *CE; 799 report_fatal_error(OS.str()); 800 } 801 802 // Otherwise, we have a simple constant. 803 GenericValue Result; 804 switch (C->getType()->getTypeID()) { 805 case Type::FloatTyID: 806 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 807 break; 808 case Type::DoubleTyID: 809 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 810 break; 811 case Type::X86_FP80TyID: 812 case Type::FP128TyID: 813 case Type::PPC_FP128TyID: 814 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 815 break; 816 case Type::IntegerTyID: 817 Result.IntVal = cast<ConstantInt>(C)->getValue(); 818 break; 819 case Type::PointerTyID: 820 if (isa<ConstantPointerNull>(C)) 821 Result.PointerVal = nullptr; 822 else if (const Function *F = dyn_cast<Function>(C)) 823 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 824 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 825 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 826 else 827 llvm_unreachable("Unknown constant pointer type!"); 828 break; 829 case Type::VectorTyID: { 830 unsigned elemNum; 831 Type* ElemTy; 832 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 833 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 834 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 835 836 if (CDV) { 837 elemNum = CDV->getNumElements(); 838 ElemTy = CDV->getElementType(); 839 } else if (CV || CAZ) { 840 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 841 elemNum = VTy->getNumElements(); 842 ElemTy = VTy->getElementType(); 843 } else { 844 llvm_unreachable("Unknown constant vector type!"); 845 } 846 847 Result.AggregateVal.resize(elemNum); 848 // Check if vector holds floats. 849 if(ElemTy->isFloatTy()) { 850 if (CAZ) { 851 GenericValue floatZero; 852 floatZero.FloatVal = 0.f; 853 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 854 floatZero); 855 break; 856 } 857 if(CV) { 858 for (unsigned i = 0; i < elemNum; ++i) 859 if (!isa<UndefValue>(CV->getOperand(i))) 860 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 861 CV->getOperand(i))->getValueAPF().convertToFloat(); 862 break; 863 } 864 if(CDV) 865 for (unsigned i = 0; i < elemNum; ++i) 866 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 867 868 break; 869 } 870 // Check if vector holds doubles. 871 if (ElemTy->isDoubleTy()) { 872 if (CAZ) { 873 GenericValue doubleZero; 874 doubleZero.DoubleVal = 0.0; 875 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 876 doubleZero); 877 break; 878 } 879 if(CV) { 880 for (unsigned i = 0; i < elemNum; ++i) 881 if (!isa<UndefValue>(CV->getOperand(i))) 882 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 883 CV->getOperand(i))->getValueAPF().convertToDouble(); 884 break; 885 } 886 if(CDV) 887 for (unsigned i = 0; i < elemNum; ++i) 888 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 889 890 break; 891 } 892 // Check if vector holds integers. 893 if (ElemTy->isIntegerTy()) { 894 if (CAZ) { 895 GenericValue intZero; 896 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 897 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 898 intZero); 899 break; 900 } 901 if(CV) { 902 for (unsigned i = 0; i < elemNum; ++i) 903 if (!isa<UndefValue>(CV->getOperand(i))) 904 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 905 CV->getOperand(i))->getValue(); 906 else { 907 Result.AggregateVal[i].IntVal = 908 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 909 } 910 break; 911 } 912 if(CDV) 913 for (unsigned i = 0; i < elemNum; ++i) 914 Result.AggregateVal[i].IntVal = APInt( 915 CDV->getElementType()->getPrimitiveSizeInBits(), 916 CDV->getElementAsInteger(i)); 917 918 break; 919 } 920 llvm_unreachable("Unknown constant pointer type!"); 921 } 922 break; 923 924 default: 925 SmallString<256> Msg; 926 raw_svector_ostream OS(Msg); 927 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 928 report_fatal_error(OS.str()); 929 } 930 931 return Result; 932 } 933 934 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 935 /// with the integer held in IntVal. 936 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 937 unsigned StoreBytes) { 938 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 939 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 940 941 if (sys::IsLittleEndianHost) { 942 // Little-endian host - the source is ordered from LSB to MSB. Order the 943 // destination from LSB to MSB: Do a straight copy. 944 memcpy(Dst, Src, StoreBytes); 945 } else { 946 // Big-endian host - the source is an array of 64 bit words ordered from 947 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 948 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 949 while (StoreBytes > sizeof(uint64_t)) { 950 StoreBytes -= sizeof(uint64_t); 951 // May not be aligned so use memcpy. 952 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 953 Src += sizeof(uint64_t); 954 } 955 956 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 957 } 958 } 959 960 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 961 GenericValue *Ptr, Type *Ty) { 962 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 963 964 switch (Ty->getTypeID()) { 965 default: 966 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 967 break; 968 case Type::IntegerTyID: 969 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 970 break; 971 case Type::FloatTyID: 972 *((float*)Ptr) = Val.FloatVal; 973 break; 974 case Type::DoubleTyID: 975 *((double*)Ptr) = Val.DoubleVal; 976 break; 977 case Type::X86_FP80TyID: 978 memcpy(Ptr, Val.IntVal.getRawData(), 10); 979 break; 980 case Type::PointerTyID: 981 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 982 if (StoreBytes != sizeof(PointerTy)) 983 memset(&(Ptr->PointerVal), 0, StoreBytes); 984 985 *((PointerTy*)Ptr) = Val.PointerVal; 986 break; 987 case Type::VectorTyID: 988 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 989 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 990 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 991 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 992 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 993 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 994 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 995 StoreIntToMemory(Val.AggregateVal[i].IntVal, 996 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 997 } 998 } 999 break; 1000 } 1001 1002 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1003 // Host and target are different endian - reverse the stored bytes. 1004 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1005 } 1006 1007 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1008 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1009 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1010 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1011 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1012 const_cast<uint64_t *>(IntVal.getRawData())); 1013 1014 if (sys::IsLittleEndianHost) 1015 // Little-endian host - the destination must be ordered from LSB to MSB. 1016 // The source is ordered from LSB to MSB: Do a straight copy. 1017 memcpy(Dst, Src, LoadBytes); 1018 else { 1019 // Big-endian - the destination is an array of 64 bit words ordered from 1020 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1021 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1022 // a word. 1023 while (LoadBytes > sizeof(uint64_t)) { 1024 LoadBytes -= sizeof(uint64_t); 1025 // May not be aligned so use memcpy. 1026 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1027 Dst += sizeof(uint64_t); 1028 } 1029 1030 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1031 } 1032 } 1033 1034 /// FIXME: document 1035 /// 1036 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1037 GenericValue *Ptr, 1038 Type *Ty) { 1039 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1040 1041 switch (Ty->getTypeID()) { 1042 case Type::IntegerTyID: 1043 // An APInt with all words initially zero. 1044 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1045 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1046 break; 1047 case Type::FloatTyID: 1048 Result.FloatVal = *((float*)Ptr); 1049 break; 1050 case Type::DoubleTyID: 1051 Result.DoubleVal = *((double*)Ptr); 1052 break; 1053 case Type::PointerTyID: 1054 Result.PointerVal = *((PointerTy*)Ptr); 1055 break; 1056 case Type::X86_FP80TyID: { 1057 // This is endian dependent, but it will only work on x86 anyway. 1058 // FIXME: Will not trap if loading a signaling NaN. 1059 uint64_t y[2]; 1060 memcpy(y, Ptr, 10); 1061 Result.IntVal = APInt(80, y); 1062 break; 1063 } 1064 case Type::VectorTyID: { 1065 const VectorType *VT = cast<VectorType>(Ty); 1066 const Type *ElemT = VT->getElementType(); 1067 const unsigned numElems = VT->getNumElements(); 1068 if (ElemT->isFloatTy()) { 1069 Result.AggregateVal.resize(numElems); 1070 for (unsigned i = 0; i < numElems; ++i) 1071 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1072 } 1073 if (ElemT->isDoubleTy()) { 1074 Result.AggregateVal.resize(numElems); 1075 for (unsigned i = 0; i < numElems; ++i) 1076 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1077 } 1078 if (ElemT->isIntegerTy()) { 1079 GenericValue intZero; 1080 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1081 intZero.IntVal = APInt(elemBitWidth, 0); 1082 Result.AggregateVal.resize(numElems, intZero); 1083 for (unsigned i = 0; i < numElems; ++i) 1084 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1085 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1086 } 1087 break; 1088 } 1089 default: 1090 SmallString<256> Msg; 1091 raw_svector_ostream OS(Msg); 1092 OS << "Cannot load value of type " << *Ty << "!"; 1093 report_fatal_error(OS.str()); 1094 } 1095 } 1096 1097 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1098 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1099 DEBUG(Init->dump()); 1100 if (isa<UndefValue>(Init)) 1101 return; 1102 1103 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1104 unsigned ElementSize = 1105 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1106 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1107 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1108 return; 1109 } 1110 1111 if (isa<ConstantAggregateZero>(Init)) { 1112 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1113 return; 1114 } 1115 1116 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1117 unsigned ElementSize = 1118 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1119 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1120 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1121 return; 1122 } 1123 1124 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1125 const StructLayout *SL = 1126 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1127 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1128 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1129 return; 1130 } 1131 1132 if (const ConstantDataSequential *CDS = 1133 dyn_cast<ConstantDataSequential>(Init)) { 1134 // CDS is already laid out in host memory order. 1135 StringRef Data = CDS->getRawDataValues(); 1136 memcpy(Addr, Data.data(), Data.size()); 1137 return; 1138 } 1139 1140 if (Init->getType()->isFirstClassType()) { 1141 GenericValue Val = getConstantValue(Init); 1142 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1143 return; 1144 } 1145 1146 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1147 llvm_unreachable("Unknown constant type to initialize memory with!"); 1148 } 1149 1150 /// EmitGlobals - Emit all of the global variables to memory, storing their 1151 /// addresses into GlobalAddress. This must make sure to copy the contents of 1152 /// their initializers into the memory. 1153 void ExecutionEngine::emitGlobals() { 1154 // Loop over all of the global variables in the program, allocating the memory 1155 // to hold them. If there is more than one module, do a prepass over globals 1156 // to figure out how the different modules should link together. 1157 std::map<std::pair<std::string, Type*>, 1158 const GlobalValue*> LinkedGlobalsMap; 1159 1160 if (Modules.size() != 1) { 1161 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1162 Module &M = *Modules[m]; 1163 for (const auto &GV : M.globals()) { 1164 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1165 GV.hasAppendingLinkage() || !GV.hasName()) 1166 continue;// Ignore external globals and globals with internal linkage. 1167 1168 const GlobalValue *&GVEntry = 1169 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1170 1171 // If this is the first time we've seen this global, it is the canonical 1172 // version. 1173 if (!GVEntry) { 1174 GVEntry = &GV; 1175 continue; 1176 } 1177 1178 // If the existing global is strong, never replace it. 1179 if (GVEntry->hasExternalLinkage()) 1180 continue; 1181 1182 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1183 // symbol. FIXME is this right for common? 1184 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1185 GVEntry = &GV; 1186 } 1187 } 1188 } 1189 1190 std::vector<const GlobalValue*> NonCanonicalGlobals; 1191 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1192 Module &M = *Modules[m]; 1193 for (const auto &GV : M.globals()) { 1194 // In the multi-module case, see what this global maps to. 1195 if (!LinkedGlobalsMap.empty()) { 1196 if (const GlobalValue *GVEntry = 1197 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1198 // If something else is the canonical global, ignore this one. 1199 if (GVEntry != &GV) { 1200 NonCanonicalGlobals.push_back(&GV); 1201 continue; 1202 } 1203 } 1204 } 1205 1206 if (!GV.isDeclaration()) { 1207 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1208 } else { 1209 // External variable reference. Try to use the dynamic loader to 1210 // get a pointer to it. 1211 if (void *SymAddr = 1212 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1213 addGlobalMapping(&GV, SymAddr); 1214 else { 1215 report_fatal_error("Could not resolve external global address: " 1216 +GV.getName()); 1217 } 1218 } 1219 } 1220 1221 // If there are multiple modules, map the non-canonical globals to their 1222 // canonical location. 1223 if (!NonCanonicalGlobals.empty()) { 1224 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1225 const GlobalValue *GV = NonCanonicalGlobals[i]; 1226 const GlobalValue *CGV = 1227 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1228 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1229 assert(Ptr && "Canonical global wasn't codegen'd!"); 1230 addGlobalMapping(GV, Ptr); 1231 } 1232 } 1233 1234 // Now that all of the globals are set up in memory, loop through them all 1235 // and initialize their contents. 1236 for (const auto &GV : M.globals()) { 1237 if (!GV.isDeclaration()) { 1238 if (!LinkedGlobalsMap.empty()) { 1239 if (const GlobalValue *GVEntry = 1240 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1241 if (GVEntry != &GV) // Not the canonical variable. 1242 continue; 1243 } 1244 EmitGlobalVariable(&GV); 1245 } 1246 } 1247 } 1248 } 1249 1250 // EmitGlobalVariable - This method emits the specified global variable to the 1251 // address specified in GlobalAddresses, or allocates new memory if it's not 1252 // already in the map. 1253 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1254 void *GA = getPointerToGlobalIfAvailable(GV); 1255 1256 if (!GA) { 1257 // If it's not already specified, allocate memory for the global. 1258 GA = getMemoryForGV(GV); 1259 1260 // If we failed to allocate memory for this global, return. 1261 if (!GA) return; 1262 1263 addGlobalMapping(GV, GA); 1264 } 1265 1266 // Don't initialize if it's thread local, let the client do it. 1267 if (!GV->isThreadLocal()) 1268 InitializeMemory(GV->getInitializer(), GA); 1269 1270 Type *ElTy = GV->getType()->getElementType(); 1271 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1272 NumInitBytes += (unsigned)GVSize; 1273 ++NumGlobals; 1274 } 1275 1276 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1277 : EE(EE), GlobalAddressMap(this) { 1278 } 1279 1280 sys::Mutex * 1281 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1282 return &EES->EE.lock; 1283 } 1284 1285 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1286 const GlobalValue *Old) { 1287 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1288 EES->GlobalAddressReverseMap.erase(OldVal); 1289 } 1290 1291 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1292 const GlobalValue *, 1293 const GlobalValue *) { 1294 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1295 " RAUW on a value it has a global mapping for."); 1296 } 1297