1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/DynamicLibrary.h" 30 #include "llvm/System/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 50 LazyCompilationDisabled = false; 51 GVCompilationDisabled = false; 52 SymbolSearchingDisabled = false; 53 DlsymStubsEnabled = false; 54 Modules.push_back(P); 55 assert(P && "ModuleProvider is null?"); 56 } 57 58 ExecutionEngine::~ExecutionEngine() { 59 clearAllGlobalMappings(); 60 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 61 delete Modules[i]; 62 } 63 64 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 65 const Type *ElTy = GV->getType()->getElementType(); 66 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 67 return new char[GVSize]; 68 } 69 70 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 71 /// Relases the Module from the ModuleProvider, materializing it in the 72 /// process, and returns the materialized Module. 73 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 74 std::string *ErrInfo) { 75 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 76 E = Modules.end(); I != E; ++I) { 77 ModuleProvider *MP = *I; 78 if (MP == P) { 79 Modules.erase(I); 80 clearGlobalMappingsFromModule(MP->getModule()); 81 return MP->releaseModule(ErrInfo); 82 } 83 } 84 return NULL; 85 } 86 87 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 88 /// and deletes the ModuleProvider and owned Module. Avoids materializing 89 /// the underlying module. 90 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 91 std::string *ErrInfo) { 92 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 93 E = Modules.end(); I != E; ++I) { 94 ModuleProvider *MP = *I; 95 if (MP == P) { 96 Modules.erase(I); 97 clearGlobalMappingsFromModule(MP->getModule()); 98 delete MP; 99 return; 100 } 101 } 102 } 103 104 /// FindFunctionNamed - Search all of the active modules to find the one that 105 /// defines FnName. This is very slow operation and shouldn't be used for 106 /// general code. 107 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 108 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 109 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 110 return F; 111 } 112 return 0; 113 } 114 115 116 /// addGlobalMapping - Tell the execution engine that the specified global is 117 /// at the specified location. This is used internally as functions are JIT'd 118 /// and as global variables are laid out in memory. It can and should also be 119 /// used by clients of the EE that want to have an LLVM global overlay 120 /// existing data in memory. 121 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 122 MutexGuard locked(lock); 123 124 DEBUG(errs() << "JIT: Map \'" << GV->getName() 125 << "\' to [" << Addr << "]\n";); 126 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 127 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 128 CurVal = Addr; 129 130 // If we are using the reverse mapping, add it too 131 if (!state.getGlobalAddressReverseMap(locked).empty()) { 132 AssertingVH<const GlobalValue> &V = 133 state.getGlobalAddressReverseMap(locked)[Addr]; 134 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 135 V = GV; 136 } 137 } 138 139 /// clearAllGlobalMappings - Clear all global mappings and start over again 140 /// use in dynamic compilation scenarios when you want to move globals 141 void ExecutionEngine::clearAllGlobalMappings() { 142 MutexGuard locked(lock); 143 144 state.getGlobalAddressMap(locked).clear(); 145 state.getGlobalAddressReverseMap(locked).clear(); 146 } 147 148 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 149 /// particular module, because it has been removed from the JIT. 150 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 151 MutexGuard locked(lock); 152 153 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 154 state.getGlobalAddressMap(locked).erase(&*FI); 155 state.getGlobalAddressReverseMap(locked).erase(&*FI); 156 } 157 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 158 GI != GE; ++GI) { 159 state.getGlobalAddressMap(locked).erase(&*GI); 160 state.getGlobalAddressReverseMap(locked).erase(&*GI); 161 } 162 } 163 164 /// updateGlobalMapping - Replace an existing mapping for GV with a new 165 /// address. This updates both maps as required. If "Addr" is null, the 166 /// entry for the global is removed from the mappings. 167 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 168 MutexGuard locked(lock); 169 170 std::map<AssertingVH<const GlobalValue>, void *> &Map = 171 state.getGlobalAddressMap(locked); 172 173 // Deleting from the mapping? 174 if (Addr == 0) { 175 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV); 176 void *OldVal; 177 if (I == Map.end()) 178 OldVal = 0; 179 else { 180 OldVal = I->second; 181 Map.erase(I); 182 } 183 184 if (!state.getGlobalAddressReverseMap(locked).empty()) 185 state.getGlobalAddressReverseMap(locked).erase(OldVal); 186 return OldVal; 187 } 188 189 void *&CurVal = Map[GV]; 190 void *OldVal = CurVal; 191 192 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 193 state.getGlobalAddressReverseMap(locked).erase(CurVal); 194 CurVal = Addr; 195 196 // If we are using the reverse mapping, add it too 197 if (!state.getGlobalAddressReverseMap(locked).empty()) { 198 AssertingVH<const GlobalValue> &V = 199 state.getGlobalAddressReverseMap(locked)[Addr]; 200 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 201 V = GV; 202 } 203 return OldVal; 204 } 205 206 /// getPointerToGlobalIfAvailable - This returns the address of the specified 207 /// global value if it is has already been codegen'd, otherwise it returns null. 208 /// 209 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 210 MutexGuard locked(lock); 211 212 std::map<AssertingVH<const GlobalValue>, void*>::iterator I = 213 state.getGlobalAddressMap(locked).find(GV); 214 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 215 } 216 217 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 218 /// at the specified address. 219 /// 220 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 221 MutexGuard locked(lock); 222 223 // If we haven't computed the reverse mapping yet, do so first. 224 if (state.getGlobalAddressReverseMap(locked).empty()) { 225 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator 226 I = state.getGlobalAddressMap(locked).begin(), 227 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 228 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 229 I->first)); 230 } 231 232 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 233 state.getGlobalAddressReverseMap(locked).find(Addr); 234 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 235 } 236 237 // CreateArgv - Turn a vector of strings into a nice argv style array of 238 // pointers to null terminated strings. 239 // 240 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 241 const std::vector<std::string> &InputArgv) { 242 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 243 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 244 245 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); 246 const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C)); 247 248 for (unsigned i = 0; i != InputArgv.size(); ++i) { 249 unsigned Size = InputArgv[i].size()+1; 250 char *Dest = new char[Size]; 251 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 252 253 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 254 Dest[Size-1] = 0; 255 256 // Endian safe: Result[i] = (PointerTy)Dest; 257 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 258 SBytePtr); 259 } 260 261 // Null terminate it 262 EE->StoreValueToMemory(PTOGV(0), 263 (GenericValue*)(Result+InputArgv.size()*PtrSize), 264 SBytePtr); 265 return Result; 266 } 267 268 269 /// runStaticConstructorsDestructors - This method is used to execute all of 270 /// the static constructors or destructors for a module, depending on the 271 /// value of isDtors. 272 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { 273 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 274 275 // Execute global ctors/dtors for each module in the program. 276 277 GlobalVariable *GV = module->getNamedGlobal(Name); 278 279 // If this global has internal linkage, or if it has a use, then it must be 280 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 281 // this is the case, don't execute any of the global ctors, __main will do 282 // it. 283 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 284 285 // Should be an array of '{ int, void ()* }' structs. The first value is 286 // the init priority, which we ignore. 287 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 288 if (!InitList) return; 289 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 290 if (ConstantStruct *CS = 291 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 292 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 293 294 Constant *FP = CS->getOperand(1); 295 if (FP->isNullValue()) 296 break; // Found a null terminator, exit. 297 298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 299 if (CE->isCast()) 300 FP = CE->getOperand(0); 301 if (Function *F = dyn_cast<Function>(FP)) { 302 // Execute the ctor/dtor function! 303 runFunction(F, std::vector<GenericValue>()); 304 } 305 } 306 } 307 308 /// runStaticConstructorsDestructors - This method is used to execute all of 309 /// the static constructors or destructors for a program, depending on the 310 /// value of isDtors. 311 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 312 // Execute global ctors/dtors for each module in the program. 313 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 314 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 315 } 316 317 #ifndef NDEBUG 318 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 319 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 320 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 321 for (unsigned i = 0; i < PtrSize; ++i) 322 if (*(i + (uint8_t*)Loc)) 323 return false; 324 return true; 325 } 326 #endif 327 328 /// runFunctionAsMain - This is a helper function which wraps runFunction to 329 /// handle the common task of starting up main with the specified argc, argv, 330 /// and envp parameters. 331 int ExecutionEngine::runFunctionAsMain(Function *Fn, 332 const std::vector<std::string> &argv, 333 const char * const * envp) { 334 std::vector<GenericValue> GVArgs; 335 GenericValue GVArgc; 336 GVArgc.IntVal = APInt(32, argv.size()); 337 338 // Check main() type 339 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 340 const FunctionType *FTy = Fn->getFunctionType(); 341 const Type* PPInt8Ty = 342 PointerType::getUnqual(PointerType::getUnqual( 343 Type::getInt8Ty(Fn->getContext()))); 344 switch (NumArgs) { 345 case 3: 346 if (FTy->getParamType(2) != PPInt8Ty) { 347 llvm_report_error("Invalid type for third argument of main() supplied"); 348 } 349 // FALLS THROUGH 350 case 2: 351 if (FTy->getParamType(1) != PPInt8Ty) { 352 llvm_report_error("Invalid type for second argument of main() supplied"); 353 } 354 // FALLS THROUGH 355 case 1: 356 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 357 llvm_report_error("Invalid type for first argument of main() supplied"); 358 } 359 // FALLS THROUGH 360 case 0: 361 if (!isa<IntegerType>(FTy->getReturnType()) && 362 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 363 llvm_report_error("Invalid return type of main() supplied"); 364 } 365 break; 366 default: 367 llvm_report_error("Invalid number of arguments of main() supplied"); 368 } 369 370 if (NumArgs) { 371 GVArgs.push_back(GVArgc); // Arg #0 = argc. 372 if (NumArgs > 1) { 373 // Arg #1 = argv. 374 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 375 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 376 "argv[0] was null after CreateArgv"); 377 if (NumArgs > 2) { 378 std::vector<std::string> EnvVars; 379 for (unsigned i = 0; envp[i]; ++i) 380 EnvVars.push_back(envp[i]); 381 // Arg #2 = envp. 382 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 383 } 384 } 385 } 386 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 387 } 388 389 /// If possible, create a JIT, unless the caller specifically requests an 390 /// Interpreter or there's an error. If even an Interpreter cannot be created, 391 /// NULL is returned. 392 /// 393 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 394 bool ForceInterpreter, 395 std::string *ErrorStr, 396 CodeGenOpt::Level OptLevel, 397 bool GVsWithCode) { 398 return EngineBuilder(MP) 399 .setEngineKind(ForceInterpreter 400 ? EngineKind::Interpreter 401 : EngineKind::JIT) 402 .setErrorStr(ErrorStr) 403 .setOptLevel(OptLevel) 404 .setAllocateGVsWithCode(GVsWithCode) 405 .create(); 406 } 407 408 ExecutionEngine *ExecutionEngine::create(Module *M) { 409 return EngineBuilder(M).create(); 410 } 411 412 /// EngineBuilder - Overloaded constructor that automatically creates an 413 /// ExistingModuleProvider for an existing module. 414 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 415 InitEngine(); 416 } 417 418 ExecutionEngine *EngineBuilder::create() { 419 // Make sure we can resolve symbols in the program as well. The zero arg 420 // to the function tells DynamicLibrary to load the program, not a library. 421 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 422 return 0; 423 424 // If the user specified a memory manager but didn't specify which engine to 425 // create, we assume they only want the JIT, and we fail if they only want 426 // the interpreter. 427 if (JMM) { 428 if (WhichEngine & EngineKind::JIT) { 429 WhichEngine = EngineKind::JIT; 430 } else { 431 *ErrorStr = "Cannot create an interpreter with a memory manager."; 432 } 433 } 434 435 ExecutionEngine *EE = 0; 436 437 // Unless the interpreter was explicitly selected or the JIT is not linked, 438 // try making a JIT. 439 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) { 440 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 441 AllocateGVsWithCode); 442 } 443 444 // If we can't make a JIT and we didn't request one specifically, try making 445 // an interpreter instead. 446 if (WhichEngine & EngineKind::Interpreter && EE == 0 && 447 ExecutionEngine::InterpCtor) { 448 EE = ExecutionEngine::InterpCtor(MP, ErrorStr); 449 } 450 451 return EE; 452 } 453 454 /// getPointerToGlobal - This returns the address of the specified global 455 /// value. This may involve code generation if it's a function. 456 /// 457 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 458 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 459 return getPointerToFunction(F); 460 461 MutexGuard locked(lock); 462 void *p = state.getGlobalAddressMap(locked)[GV]; 463 if (p) 464 return p; 465 466 // Global variable might have been added since interpreter started. 467 if (GlobalVariable *GVar = 468 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 469 EmitGlobalVariable(GVar); 470 else 471 llvm_unreachable("Global hasn't had an address allocated yet!"); 472 return state.getGlobalAddressMap(locked)[GV]; 473 } 474 475 /// This function converts a Constant* into a GenericValue. The interesting 476 /// part is if C is a ConstantExpr. 477 /// @brief Get a GenericValue for a Constant* 478 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 479 // If its undefined, return the garbage. 480 if (isa<UndefValue>(C)) 481 return GenericValue(); 482 483 // If the value is a ConstantExpr 484 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 485 Constant *Op0 = CE->getOperand(0); 486 switch (CE->getOpcode()) { 487 case Instruction::GetElementPtr: { 488 // Compute the index 489 GenericValue Result = getConstantValue(Op0); 490 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 491 uint64_t Offset = 492 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 493 494 char* tmp = (char*) Result.PointerVal; 495 Result = PTOGV(tmp + Offset); 496 return Result; 497 } 498 case Instruction::Trunc: { 499 GenericValue GV = getConstantValue(Op0); 500 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 501 GV.IntVal = GV.IntVal.trunc(BitWidth); 502 return GV; 503 } 504 case Instruction::ZExt: { 505 GenericValue GV = getConstantValue(Op0); 506 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 507 GV.IntVal = GV.IntVal.zext(BitWidth); 508 return GV; 509 } 510 case Instruction::SExt: { 511 GenericValue GV = getConstantValue(Op0); 512 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 513 GV.IntVal = GV.IntVal.sext(BitWidth); 514 return GV; 515 } 516 case Instruction::FPTrunc: { 517 // FIXME long double 518 GenericValue GV = getConstantValue(Op0); 519 GV.FloatVal = float(GV.DoubleVal); 520 return GV; 521 } 522 case Instruction::FPExt:{ 523 // FIXME long double 524 GenericValue GV = getConstantValue(Op0); 525 GV.DoubleVal = double(GV.FloatVal); 526 return GV; 527 } 528 case Instruction::UIToFP: { 529 GenericValue GV = getConstantValue(Op0); 530 if (CE->getType() == Type::getFloatTy(CE->getContext())) 531 GV.FloatVal = float(GV.IntVal.roundToDouble()); 532 else if (CE->getType() == Type::getDoubleTy(CE->getContext())) 533 GV.DoubleVal = GV.IntVal.roundToDouble(); 534 else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) { 535 const uint64_t zero[] = {0, 0}; 536 APFloat apf = APFloat(APInt(80, 2, zero)); 537 (void)apf.convertFromAPInt(GV.IntVal, 538 false, 539 APFloat::rmNearestTiesToEven); 540 GV.IntVal = apf.bitcastToAPInt(); 541 } 542 return GV; 543 } 544 case Instruction::SIToFP: { 545 GenericValue GV = getConstantValue(Op0); 546 if (CE->getType() == Type::getFloatTy(CE->getContext())) 547 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 548 else if (CE->getType() == Type::getDoubleTy(CE->getContext())) 549 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 550 else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) { 551 const uint64_t zero[] = { 0, 0}; 552 APFloat apf = APFloat(APInt(80, 2, zero)); 553 (void)apf.convertFromAPInt(GV.IntVal, 554 true, 555 APFloat::rmNearestTiesToEven); 556 GV.IntVal = apf.bitcastToAPInt(); 557 } 558 return GV; 559 } 560 case Instruction::FPToUI: // double->APInt conversion handles sign 561 case Instruction::FPToSI: { 562 GenericValue GV = getConstantValue(Op0); 563 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 564 if (Op0->getType() == Type::getFloatTy(Op0->getContext())) 565 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 566 else if (Op0->getType() == Type::getDoubleTy(Op0->getContext())) 567 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 568 else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) { 569 APFloat apf = APFloat(GV.IntVal); 570 uint64_t v; 571 bool ignored; 572 (void)apf.convertToInteger(&v, BitWidth, 573 CE->getOpcode()==Instruction::FPToSI, 574 APFloat::rmTowardZero, &ignored); 575 GV.IntVal = v; // endian? 576 } 577 return GV; 578 } 579 case Instruction::PtrToInt: { 580 GenericValue GV = getConstantValue(Op0); 581 uint32_t PtrWidth = TD->getPointerSizeInBits(); 582 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 583 return GV; 584 } 585 case Instruction::IntToPtr: { 586 GenericValue GV = getConstantValue(Op0); 587 uint32_t PtrWidth = TD->getPointerSizeInBits(); 588 if (PtrWidth != GV.IntVal.getBitWidth()) 589 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 590 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 591 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 592 return GV; 593 } 594 case Instruction::BitCast: { 595 GenericValue GV = getConstantValue(Op0); 596 const Type* DestTy = CE->getType(); 597 switch (Op0->getType()->getTypeID()) { 598 default: llvm_unreachable("Invalid bitcast operand"); 599 case Type::IntegerTyID: 600 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 601 if (DestTy == Type::getFloatTy(Op0->getContext())) 602 GV.FloatVal = GV.IntVal.bitsToFloat(); 603 else if (DestTy == Type::getDoubleTy(DestTy->getContext())) 604 GV.DoubleVal = GV.IntVal.bitsToDouble(); 605 break; 606 case Type::FloatTyID: 607 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 608 "Invalid bitcast"); 609 GV.IntVal.floatToBits(GV.FloatVal); 610 break; 611 case Type::DoubleTyID: 612 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 613 "Invalid bitcast"); 614 GV.IntVal.doubleToBits(GV.DoubleVal); 615 break; 616 case Type::PointerTyID: 617 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 618 break; // getConstantValue(Op0) above already converted it 619 } 620 return GV; 621 } 622 case Instruction::Add: 623 case Instruction::FAdd: 624 case Instruction::Sub: 625 case Instruction::FSub: 626 case Instruction::Mul: 627 case Instruction::FMul: 628 case Instruction::UDiv: 629 case Instruction::SDiv: 630 case Instruction::URem: 631 case Instruction::SRem: 632 case Instruction::And: 633 case Instruction::Or: 634 case Instruction::Xor: { 635 GenericValue LHS = getConstantValue(Op0); 636 GenericValue RHS = getConstantValue(CE->getOperand(1)); 637 GenericValue GV; 638 switch (CE->getOperand(0)->getType()->getTypeID()) { 639 default: llvm_unreachable("Bad add type!"); 640 case Type::IntegerTyID: 641 switch (CE->getOpcode()) { 642 default: llvm_unreachable("Invalid integer opcode"); 643 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 644 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 645 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 646 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 647 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 648 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 649 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 650 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 651 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 652 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 653 } 654 break; 655 case Type::FloatTyID: 656 switch (CE->getOpcode()) { 657 default: llvm_unreachable("Invalid float opcode"); 658 case Instruction::FAdd: 659 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 660 case Instruction::FSub: 661 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 662 case Instruction::FMul: 663 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 664 case Instruction::FDiv: 665 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 666 case Instruction::FRem: 667 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 668 } 669 break; 670 case Type::DoubleTyID: 671 switch (CE->getOpcode()) { 672 default: llvm_unreachable("Invalid double opcode"); 673 case Instruction::FAdd: 674 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 675 case Instruction::FSub: 676 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 677 case Instruction::FMul: 678 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 679 case Instruction::FDiv: 680 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 681 case Instruction::FRem: 682 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 683 } 684 break; 685 case Type::X86_FP80TyID: 686 case Type::PPC_FP128TyID: 687 case Type::FP128TyID: { 688 APFloat apfLHS = APFloat(LHS.IntVal); 689 switch (CE->getOpcode()) { 690 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 691 case Instruction::FAdd: 692 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 693 GV.IntVal = apfLHS.bitcastToAPInt(); 694 break; 695 case Instruction::FSub: 696 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 697 GV.IntVal = apfLHS.bitcastToAPInt(); 698 break; 699 case Instruction::FMul: 700 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 701 GV.IntVal = apfLHS.bitcastToAPInt(); 702 break; 703 case Instruction::FDiv: 704 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 705 GV.IntVal = apfLHS.bitcastToAPInt(); 706 break; 707 case Instruction::FRem: 708 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 709 GV.IntVal = apfLHS.bitcastToAPInt(); 710 break; 711 } 712 } 713 break; 714 } 715 return GV; 716 } 717 default: 718 break; 719 } 720 std::string msg; 721 raw_string_ostream Msg(msg); 722 Msg << "ConstantExpr not handled: " << *CE; 723 llvm_report_error(Msg.str()); 724 } 725 726 GenericValue Result; 727 switch (C->getType()->getTypeID()) { 728 case Type::FloatTyID: 729 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 730 break; 731 case Type::DoubleTyID: 732 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 733 break; 734 case Type::X86_FP80TyID: 735 case Type::FP128TyID: 736 case Type::PPC_FP128TyID: 737 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 738 break; 739 case Type::IntegerTyID: 740 Result.IntVal = cast<ConstantInt>(C)->getValue(); 741 break; 742 case Type::PointerTyID: 743 if (isa<ConstantPointerNull>(C)) 744 Result.PointerVal = 0; 745 else if (const Function *F = dyn_cast<Function>(C)) 746 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 747 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 748 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 749 else 750 llvm_unreachable("Unknown constant pointer type!"); 751 break; 752 default: 753 std::string msg; 754 raw_string_ostream Msg(msg); 755 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 756 llvm_report_error(Msg.str()); 757 } 758 return Result; 759 } 760 761 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 762 /// with the integer held in IntVal. 763 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 764 unsigned StoreBytes) { 765 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 766 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 767 768 if (sys::isLittleEndianHost()) 769 // Little-endian host - the source is ordered from LSB to MSB. Order the 770 // destination from LSB to MSB: Do a straight copy. 771 memcpy(Dst, Src, StoreBytes); 772 else { 773 // Big-endian host - the source is an array of 64 bit words ordered from 774 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 775 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 776 while (StoreBytes > sizeof(uint64_t)) { 777 StoreBytes -= sizeof(uint64_t); 778 // May not be aligned so use memcpy. 779 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 780 Src += sizeof(uint64_t); 781 } 782 783 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 784 } 785 } 786 787 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 788 /// is the address of the memory at which to store Val, cast to GenericValue *. 789 /// It is not a pointer to a GenericValue containing the address at which to 790 /// store Val. 791 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 792 GenericValue *Ptr, const Type *Ty) { 793 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 794 795 switch (Ty->getTypeID()) { 796 case Type::IntegerTyID: 797 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 798 break; 799 case Type::FloatTyID: 800 *((float*)Ptr) = Val.FloatVal; 801 break; 802 case Type::DoubleTyID: 803 *((double*)Ptr) = Val.DoubleVal; 804 break; 805 case Type::X86_FP80TyID: 806 memcpy(Ptr, Val.IntVal.getRawData(), 10); 807 break; 808 case Type::PointerTyID: 809 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 810 if (StoreBytes != sizeof(PointerTy)) 811 memset(Ptr, 0, StoreBytes); 812 813 *((PointerTy*)Ptr) = Val.PointerVal; 814 break; 815 default: 816 errs() << "Cannot store value of type " << *Ty << "!\n"; 817 } 818 819 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 820 // Host and target are different endian - reverse the stored bytes. 821 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 822 } 823 824 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 825 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 826 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 827 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 828 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 829 830 if (sys::isLittleEndianHost()) 831 // Little-endian host - the destination must be ordered from LSB to MSB. 832 // The source is ordered from LSB to MSB: Do a straight copy. 833 memcpy(Dst, Src, LoadBytes); 834 else { 835 // Big-endian - the destination is an array of 64 bit words ordered from 836 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 837 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 838 // a word. 839 while (LoadBytes > sizeof(uint64_t)) { 840 LoadBytes -= sizeof(uint64_t); 841 // May not be aligned so use memcpy. 842 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 843 Dst += sizeof(uint64_t); 844 } 845 846 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 847 } 848 } 849 850 /// FIXME: document 851 /// 852 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 853 GenericValue *Ptr, 854 const Type *Ty) { 855 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 856 857 switch (Ty->getTypeID()) { 858 case Type::IntegerTyID: 859 // An APInt with all words initially zero. 860 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 861 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 862 break; 863 case Type::FloatTyID: 864 Result.FloatVal = *((float*)Ptr); 865 break; 866 case Type::DoubleTyID: 867 Result.DoubleVal = *((double*)Ptr); 868 break; 869 case Type::PointerTyID: 870 Result.PointerVal = *((PointerTy*)Ptr); 871 break; 872 case Type::X86_FP80TyID: { 873 // This is endian dependent, but it will only work on x86 anyway. 874 // FIXME: Will not trap if loading a signaling NaN. 875 uint64_t y[2]; 876 memcpy(y, Ptr, 10); 877 Result.IntVal = APInt(80, 2, y); 878 break; 879 } 880 default: 881 std::string msg; 882 raw_string_ostream Msg(msg); 883 Msg << "Cannot load value of type " << *Ty << "!"; 884 llvm_report_error(Msg.str()); 885 } 886 } 887 888 // InitializeMemory - Recursive function to apply a Constant value into the 889 // specified memory location... 890 // 891 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 892 DEBUG(errs() << "JIT: Initializing " << Addr << " "); 893 DEBUG(Init->dump()); 894 if (isa<UndefValue>(Init)) { 895 return; 896 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 897 unsigned ElementSize = 898 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 899 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 900 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 901 return; 902 } else if (isa<ConstantAggregateZero>(Init)) { 903 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 904 return; 905 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 906 unsigned ElementSize = 907 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 908 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 909 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 910 return; 911 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 912 const StructLayout *SL = 913 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 914 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 915 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 916 return; 917 } else if (Init->getType()->isFirstClassType()) { 918 GenericValue Val = getConstantValue(Init); 919 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 920 return; 921 } 922 923 errs() << "Bad Type: " << *Init->getType() << "\n"; 924 llvm_unreachable("Unknown constant type to initialize memory with!"); 925 } 926 927 /// EmitGlobals - Emit all of the global variables to memory, storing their 928 /// addresses into GlobalAddress. This must make sure to copy the contents of 929 /// their initializers into the memory. 930 /// 931 void ExecutionEngine::emitGlobals() { 932 933 // Loop over all of the global variables in the program, allocating the memory 934 // to hold them. If there is more than one module, do a prepass over globals 935 // to figure out how the different modules should link together. 936 // 937 std::map<std::pair<std::string, const Type*>, 938 const GlobalValue*> LinkedGlobalsMap; 939 940 if (Modules.size() != 1) { 941 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 942 Module &M = *Modules[m]->getModule(); 943 for (Module::const_global_iterator I = M.global_begin(), 944 E = M.global_end(); I != E; ++I) { 945 const GlobalValue *GV = I; 946 if (GV->hasLocalLinkage() || GV->isDeclaration() || 947 GV->hasAppendingLinkage() || !GV->hasName()) 948 continue;// Ignore external globals and globals with internal linkage. 949 950 const GlobalValue *&GVEntry = 951 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 952 953 // If this is the first time we've seen this global, it is the canonical 954 // version. 955 if (!GVEntry) { 956 GVEntry = GV; 957 continue; 958 } 959 960 // If the existing global is strong, never replace it. 961 if (GVEntry->hasExternalLinkage() || 962 GVEntry->hasDLLImportLinkage() || 963 GVEntry->hasDLLExportLinkage()) 964 continue; 965 966 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 967 // symbol. FIXME is this right for common? 968 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 969 GVEntry = GV; 970 } 971 } 972 } 973 974 std::vector<const GlobalValue*> NonCanonicalGlobals; 975 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 976 Module &M = *Modules[m]->getModule(); 977 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 978 I != E; ++I) { 979 // In the multi-module case, see what this global maps to. 980 if (!LinkedGlobalsMap.empty()) { 981 if (const GlobalValue *GVEntry = 982 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 983 // If something else is the canonical global, ignore this one. 984 if (GVEntry != &*I) { 985 NonCanonicalGlobals.push_back(I); 986 continue; 987 } 988 } 989 } 990 991 if (!I->isDeclaration()) { 992 addGlobalMapping(I, getMemoryForGV(I)); 993 } else { 994 // External variable reference. Try to use the dynamic loader to 995 // get a pointer to it. 996 if (void *SymAddr = 997 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 998 addGlobalMapping(I, SymAddr); 999 else { 1000 llvm_report_error("Could not resolve external global address: " 1001 +I->getName()); 1002 } 1003 } 1004 } 1005 1006 // If there are multiple modules, map the non-canonical globals to their 1007 // canonical location. 1008 if (!NonCanonicalGlobals.empty()) { 1009 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1010 const GlobalValue *GV = NonCanonicalGlobals[i]; 1011 const GlobalValue *CGV = 1012 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1013 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1014 assert(Ptr && "Canonical global wasn't codegen'd!"); 1015 addGlobalMapping(GV, Ptr); 1016 } 1017 } 1018 1019 // Now that all of the globals are set up in memory, loop through them all 1020 // and initialize their contents. 1021 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1022 I != E; ++I) { 1023 if (!I->isDeclaration()) { 1024 if (!LinkedGlobalsMap.empty()) { 1025 if (const GlobalValue *GVEntry = 1026 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1027 if (GVEntry != &*I) // Not the canonical variable. 1028 continue; 1029 } 1030 EmitGlobalVariable(I); 1031 } 1032 } 1033 } 1034 } 1035 1036 // EmitGlobalVariable - This method emits the specified global variable to the 1037 // address specified in GlobalAddresses, or allocates new memory if it's not 1038 // already in the map. 1039 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1040 void *GA = getPointerToGlobalIfAvailable(GV); 1041 1042 if (GA == 0) { 1043 // If it's not already specified, allocate memory for the global. 1044 GA = getMemoryForGV(GV); 1045 addGlobalMapping(GV, GA); 1046 } 1047 1048 // Don't initialize if it's thread local, let the client do it. 1049 if (!GV->isThreadLocal()) 1050 InitializeMemory(GV->getInitializer(), GA); 1051 1052 const Type *ElTy = GV->getType()->getElementType(); 1053 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1054 NumInitBytes += (unsigned)GVSize; 1055 ++NumGlobals; 1056 } 1057