1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/DynamicLibrary.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Support/MutexGuard.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cmath> 36 #include <cstring> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "jit" 40 41 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 42 STATISTIC(NumGlobals , "Number of global vars initialized"); 43 44 // Pin the vtable to this file. 45 void ObjectCache::anchor() {} 46 void ObjectBuffer::anchor() {} 47 void ObjectBufferStream::anchor() {} 48 49 ExecutionEngine *(*ExecutionEngine::JITCtor)( 50 Module *M, 51 std::string *ErrorStr, 52 JITMemoryManager *JMM, 53 bool GVsWithCode, 54 TargetMachine *TM) = nullptr; 55 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 56 Module *M, 57 std::string *ErrorStr, 58 RTDyldMemoryManager *MCJMM, 59 bool GVsWithCode, 60 TargetMachine *TM) = nullptr; 61 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 62 std::string *ErrorStr) =nullptr; 63 64 ExecutionEngine::ExecutionEngine(Module *M) 65 : EEState(*this), 66 LazyFunctionCreator(nullptr) { 67 CompilingLazily = false; 68 GVCompilationDisabled = false; 69 SymbolSearchingDisabled = false; 70 71 // IR module verification is enabled by default in debug builds, and disabled 72 // by default in release builds. 73 #ifndef NDEBUG 74 VerifyModules = true; 75 #else 76 VerifyModules = false; 77 #endif 78 79 Modules.push_back(M); 80 assert(M && "Module is null?"); 81 } 82 83 ExecutionEngine::~ExecutionEngine() { 84 clearAllGlobalMappings(); 85 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 86 delete Modules[i]; 87 } 88 89 namespace { 90 /// \brief Helper class which uses a value handler to automatically deletes the 91 /// memory block when the GlobalVariable is destroyed. 92 class GVMemoryBlock : public CallbackVH { 93 GVMemoryBlock(const GlobalVariable *GV) 94 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 95 96 public: 97 /// \brief Returns the address the GlobalVariable should be written into. The 98 /// GVMemoryBlock object prefixes that. 99 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 100 Type *ElTy = GV->getType()->getElementType(); 101 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 102 void *RawMemory = ::operator new( 103 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 104 TD.getPreferredAlignment(GV)) 105 + GVSize); 106 new(RawMemory) GVMemoryBlock(GV); 107 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 108 } 109 110 void deleted() override { 111 // We allocated with operator new and with some extra memory hanging off the 112 // end, so don't just delete this. I'm not sure if this is actually 113 // required. 114 this->~GVMemoryBlock(); 115 ::operator delete(this); 116 } 117 }; 118 } // anonymous namespace 119 120 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 121 return GVMemoryBlock::Create(GV, *getDataLayout()); 122 } 123 124 bool ExecutionEngine::removeModule(Module *M) { 125 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 126 E = Modules.end(); I != E; ++I) { 127 Module *Found = *I; 128 if (Found == M) { 129 Modules.erase(I); 130 clearGlobalMappingsFromModule(M); 131 return true; 132 } 133 } 134 return false; 135 } 136 137 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 138 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 139 if (Function *F = Modules[i]->getFunction(FnName)) 140 return F; 141 } 142 return nullptr; 143 } 144 145 146 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 147 const GlobalValue *ToUnmap) { 148 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 149 void *OldVal; 150 151 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 152 // GlobalAddressMap. 153 if (I == GlobalAddressMap.end()) 154 OldVal = nullptr; 155 else { 156 OldVal = I->second; 157 GlobalAddressMap.erase(I); 158 } 159 160 GlobalAddressReverseMap.erase(OldVal); 161 return OldVal; 162 } 163 164 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 165 MutexGuard locked(lock); 166 167 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 168 << "\' to [" << Addr << "]\n";); 169 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 170 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 171 CurVal = Addr; 172 173 // If we are using the reverse mapping, add it too. 174 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 175 AssertingVH<const GlobalValue> &V = 176 EEState.getGlobalAddressReverseMap(locked)[Addr]; 177 assert((!V || !GV) && "GlobalMapping already established!"); 178 V = GV; 179 } 180 } 181 182 void ExecutionEngine::clearAllGlobalMappings() { 183 MutexGuard locked(lock); 184 185 EEState.getGlobalAddressMap(locked).clear(); 186 EEState.getGlobalAddressReverseMap(locked).clear(); 187 } 188 189 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 190 MutexGuard locked(lock); 191 192 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 193 EEState.RemoveMapping(locked, FI); 194 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 195 GI != GE; ++GI) 196 EEState.RemoveMapping(locked, GI); 197 } 198 199 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 200 MutexGuard locked(lock); 201 202 ExecutionEngineState::GlobalAddressMapTy &Map = 203 EEState.getGlobalAddressMap(locked); 204 205 // Deleting from the mapping? 206 if (!Addr) 207 return EEState.RemoveMapping(locked, GV); 208 209 void *&CurVal = Map[GV]; 210 void *OldVal = CurVal; 211 212 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 213 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 214 CurVal = Addr; 215 216 // If we are using the reverse mapping, add it too. 217 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 218 AssertingVH<const GlobalValue> &V = 219 EEState.getGlobalAddressReverseMap(locked)[Addr]; 220 assert((!V || !GV) && "GlobalMapping already established!"); 221 V = GV; 222 } 223 return OldVal; 224 } 225 226 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 227 MutexGuard locked(lock); 228 229 ExecutionEngineState::GlobalAddressMapTy::iterator I = 230 EEState.getGlobalAddressMap(locked).find(GV); 231 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : nullptr; 232 } 233 234 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 235 MutexGuard locked(lock); 236 237 // If we haven't computed the reverse mapping yet, do so first. 238 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 239 for (ExecutionEngineState::GlobalAddressMapTy::iterator 240 I = EEState.getGlobalAddressMap(locked).begin(), 241 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 242 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 243 I->second, I->first)); 244 } 245 246 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 247 EEState.getGlobalAddressReverseMap(locked).find(Addr); 248 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : nullptr; 249 } 250 251 namespace { 252 class ArgvArray { 253 char *Array; 254 std::vector<char*> Values; 255 public: 256 ArgvArray() : Array(nullptr) {} 257 ~ArgvArray() { clear(); } 258 void clear() { 259 delete[] Array; 260 Array = nullptr; 261 for (size_t I = 0, E = Values.size(); I != E; ++I) { 262 delete[] Values[I]; 263 } 264 Values.clear(); 265 } 266 /// Turn a vector of strings into a nice argv style array of pointers to null 267 /// terminated strings. 268 void *reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv); 270 }; 271 } // anonymous namespace 272 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 273 const std::vector<std::string> &InputArgv) { 274 clear(); // Free the old contents. 275 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 276 Array = new char[(InputArgv.size()+1)*PtrSize]; 277 278 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 279 Type *SBytePtr = Type::getInt8PtrTy(C); 280 281 for (unsigned i = 0; i != InputArgv.size(); ++i) { 282 unsigned Size = InputArgv[i].size()+1; 283 char *Dest = new char[Size]; 284 Values.push_back(Dest); 285 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 286 287 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 288 Dest[Size-1] = 0; 289 290 // Endian safe: Array[i] = (PointerTy)Dest; 291 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 292 SBytePtr); 293 } 294 295 // Null terminate it 296 EE->StoreValueToMemory(PTOGV(nullptr), 297 (GenericValue*)(Array+InputArgv.size()*PtrSize), 298 SBytePtr); 299 return Array; 300 } 301 302 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 303 bool isDtors) { 304 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 305 GlobalVariable *GV = module->getNamedGlobal(Name); 306 307 // If this global has internal linkage, or if it has a use, then it must be 308 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 309 // this is the case, don't execute any of the global ctors, __main will do 310 // it. 311 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 312 313 // Should be an array of '{ i32, void ()* }' structs. The first value is 314 // the init priority, which we ignore. 315 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 316 if (!InitList) 317 return; 318 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 319 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 320 if (!CS) continue; 321 322 Constant *FP = CS->getOperand(1); 323 if (FP->isNullValue()) 324 continue; // Found a sentinal value, ignore. 325 326 // Strip off constant expression casts. 327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 328 if (CE->isCast()) 329 FP = CE->getOperand(0); 330 331 // Execute the ctor/dtor function! 332 if (Function *F = dyn_cast<Function>(FP)) 333 runFunction(F, std::vector<GenericValue>()); 334 335 // FIXME: It is marginally lame that we just do nothing here if we see an 336 // entry we don't recognize. It might not be unreasonable for the verifier 337 // to not even allow this and just assert here. 338 } 339 } 340 341 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 342 // Execute global ctors/dtors for each module in the program. 343 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 344 runStaticConstructorsDestructors(Modules[i], isDtors); 345 } 346 347 #ifndef NDEBUG 348 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 349 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 350 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 351 for (unsigned i = 0; i < PtrSize; ++i) 352 if (*(i + (uint8_t*)Loc)) 353 return false; 354 return true; 355 } 356 #endif 357 358 int ExecutionEngine::runFunctionAsMain(Function *Fn, 359 const std::vector<std::string> &argv, 360 const char * const * envp) { 361 std::vector<GenericValue> GVArgs; 362 GenericValue GVArgc; 363 GVArgc.IntVal = APInt(32, argv.size()); 364 365 // Check main() type 366 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 367 FunctionType *FTy = Fn->getFunctionType(); 368 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 369 370 // Check the argument types. 371 if (NumArgs > 3) 372 report_fatal_error("Invalid number of arguments of main() supplied"); 373 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 374 report_fatal_error("Invalid type for third argument of main() supplied"); 375 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 376 report_fatal_error("Invalid type for second argument of main() supplied"); 377 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 378 report_fatal_error("Invalid type for first argument of main() supplied"); 379 if (!FTy->getReturnType()->isIntegerTy() && 380 !FTy->getReturnType()->isVoidTy()) 381 report_fatal_error("Invalid return type of main() supplied"); 382 383 ArgvArray CArgv; 384 ArgvArray CEnv; 385 if (NumArgs) { 386 GVArgs.push_back(GVArgc); // Arg #0 = argc. 387 if (NumArgs > 1) { 388 // Arg #1 = argv. 389 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 390 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 391 "argv[0] was null after CreateArgv"); 392 if (NumArgs > 2) { 393 std::vector<std::string> EnvVars; 394 for (unsigned i = 0; envp[i]; ++i) 395 EnvVars.push_back(envp[i]); 396 // Arg #2 = envp. 397 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 398 } 399 } 400 } 401 402 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 403 } 404 405 ExecutionEngine *ExecutionEngine::create(Module *M, 406 bool ForceInterpreter, 407 std::string *ErrorStr, 408 CodeGenOpt::Level OptLevel, 409 bool GVsWithCode) { 410 EngineBuilder EB = EngineBuilder(M) 411 .setEngineKind(ForceInterpreter 412 ? EngineKind::Interpreter 413 : EngineKind::JIT) 414 .setErrorStr(ErrorStr) 415 .setOptLevel(OptLevel) 416 .setAllocateGVsWithCode(GVsWithCode); 417 418 return EB.create(); 419 } 420 421 /// createJIT - This is the factory method for creating a JIT for the current 422 /// machine, it does not fall back to the interpreter. This takes ownership 423 /// of the module. 424 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 425 std::string *ErrorStr, 426 JITMemoryManager *JMM, 427 CodeGenOpt::Level OL, 428 bool GVsWithCode, 429 Reloc::Model RM, 430 CodeModel::Model CMM) { 431 if (!ExecutionEngine::JITCtor) { 432 if (ErrorStr) 433 *ErrorStr = "JIT has not been linked in."; 434 return nullptr; 435 } 436 437 // Use the defaults for extra parameters. Users can use EngineBuilder to 438 // set them. 439 EngineBuilder EB(M); 440 EB.setEngineKind(EngineKind::JIT); 441 EB.setErrorStr(ErrorStr); 442 EB.setRelocationModel(RM); 443 EB.setCodeModel(CMM); 444 EB.setAllocateGVsWithCode(GVsWithCode); 445 EB.setOptLevel(OL); 446 EB.setJITMemoryManager(JMM); 447 448 // TODO: permit custom TargetOptions here 449 TargetMachine *TM = EB.selectTarget(); 450 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return nullptr; 451 452 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 453 } 454 455 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 456 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 457 458 // Make sure we can resolve symbols in the program as well. The zero arg 459 // to the function tells DynamicLibrary to load the program, not a library. 460 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 461 return nullptr; 462 463 assert(!(JMM && MCJMM)); 464 465 // If the user specified a memory manager but didn't specify which engine to 466 // create, we assume they only want the JIT, and we fail if they only want 467 // the interpreter. 468 if (JMM || MCJMM) { 469 if (WhichEngine & EngineKind::JIT) 470 WhichEngine = EngineKind::JIT; 471 else { 472 if (ErrorStr) 473 *ErrorStr = "Cannot create an interpreter with a memory manager."; 474 return nullptr; 475 } 476 } 477 478 if (MCJMM && ! UseMCJIT) { 479 if (ErrorStr) 480 *ErrorStr = 481 "Cannot create a legacy JIT with a runtime dyld memory " 482 "manager."; 483 return nullptr; 484 } 485 486 // Unless the interpreter was explicitly selected or the JIT is not linked, 487 // try making a JIT. 488 if ((WhichEngine & EngineKind::JIT) && TheTM) { 489 Triple TT(M->getTargetTriple()); 490 if (!TM->getTarget().hasJIT()) { 491 errs() << "WARNING: This target JIT is not designed for the host" 492 << " you are running. If bad things happen, please choose" 493 << " a different -march switch.\n"; 494 } 495 496 ExecutionEngine *EE = nullptr; 497 if (UseMCJIT && ExecutionEngine::MCJITCtor) 498 EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 499 AllocateGVsWithCode, TheTM.release()); 500 else if (ExecutionEngine::JITCtor) 501 EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM, 502 AllocateGVsWithCode, TheTM.release()); 503 504 if (EE) { 505 EE->setVerifyModules(VerifyModules); 506 return EE; 507 } 508 } 509 510 // If we can't make a JIT and we didn't request one specifically, try making 511 // an interpreter instead. 512 if (WhichEngine & EngineKind::Interpreter) { 513 if (ExecutionEngine::InterpCtor) 514 return ExecutionEngine::InterpCtor(M, ErrorStr); 515 if (ErrorStr) 516 *ErrorStr = "Interpreter has not been linked in."; 517 return nullptr; 518 } 519 520 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 521 !ExecutionEngine::MCJITCtor) { 522 if (ErrorStr) 523 *ErrorStr = "JIT has not been linked in."; 524 } 525 526 return nullptr; 527 } 528 529 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 530 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 531 return getPointerToFunction(F); 532 533 MutexGuard locked(lock); 534 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 535 return P; 536 537 // Global variable might have been added since interpreter started. 538 if (GlobalVariable *GVar = 539 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 540 EmitGlobalVariable(GVar); 541 else 542 llvm_unreachable("Global hasn't had an address allocated yet!"); 543 544 return EEState.getGlobalAddressMap(locked)[GV]; 545 } 546 547 /// \brief Converts a Constant* into a GenericValue, including handling of 548 /// ConstantExpr values. 549 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 550 // If its undefined, return the garbage. 551 if (isa<UndefValue>(C)) { 552 GenericValue Result; 553 switch (C->getType()->getTypeID()) { 554 default: 555 break; 556 case Type::IntegerTyID: 557 case Type::X86_FP80TyID: 558 case Type::FP128TyID: 559 case Type::PPC_FP128TyID: 560 // Although the value is undefined, we still have to construct an APInt 561 // with the correct bit width. 562 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 563 break; 564 case Type::StructTyID: { 565 // if the whole struct is 'undef' just reserve memory for the value. 566 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 567 unsigned int elemNum = STy->getNumElements(); 568 Result.AggregateVal.resize(elemNum); 569 for (unsigned int i = 0; i < elemNum; ++i) { 570 Type *ElemTy = STy->getElementType(i); 571 if (ElemTy->isIntegerTy()) 572 Result.AggregateVal[i].IntVal = 573 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 574 else if (ElemTy->isAggregateType()) { 575 const Constant *ElemUndef = UndefValue::get(ElemTy); 576 Result.AggregateVal[i] = getConstantValue(ElemUndef); 577 } 578 } 579 } 580 } 581 break; 582 case Type::VectorTyID: 583 // if the whole vector is 'undef' just reserve memory for the value. 584 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 585 const Type *ElemTy = VTy->getElementType(); 586 unsigned int elemNum = VTy->getNumElements(); 587 Result.AggregateVal.resize(elemNum); 588 if (ElemTy->isIntegerTy()) 589 for (unsigned int i = 0; i < elemNum; ++i) 590 Result.AggregateVal[i].IntVal = 591 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 592 break; 593 } 594 return Result; 595 } 596 597 // Otherwise, if the value is a ConstantExpr... 598 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 599 Constant *Op0 = CE->getOperand(0); 600 switch (CE->getOpcode()) { 601 case Instruction::GetElementPtr: { 602 // Compute the index 603 GenericValue Result = getConstantValue(Op0); 604 APInt Offset(DL->getPointerSizeInBits(), 0); 605 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 606 607 char* tmp = (char*) Result.PointerVal; 608 Result = PTOGV(tmp + Offset.getSExtValue()); 609 return Result; 610 } 611 case Instruction::Trunc: { 612 GenericValue GV = getConstantValue(Op0); 613 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 614 GV.IntVal = GV.IntVal.trunc(BitWidth); 615 return GV; 616 } 617 case Instruction::ZExt: { 618 GenericValue GV = getConstantValue(Op0); 619 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 620 GV.IntVal = GV.IntVal.zext(BitWidth); 621 return GV; 622 } 623 case Instruction::SExt: { 624 GenericValue GV = getConstantValue(Op0); 625 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 626 GV.IntVal = GV.IntVal.sext(BitWidth); 627 return GV; 628 } 629 case Instruction::FPTrunc: { 630 // FIXME long double 631 GenericValue GV = getConstantValue(Op0); 632 GV.FloatVal = float(GV.DoubleVal); 633 return GV; 634 } 635 case Instruction::FPExt:{ 636 // FIXME long double 637 GenericValue GV = getConstantValue(Op0); 638 GV.DoubleVal = double(GV.FloatVal); 639 return GV; 640 } 641 case Instruction::UIToFP: { 642 GenericValue GV = getConstantValue(Op0); 643 if (CE->getType()->isFloatTy()) 644 GV.FloatVal = float(GV.IntVal.roundToDouble()); 645 else if (CE->getType()->isDoubleTy()) 646 GV.DoubleVal = GV.IntVal.roundToDouble(); 647 else if (CE->getType()->isX86_FP80Ty()) { 648 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 649 (void)apf.convertFromAPInt(GV.IntVal, 650 false, 651 APFloat::rmNearestTiesToEven); 652 GV.IntVal = apf.bitcastToAPInt(); 653 } 654 return GV; 655 } 656 case Instruction::SIToFP: { 657 GenericValue GV = getConstantValue(Op0); 658 if (CE->getType()->isFloatTy()) 659 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 660 else if (CE->getType()->isDoubleTy()) 661 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 662 else if (CE->getType()->isX86_FP80Ty()) { 663 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 664 (void)apf.convertFromAPInt(GV.IntVal, 665 true, 666 APFloat::rmNearestTiesToEven); 667 GV.IntVal = apf.bitcastToAPInt(); 668 } 669 return GV; 670 } 671 case Instruction::FPToUI: // double->APInt conversion handles sign 672 case Instruction::FPToSI: { 673 GenericValue GV = getConstantValue(Op0); 674 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 675 if (Op0->getType()->isFloatTy()) 676 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 677 else if (Op0->getType()->isDoubleTy()) 678 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 679 else if (Op0->getType()->isX86_FP80Ty()) { 680 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 681 uint64_t v; 682 bool ignored; 683 (void)apf.convertToInteger(&v, BitWidth, 684 CE->getOpcode()==Instruction::FPToSI, 685 APFloat::rmTowardZero, &ignored); 686 GV.IntVal = v; // endian? 687 } 688 return GV; 689 } 690 case Instruction::PtrToInt: { 691 GenericValue GV = getConstantValue(Op0); 692 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 693 assert(PtrWidth <= 64 && "Bad pointer width"); 694 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 695 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 696 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 697 return GV; 698 } 699 case Instruction::IntToPtr: { 700 GenericValue GV = getConstantValue(Op0); 701 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 702 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 703 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 704 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 705 return GV; 706 } 707 case Instruction::BitCast: { 708 GenericValue GV = getConstantValue(Op0); 709 Type* DestTy = CE->getType(); 710 switch (Op0->getType()->getTypeID()) { 711 default: llvm_unreachable("Invalid bitcast operand"); 712 case Type::IntegerTyID: 713 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 714 if (DestTy->isFloatTy()) 715 GV.FloatVal = GV.IntVal.bitsToFloat(); 716 else if (DestTy->isDoubleTy()) 717 GV.DoubleVal = GV.IntVal.bitsToDouble(); 718 break; 719 case Type::FloatTyID: 720 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 721 GV.IntVal = APInt::floatToBits(GV.FloatVal); 722 break; 723 case Type::DoubleTyID: 724 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 725 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 726 break; 727 case Type::PointerTyID: 728 assert(DestTy->isPointerTy() && "Invalid bitcast"); 729 break; // getConstantValue(Op0) above already converted it 730 } 731 return GV; 732 } 733 case Instruction::Add: 734 case Instruction::FAdd: 735 case Instruction::Sub: 736 case Instruction::FSub: 737 case Instruction::Mul: 738 case Instruction::FMul: 739 case Instruction::UDiv: 740 case Instruction::SDiv: 741 case Instruction::URem: 742 case Instruction::SRem: 743 case Instruction::And: 744 case Instruction::Or: 745 case Instruction::Xor: { 746 GenericValue LHS = getConstantValue(Op0); 747 GenericValue RHS = getConstantValue(CE->getOperand(1)); 748 GenericValue GV; 749 switch (CE->getOperand(0)->getType()->getTypeID()) { 750 default: llvm_unreachable("Bad add type!"); 751 case Type::IntegerTyID: 752 switch (CE->getOpcode()) { 753 default: llvm_unreachable("Invalid integer opcode"); 754 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 755 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 756 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 757 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 758 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 759 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 760 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 761 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 762 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 763 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 764 } 765 break; 766 case Type::FloatTyID: 767 switch (CE->getOpcode()) { 768 default: llvm_unreachable("Invalid float opcode"); 769 case Instruction::FAdd: 770 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 771 case Instruction::FSub: 772 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 773 case Instruction::FMul: 774 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 775 case Instruction::FDiv: 776 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 777 case Instruction::FRem: 778 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 779 } 780 break; 781 case Type::DoubleTyID: 782 switch (CE->getOpcode()) { 783 default: llvm_unreachable("Invalid double opcode"); 784 case Instruction::FAdd: 785 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 786 case Instruction::FSub: 787 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 788 case Instruction::FMul: 789 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 790 case Instruction::FDiv: 791 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 792 case Instruction::FRem: 793 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 794 } 795 break; 796 case Type::X86_FP80TyID: 797 case Type::PPC_FP128TyID: 798 case Type::FP128TyID: { 799 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 800 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 801 switch (CE->getOpcode()) { 802 default: llvm_unreachable("Invalid long double opcode"); 803 case Instruction::FAdd: 804 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 805 GV.IntVal = apfLHS.bitcastToAPInt(); 806 break; 807 case Instruction::FSub: 808 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 809 APFloat::rmNearestTiesToEven); 810 GV.IntVal = apfLHS.bitcastToAPInt(); 811 break; 812 case Instruction::FMul: 813 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 814 APFloat::rmNearestTiesToEven); 815 GV.IntVal = apfLHS.bitcastToAPInt(); 816 break; 817 case Instruction::FDiv: 818 apfLHS.divide(APFloat(Sem, RHS.IntVal), 819 APFloat::rmNearestTiesToEven); 820 GV.IntVal = apfLHS.bitcastToAPInt(); 821 break; 822 case Instruction::FRem: 823 apfLHS.mod(APFloat(Sem, RHS.IntVal), 824 APFloat::rmNearestTiesToEven); 825 GV.IntVal = apfLHS.bitcastToAPInt(); 826 break; 827 } 828 } 829 break; 830 } 831 return GV; 832 } 833 default: 834 break; 835 } 836 837 SmallString<256> Msg; 838 raw_svector_ostream OS(Msg); 839 OS << "ConstantExpr not handled: " << *CE; 840 report_fatal_error(OS.str()); 841 } 842 843 // Otherwise, we have a simple constant. 844 GenericValue Result; 845 switch (C->getType()->getTypeID()) { 846 case Type::FloatTyID: 847 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 848 break; 849 case Type::DoubleTyID: 850 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 851 break; 852 case Type::X86_FP80TyID: 853 case Type::FP128TyID: 854 case Type::PPC_FP128TyID: 855 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 856 break; 857 case Type::IntegerTyID: 858 Result.IntVal = cast<ConstantInt>(C)->getValue(); 859 break; 860 case Type::PointerTyID: 861 if (isa<ConstantPointerNull>(C)) 862 Result.PointerVal = nullptr; 863 else if (const Function *F = dyn_cast<Function>(C)) 864 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 865 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 866 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 867 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 868 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 869 BA->getBasicBlock()))); 870 else 871 llvm_unreachable("Unknown constant pointer type!"); 872 break; 873 case Type::VectorTyID: { 874 unsigned elemNum; 875 Type* ElemTy; 876 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 877 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 878 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 879 880 if (CDV) { 881 elemNum = CDV->getNumElements(); 882 ElemTy = CDV->getElementType(); 883 } else if (CV || CAZ) { 884 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 885 elemNum = VTy->getNumElements(); 886 ElemTy = VTy->getElementType(); 887 } else { 888 llvm_unreachable("Unknown constant vector type!"); 889 } 890 891 Result.AggregateVal.resize(elemNum); 892 // Check if vector holds floats. 893 if(ElemTy->isFloatTy()) { 894 if (CAZ) { 895 GenericValue floatZero; 896 floatZero.FloatVal = 0.f; 897 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 898 floatZero); 899 break; 900 } 901 if(CV) { 902 for (unsigned i = 0; i < elemNum; ++i) 903 if (!isa<UndefValue>(CV->getOperand(i))) 904 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 905 CV->getOperand(i))->getValueAPF().convertToFloat(); 906 break; 907 } 908 if(CDV) 909 for (unsigned i = 0; i < elemNum; ++i) 910 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 911 912 break; 913 } 914 // Check if vector holds doubles. 915 if (ElemTy->isDoubleTy()) { 916 if (CAZ) { 917 GenericValue doubleZero; 918 doubleZero.DoubleVal = 0.0; 919 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 920 doubleZero); 921 break; 922 } 923 if(CV) { 924 for (unsigned i = 0; i < elemNum; ++i) 925 if (!isa<UndefValue>(CV->getOperand(i))) 926 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 927 CV->getOperand(i))->getValueAPF().convertToDouble(); 928 break; 929 } 930 if(CDV) 931 for (unsigned i = 0; i < elemNum; ++i) 932 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 933 934 break; 935 } 936 // Check if vector holds integers. 937 if (ElemTy->isIntegerTy()) { 938 if (CAZ) { 939 GenericValue intZero; 940 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 941 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 942 intZero); 943 break; 944 } 945 if(CV) { 946 for (unsigned i = 0; i < elemNum; ++i) 947 if (!isa<UndefValue>(CV->getOperand(i))) 948 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 949 CV->getOperand(i))->getValue(); 950 else { 951 Result.AggregateVal[i].IntVal = 952 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 953 } 954 break; 955 } 956 if(CDV) 957 for (unsigned i = 0; i < elemNum; ++i) 958 Result.AggregateVal[i].IntVal = APInt( 959 CDV->getElementType()->getPrimitiveSizeInBits(), 960 CDV->getElementAsInteger(i)); 961 962 break; 963 } 964 llvm_unreachable("Unknown constant pointer type!"); 965 } 966 break; 967 968 default: 969 SmallString<256> Msg; 970 raw_svector_ostream OS(Msg); 971 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 972 report_fatal_error(OS.str()); 973 } 974 975 return Result; 976 } 977 978 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 979 /// with the integer held in IntVal. 980 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 981 unsigned StoreBytes) { 982 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 983 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 984 985 if (sys::IsLittleEndianHost) { 986 // Little-endian host - the source is ordered from LSB to MSB. Order the 987 // destination from LSB to MSB: Do a straight copy. 988 memcpy(Dst, Src, StoreBytes); 989 } else { 990 // Big-endian host - the source is an array of 64 bit words ordered from 991 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 992 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 993 while (StoreBytes > sizeof(uint64_t)) { 994 StoreBytes -= sizeof(uint64_t); 995 // May not be aligned so use memcpy. 996 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 997 Src += sizeof(uint64_t); 998 } 999 1000 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1001 } 1002 } 1003 1004 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1005 GenericValue *Ptr, Type *Ty) { 1006 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 1007 1008 switch (Ty->getTypeID()) { 1009 default: 1010 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1011 break; 1012 case Type::IntegerTyID: 1013 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1014 break; 1015 case Type::FloatTyID: 1016 *((float*)Ptr) = Val.FloatVal; 1017 break; 1018 case Type::DoubleTyID: 1019 *((double*)Ptr) = Val.DoubleVal; 1020 break; 1021 case Type::X86_FP80TyID: 1022 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1023 break; 1024 case Type::PointerTyID: 1025 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1026 if (StoreBytes != sizeof(PointerTy)) 1027 memset(&(Ptr->PointerVal), 0, StoreBytes); 1028 1029 *((PointerTy*)Ptr) = Val.PointerVal; 1030 break; 1031 case Type::VectorTyID: 1032 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1033 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1034 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1035 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1036 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1037 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1038 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1039 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1040 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1041 } 1042 } 1043 break; 1044 } 1045 1046 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1047 // Host and target are different endian - reverse the stored bytes. 1048 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1049 } 1050 1051 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1052 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1053 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1054 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1055 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1056 const_cast<uint64_t *>(IntVal.getRawData())); 1057 1058 if (sys::IsLittleEndianHost) 1059 // Little-endian host - the destination must be ordered from LSB to MSB. 1060 // The source is ordered from LSB to MSB: Do a straight copy. 1061 memcpy(Dst, Src, LoadBytes); 1062 else { 1063 // Big-endian - the destination is an array of 64 bit words ordered from 1064 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1065 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1066 // a word. 1067 while (LoadBytes > sizeof(uint64_t)) { 1068 LoadBytes -= sizeof(uint64_t); 1069 // May not be aligned so use memcpy. 1070 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1071 Dst += sizeof(uint64_t); 1072 } 1073 1074 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1075 } 1076 } 1077 1078 /// FIXME: document 1079 /// 1080 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1081 GenericValue *Ptr, 1082 Type *Ty) { 1083 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1084 1085 switch (Ty->getTypeID()) { 1086 case Type::IntegerTyID: 1087 // An APInt with all words initially zero. 1088 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1089 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1090 break; 1091 case Type::FloatTyID: 1092 Result.FloatVal = *((float*)Ptr); 1093 break; 1094 case Type::DoubleTyID: 1095 Result.DoubleVal = *((double*)Ptr); 1096 break; 1097 case Type::PointerTyID: 1098 Result.PointerVal = *((PointerTy*)Ptr); 1099 break; 1100 case Type::X86_FP80TyID: { 1101 // This is endian dependent, but it will only work on x86 anyway. 1102 // FIXME: Will not trap if loading a signaling NaN. 1103 uint64_t y[2]; 1104 memcpy(y, Ptr, 10); 1105 Result.IntVal = APInt(80, y); 1106 break; 1107 } 1108 case Type::VectorTyID: { 1109 const VectorType *VT = cast<VectorType>(Ty); 1110 const Type *ElemT = VT->getElementType(); 1111 const unsigned numElems = VT->getNumElements(); 1112 if (ElemT->isFloatTy()) { 1113 Result.AggregateVal.resize(numElems); 1114 for (unsigned i = 0; i < numElems; ++i) 1115 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1116 } 1117 if (ElemT->isDoubleTy()) { 1118 Result.AggregateVal.resize(numElems); 1119 for (unsigned i = 0; i < numElems; ++i) 1120 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1121 } 1122 if (ElemT->isIntegerTy()) { 1123 GenericValue intZero; 1124 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1125 intZero.IntVal = APInt(elemBitWidth, 0); 1126 Result.AggregateVal.resize(numElems, intZero); 1127 for (unsigned i = 0; i < numElems; ++i) 1128 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1129 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1130 } 1131 break; 1132 } 1133 default: 1134 SmallString<256> Msg; 1135 raw_svector_ostream OS(Msg); 1136 OS << "Cannot load value of type " << *Ty << "!"; 1137 report_fatal_error(OS.str()); 1138 } 1139 } 1140 1141 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1142 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1143 DEBUG(Init->dump()); 1144 if (isa<UndefValue>(Init)) 1145 return; 1146 1147 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1148 unsigned ElementSize = 1149 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1150 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1151 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1152 return; 1153 } 1154 1155 if (isa<ConstantAggregateZero>(Init)) { 1156 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1157 return; 1158 } 1159 1160 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1161 unsigned ElementSize = 1162 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1163 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1164 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1165 return; 1166 } 1167 1168 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1169 const StructLayout *SL = 1170 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1171 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1172 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1173 return; 1174 } 1175 1176 if (const ConstantDataSequential *CDS = 1177 dyn_cast<ConstantDataSequential>(Init)) { 1178 // CDS is already laid out in host memory order. 1179 StringRef Data = CDS->getRawDataValues(); 1180 memcpy(Addr, Data.data(), Data.size()); 1181 return; 1182 } 1183 1184 if (Init->getType()->isFirstClassType()) { 1185 GenericValue Val = getConstantValue(Init); 1186 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1187 return; 1188 } 1189 1190 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1191 llvm_unreachable("Unknown constant type to initialize memory with!"); 1192 } 1193 1194 /// EmitGlobals - Emit all of the global variables to memory, storing their 1195 /// addresses into GlobalAddress. This must make sure to copy the contents of 1196 /// their initializers into the memory. 1197 void ExecutionEngine::emitGlobals() { 1198 // Loop over all of the global variables in the program, allocating the memory 1199 // to hold them. If there is more than one module, do a prepass over globals 1200 // to figure out how the different modules should link together. 1201 std::map<std::pair<std::string, Type*>, 1202 const GlobalValue*> LinkedGlobalsMap; 1203 1204 if (Modules.size() != 1) { 1205 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1206 Module &M = *Modules[m]; 1207 for (Module::const_global_iterator I = M.global_begin(), 1208 E = M.global_end(); I != E; ++I) { 1209 const GlobalValue *GV = I; 1210 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1211 GV->hasAppendingLinkage() || !GV->hasName()) 1212 continue;// Ignore external globals and globals with internal linkage. 1213 1214 const GlobalValue *&GVEntry = 1215 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1216 1217 // If this is the first time we've seen this global, it is the canonical 1218 // version. 1219 if (!GVEntry) { 1220 GVEntry = GV; 1221 continue; 1222 } 1223 1224 // If the existing global is strong, never replace it. 1225 if (GVEntry->hasExternalLinkage()) 1226 continue; 1227 1228 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1229 // symbol. FIXME is this right for common? 1230 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1231 GVEntry = GV; 1232 } 1233 } 1234 } 1235 1236 std::vector<const GlobalValue*> NonCanonicalGlobals; 1237 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1238 Module &M = *Modules[m]; 1239 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1240 I != E; ++I) { 1241 // In the multi-module case, see what this global maps to. 1242 if (!LinkedGlobalsMap.empty()) { 1243 if (const GlobalValue *GVEntry = 1244 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1245 // If something else is the canonical global, ignore this one. 1246 if (GVEntry != &*I) { 1247 NonCanonicalGlobals.push_back(I); 1248 continue; 1249 } 1250 } 1251 } 1252 1253 if (!I->isDeclaration()) { 1254 addGlobalMapping(I, getMemoryForGV(I)); 1255 } else { 1256 // External variable reference. Try to use the dynamic loader to 1257 // get a pointer to it. 1258 if (void *SymAddr = 1259 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1260 addGlobalMapping(I, SymAddr); 1261 else { 1262 report_fatal_error("Could not resolve external global address: " 1263 +I->getName()); 1264 } 1265 } 1266 } 1267 1268 // If there are multiple modules, map the non-canonical globals to their 1269 // canonical location. 1270 if (!NonCanonicalGlobals.empty()) { 1271 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1272 const GlobalValue *GV = NonCanonicalGlobals[i]; 1273 const GlobalValue *CGV = 1274 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1275 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1276 assert(Ptr && "Canonical global wasn't codegen'd!"); 1277 addGlobalMapping(GV, Ptr); 1278 } 1279 } 1280 1281 // Now that all of the globals are set up in memory, loop through them all 1282 // and initialize their contents. 1283 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1284 I != E; ++I) { 1285 if (!I->isDeclaration()) { 1286 if (!LinkedGlobalsMap.empty()) { 1287 if (const GlobalValue *GVEntry = 1288 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1289 if (GVEntry != &*I) // Not the canonical variable. 1290 continue; 1291 } 1292 EmitGlobalVariable(I); 1293 } 1294 } 1295 } 1296 } 1297 1298 // EmitGlobalVariable - This method emits the specified global variable to the 1299 // address specified in GlobalAddresses, or allocates new memory if it's not 1300 // already in the map. 1301 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1302 void *GA = getPointerToGlobalIfAvailable(GV); 1303 1304 if (!GA) { 1305 // If it's not already specified, allocate memory for the global. 1306 GA = getMemoryForGV(GV); 1307 1308 // If we failed to allocate memory for this global, return. 1309 if (!GA) return; 1310 1311 addGlobalMapping(GV, GA); 1312 } 1313 1314 // Don't initialize if it's thread local, let the client do it. 1315 if (!GV->isThreadLocal()) 1316 InitializeMemory(GV->getInitializer(), GA); 1317 1318 Type *ElTy = GV->getType()->getElementType(); 1319 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1320 NumInitBytes += (unsigned)GVSize; 1321 ++NumGlobals; 1322 } 1323 1324 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1325 : EE(EE), GlobalAddressMap(this) { 1326 } 1327 1328 sys::Mutex * 1329 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1330 return &EES->EE.lock; 1331 } 1332 1333 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1334 const GlobalValue *Old) { 1335 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1336 EES->GlobalAddressReverseMap.erase(OldVal); 1337 } 1338 1339 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1340 const GlobalValue *, 1341 const GlobalValue *) { 1342 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1343 " RAUW on a value it has a global mapping for."); 1344 } 1345