1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 using namespace llvm; 28 29 namespace { 30 Statistic NumInitBytes("lli", "Number of bytes of global vars initialized"); 31 Statistic NumGlobals ("lli", "Number of global vars initialized"); 32 } 33 34 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 35 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 36 37 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 38 LazyCompilationDisabled = false; 39 Modules.push_back(P); 40 assert(P && "ModuleProvider is null?"); 41 } 42 43 ExecutionEngine::ExecutionEngine(Module *M) { 44 LazyCompilationDisabled = false; 45 assert(M && "Module is null?"); 46 Modules.push_back(new ExistingModuleProvider(M)); 47 } 48 49 ExecutionEngine::~ExecutionEngine() { 50 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 51 delete Modules[i]; 52 } 53 54 /// FindFunctionNamed - Search all of the active modules to find the one that 55 /// defines FnName. This is very slow operation and shouldn't be used for 56 /// general code. 57 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 58 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 59 if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) 60 return F; 61 } 62 return 0; 63 } 64 65 66 /// addGlobalMapping - Tell the execution engine that the specified global is 67 /// at the specified location. This is used internally as functions are JIT'd 68 /// and as global variables are laid out in memory. It can and should also be 69 /// used by clients of the EE that want to have an LLVM global overlay 70 /// existing data in memory. 71 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 72 MutexGuard locked(lock); 73 74 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 75 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 76 CurVal = Addr; 77 78 // If we are using the reverse mapping, add it too 79 if (!state.getGlobalAddressReverseMap(locked).empty()) { 80 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 81 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 82 V = GV; 83 } 84 } 85 86 /// clearAllGlobalMappings - Clear all global mappings and start over again 87 /// use in dynamic compilation scenarios when you want to move globals 88 void ExecutionEngine::clearAllGlobalMappings() { 89 MutexGuard locked(lock); 90 91 state.getGlobalAddressMap(locked).clear(); 92 state.getGlobalAddressReverseMap(locked).clear(); 93 } 94 95 /// updateGlobalMapping - Replace an existing mapping for GV with a new 96 /// address. This updates both maps as required. If "Addr" is null, the 97 /// entry for the global is removed from the mappings. 98 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 99 MutexGuard locked(lock); 100 101 // Deleting from the mapping? 102 if (Addr == 0) { 103 state.getGlobalAddressMap(locked).erase(GV); 104 if (!state.getGlobalAddressReverseMap(locked).empty()) 105 state.getGlobalAddressReverseMap(locked).erase(Addr); 106 return; 107 } 108 109 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 110 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 111 state.getGlobalAddressReverseMap(locked).erase(CurVal); 112 CurVal = Addr; 113 114 // If we are using the reverse mapping, add it too 115 if (!state.getGlobalAddressReverseMap(locked).empty()) { 116 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 117 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 118 V = GV; 119 } 120 } 121 122 /// getPointerToGlobalIfAvailable - This returns the address of the specified 123 /// global value if it is has already been codegen'd, otherwise it returns null. 124 /// 125 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 126 MutexGuard locked(lock); 127 128 std::map<const GlobalValue*, void*>::iterator I = 129 state.getGlobalAddressMap(locked).find(GV); 130 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 131 } 132 133 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 134 /// at the specified address. 135 /// 136 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 137 MutexGuard locked(lock); 138 139 // If we haven't computed the reverse mapping yet, do so first. 140 if (state.getGlobalAddressReverseMap(locked).empty()) { 141 for (std::map<const GlobalValue*, void *>::iterator 142 I = state.getGlobalAddressMap(locked).begin(), 143 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 144 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 145 I->first)); 146 } 147 148 std::map<void *, const GlobalValue*>::iterator I = 149 state.getGlobalAddressReverseMap(locked).find(Addr); 150 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 151 } 152 153 // CreateArgv - Turn a vector of strings into a nice argv style array of 154 // pointers to null terminated strings. 155 // 156 static void *CreateArgv(ExecutionEngine *EE, 157 const std::vector<std::string> &InputArgv) { 158 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 159 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 160 161 DOUT << "ARGV = " << (void*)Result << "\n"; 162 const Type *SBytePtr = PointerType::get(Type::SByteTy); 163 164 for (unsigned i = 0; i != InputArgv.size(); ++i) { 165 unsigned Size = InputArgv[i].size()+1; 166 char *Dest = new char[Size]; 167 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 168 169 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 170 Dest[Size-1] = 0; 171 172 // Endian safe: Result[i] = (PointerTy)Dest; 173 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 174 SBytePtr); 175 } 176 177 // Null terminate it 178 EE->StoreValueToMemory(PTOGV(0), 179 (GenericValue*)(Result+InputArgv.size()*PtrSize), 180 SBytePtr); 181 return Result; 182 } 183 184 185 /// runStaticConstructorsDestructors - This method is used to execute all of 186 /// the static constructors or destructors for a program, depending on the 187 /// value of isDtors. 188 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 189 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 190 191 // Execute global ctors/dtors for each module in the program. 192 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 193 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 194 195 // If this global has internal linkage, or if it has a use, then it must be 196 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 197 // this is the case, don't execute any of the global ctors, __main will do 198 // it. 199 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; 200 201 // Should be an array of '{ int, void ()* }' structs. The first value is 202 // the init priority, which we ignore. 203 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 204 if (!InitList) continue; 205 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 206 if (ConstantStruct *CS = 207 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 208 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 209 210 Constant *FP = CS->getOperand(1); 211 if (FP->isNullValue()) 212 break; // Found a null terminator, exit. 213 214 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 215 if (CE->isCast()) 216 FP = CE->getOperand(0); 217 if (Function *F = dyn_cast<Function>(FP)) { 218 // Execute the ctor/dtor function! 219 runFunction(F, std::vector<GenericValue>()); 220 } 221 } 222 } 223 } 224 225 /// runFunctionAsMain - This is a helper function which wraps runFunction to 226 /// handle the common task of starting up main with the specified argc, argv, 227 /// and envp parameters. 228 int ExecutionEngine::runFunctionAsMain(Function *Fn, 229 const std::vector<std::string> &argv, 230 const char * const * envp) { 231 std::vector<GenericValue> GVArgs; 232 GenericValue GVArgc; 233 GVArgc.IntVal = argv.size(); 234 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 235 if (NumArgs) { 236 GVArgs.push_back(GVArgc); // Arg #0 = argc. 237 if (NumArgs > 1) { 238 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 239 assert(((char **)GVTOP(GVArgs[1]))[0] && 240 "argv[0] was null after CreateArgv"); 241 if (NumArgs > 2) { 242 std::vector<std::string> EnvVars; 243 for (unsigned i = 0; envp[i]; ++i) 244 EnvVars.push_back(envp[i]); 245 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 246 } 247 } 248 } 249 return runFunction(Fn, GVArgs).IntVal; 250 } 251 252 /// If possible, create a JIT, unless the caller specifically requests an 253 /// Interpreter or there's an error. If even an Interpreter cannot be created, 254 /// NULL is returned. 255 /// 256 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 257 bool ForceInterpreter) { 258 ExecutionEngine *EE = 0; 259 260 // Unless the interpreter was explicitly selected, try making a JIT. 261 if (!ForceInterpreter && JITCtor) 262 EE = JITCtor(MP); 263 264 // If we can't make a JIT, make an interpreter instead. 265 if (EE == 0 && InterpCtor) 266 EE = InterpCtor(MP); 267 268 if (EE) { 269 // Make sure we can resolve symbols in the program as well. The zero arg 270 // to the function tells DynamicLibrary to load the program, not a library. 271 try { 272 sys::DynamicLibrary::LoadLibraryPermanently(0); 273 } catch (...) { 274 } 275 } 276 277 return EE; 278 } 279 280 /// getPointerToGlobal - This returns the address of the specified global 281 /// value. This may involve code generation if it's a function. 282 /// 283 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 284 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 285 return getPointerToFunction(F); 286 287 MutexGuard locked(lock); 288 void *p = state.getGlobalAddressMap(locked)[GV]; 289 if (p) 290 return p; 291 292 // Global variable might have been added since interpreter started. 293 if (GlobalVariable *GVar = 294 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 295 EmitGlobalVariable(GVar); 296 else 297 assert("Global hasn't had an address allocated yet!"); 298 return state.getGlobalAddressMap(locked)[GV]; 299 } 300 301 /// This function converts a Constant* into a GenericValue. The interesting 302 /// part is if C is a ConstantExpr. 303 /// @brief Get a GenericValue for a Constnat* 304 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 305 // Declare the result as garbage. 306 GenericValue Result; 307 308 // If its undefined, return the garbage. 309 if (isa<UndefValue>(C)) return Result; 310 311 // If the value is a ConstantExpr 312 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 313 switch (CE->getOpcode()) { 314 case Instruction::GetElementPtr: { 315 // Compute the index 316 Result = getConstantValue(CE->getOperand(0)); 317 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 318 uint64_t Offset = 319 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 320 321 if (getTargetData()->getPointerSize() == 4) 322 Result.IntVal += Offset; 323 else 324 Result.LongVal += Offset; 325 return Result; 326 } 327 case Instruction::Trunc: 328 case Instruction::ZExt: 329 case Instruction::SExt: 330 case Instruction::FPTrunc: 331 case Instruction::FPExt: 332 case Instruction::UIToFP: 333 case Instruction::SIToFP: 334 case Instruction::FPToUI: 335 case Instruction::FPToSI: 336 break; 337 case Instruction::PtrToInt: { 338 Constant *Op = CE->getOperand(0); 339 GenericValue GV = getConstantValue(Op); 340 return GV; 341 } 342 case Instruction::BitCast: { 343 // Bit casts are no-ops but we can only return the GV of the operand if 344 // they are the same basic type (pointer->pointer, packed->packed, etc.) 345 Constant *Op = CE->getOperand(0); 346 GenericValue GV = getConstantValue(Op); 347 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 348 return GV; 349 break; 350 } 351 case Instruction::IntToPtr: { 352 // IntToPtr casts are just so special. Cast to intptr_t first. 353 Constant *Op = CE->getOperand(0); 354 GenericValue GV = getConstantValue(Op); 355 switch (Op->getType()->getTypeID()) { 356 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 357 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 358 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 359 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 360 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 361 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 362 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 363 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 364 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 365 default: assert(0 && "Unknown integral type!"); 366 } 367 break; 368 } 369 case Instruction::Add: 370 switch (CE->getOperand(0)->getType()->getTypeID()) { 371 default: assert(0 && "Bad add type!"); abort(); 372 case Type::LongTyID: 373 case Type::ULongTyID: 374 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 375 getConstantValue(CE->getOperand(1)).LongVal; 376 break; 377 case Type::IntTyID: 378 case Type::UIntTyID: 379 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 380 getConstantValue(CE->getOperand(1)).IntVal; 381 break; 382 case Type::ShortTyID: 383 case Type::UShortTyID: 384 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 385 getConstantValue(CE->getOperand(1)).ShortVal; 386 break; 387 case Type::SByteTyID: 388 case Type::UByteTyID: 389 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 390 getConstantValue(CE->getOperand(1)).SByteVal; 391 break; 392 case Type::FloatTyID: 393 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 394 getConstantValue(CE->getOperand(1)).FloatVal; 395 break; 396 case Type::DoubleTyID: 397 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 398 getConstantValue(CE->getOperand(1)).DoubleVal; 399 break; 400 } 401 return Result; 402 default: 403 break; 404 } 405 cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 406 abort(); 407 } 408 409 switch (C->getType()->getTypeID()) { 410 #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ 411 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break 412 GET_CONST_VAL(Bool , bool , ConstantBool, getValue); 413 GET_CONST_VAL(UByte , unsigned char , ConstantInt, getZExtValue); 414 GET_CONST_VAL(SByte , signed char , ConstantInt, getSExtValue); 415 GET_CONST_VAL(UShort , unsigned short, ConstantInt, getZExtValue); 416 GET_CONST_VAL(Short , signed short , ConstantInt, getSExtValue); 417 GET_CONST_VAL(UInt , unsigned int , ConstantInt, getZExtValue); 418 GET_CONST_VAL(Int , signed int , ConstantInt, getSExtValue); 419 GET_CONST_VAL(ULong , uint64_t , ConstantInt, getZExtValue); 420 GET_CONST_VAL(Long , int64_t , ConstantInt, getSExtValue); 421 GET_CONST_VAL(Float , float , ConstantFP, getValue); 422 GET_CONST_VAL(Double , double , ConstantFP, getValue); 423 #undef GET_CONST_VAL 424 case Type::PointerTyID: 425 if (isa<ConstantPointerNull>(C)) 426 Result.PointerVal = 0; 427 else if (const Function *F = dyn_cast<Function>(C)) 428 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 429 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 430 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 431 else 432 assert(0 && "Unknown constant pointer type!"); 433 break; 434 default: 435 cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 436 abort(); 437 } 438 return Result; 439 } 440 441 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 442 /// is the address of the memory at which to store Val, cast to GenericValue *. 443 /// It is not a pointer to a GenericValue containing the address at which to 444 /// store Val. 445 /// 446 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 447 const Type *Ty) { 448 if (getTargetData()->isLittleEndian()) { 449 switch (Ty->getTypeID()) { 450 case Type::BoolTyID: 451 case Type::UByteTyID: 452 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 453 case Type::UShortTyID: 454 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 455 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 456 break; 457 Store4BytesLittleEndian: 458 case Type::FloatTyID: 459 case Type::UIntTyID: 460 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 461 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 462 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 463 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 464 break; 465 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 466 goto Store4BytesLittleEndian; 467 case Type::DoubleTyID: 468 case Type::ULongTyID: 469 case Type::LongTyID: 470 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 471 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 472 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 473 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 474 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 475 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 476 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 477 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 478 break; 479 default: 480 cerr << "Cannot store value of type " << *Ty << "!\n"; 481 } 482 } else { 483 switch (Ty->getTypeID()) { 484 case Type::BoolTyID: 485 case Type::UByteTyID: 486 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 487 case Type::UShortTyID: 488 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 489 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 490 break; 491 Store4BytesBigEndian: 492 case Type::FloatTyID: 493 case Type::UIntTyID: 494 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 495 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 496 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 497 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 498 break; 499 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 500 goto Store4BytesBigEndian; 501 case Type::DoubleTyID: 502 case Type::ULongTyID: 503 case Type::LongTyID: 504 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 505 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 506 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 507 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 508 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 509 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 510 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 511 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 512 break; 513 default: 514 cerr << "Cannot store value of type " << *Ty << "!\n"; 515 } 516 } 517 } 518 519 /// FIXME: document 520 /// 521 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 522 const Type *Ty) { 523 GenericValue Result; 524 if (getTargetData()->isLittleEndian()) { 525 switch (Ty->getTypeID()) { 526 case Type::BoolTyID: 527 case Type::UByteTyID: 528 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 529 case Type::UShortTyID: 530 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 531 ((unsigned)Ptr->Untyped[1] << 8); 532 break; 533 Load4BytesLittleEndian: 534 case Type::FloatTyID: 535 case Type::UIntTyID: 536 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 537 ((unsigned)Ptr->Untyped[1] << 8) | 538 ((unsigned)Ptr->Untyped[2] << 16) | 539 ((unsigned)Ptr->Untyped[3] << 24); 540 break; 541 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 542 goto Load4BytesLittleEndian; 543 case Type::DoubleTyID: 544 case Type::ULongTyID: 545 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 546 ((uint64_t)Ptr->Untyped[1] << 8) | 547 ((uint64_t)Ptr->Untyped[2] << 16) | 548 ((uint64_t)Ptr->Untyped[3] << 24) | 549 ((uint64_t)Ptr->Untyped[4] << 32) | 550 ((uint64_t)Ptr->Untyped[5] << 40) | 551 ((uint64_t)Ptr->Untyped[6] << 48) | 552 ((uint64_t)Ptr->Untyped[7] << 56); 553 break; 554 default: 555 cerr << "Cannot load value of type " << *Ty << "!\n"; 556 abort(); 557 } 558 } else { 559 switch (Ty->getTypeID()) { 560 case Type::BoolTyID: 561 case Type::UByteTyID: 562 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 563 case Type::UShortTyID: 564 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 565 ((unsigned)Ptr->Untyped[0] << 8); 566 break; 567 Load4BytesBigEndian: 568 case Type::FloatTyID: 569 case Type::UIntTyID: 570 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 571 ((unsigned)Ptr->Untyped[2] << 8) | 572 ((unsigned)Ptr->Untyped[1] << 16) | 573 ((unsigned)Ptr->Untyped[0] << 24); 574 break; 575 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 576 goto Load4BytesBigEndian; 577 case Type::DoubleTyID: 578 case Type::ULongTyID: 579 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 580 ((uint64_t)Ptr->Untyped[6] << 8) | 581 ((uint64_t)Ptr->Untyped[5] << 16) | 582 ((uint64_t)Ptr->Untyped[4] << 24) | 583 ((uint64_t)Ptr->Untyped[3] << 32) | 584 ((uint64_t)Ptr->Untyped[2] << 40) | 585 ((uint64_t)Ptr->Untyped[1] << 48) | 586 ((uint64_t)Ptr->Untyped[0] << 56); 587 break; 588 default: 589 cerr << "Cannot load value of type " << *Ty << "!\n"; 590 abort(); 591 } 592 } 593 return Result; 594 } 595 596 // InitializeMemory - Recursive function to apply a Constant value into the 597 // specified memory location... 598 // 599 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 600 if (isa<UndefValue>(Init)) { 601 return; 602 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 603 unsigned ElementSize = 604 getTargetData()->getTypeSize(CP->getType()->getElementType()); 605 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 606 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 607 return; 608 } else if (Init->getType()->isFirstClassType()) { 609 GenericValue Val = getConstantValue(Init); 610 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 611 return; 612 } else if (isa<ConstantAggregateZero>(Init)) { 613 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 614 return; 615 } 616 617 switch (Init->getType()->getTypeID()) { 618 case Type::ArrayTyID: { 619 const ConstantArray *CPA = cast<ConstantArray>(Init); 620 unsigned ElementSize = 621 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 622 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 623 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 624 return; 625 } 626 627 case Type::StructTyID: { 628 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 629 const StructLayout *SL = 630 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 631 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 632 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 633 return; 634 } 635 636 default: 637 cerr << "Bad Type: " << *Init->getType() << "\n"; 638 assert(0 && "Unknown constant type to initialize memory with!"); 639 } 640 } 641 642 /// EmitGlobals - Emit all of the global variables to memory, storing their 643 /// addresses into GlobalAddress. This must make sure to copy the contents of 644 /// their initializers into the memory. 645 /// 646 void ExecutionEngine::emitGlobals() { 647 const TargetData *TD = getTargetData(); 648 649 // Loop over all of the global variables in the program, allocating the memory 650 // to hold them. If there is more than one module, do a prepass over globals 651 // to figure out how the different modules should link together. 652 // 653 std::map<std::pair<std::string, const Type*>, 654 const GlobalValue*> LinkedGlobalsMap; 655 656 if (Modules.size() != 1) { 657 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 658 Module &M = *Modules[m]->getModule(); 659 for (Module::const_global_iterator I = M.global_begin(), 660 E = M.global_end(); I != E; ++I) { 661 const GlobalValue *GV = I; 662 if (GV->hasInternalLinkage() || GV->isExternal() || 663 GV->hasAppendingLinkage() || !GV->hasName()) 664 continue;// Ignore external globals and globals with internal linkage. 665 666 const GlobalValue *&GVEntry = 667 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 668 669 // If this is the first time we've seen this global, it is the canonical 670 // version. 671 if (!GVEntry) { 672 GVEntry = GV; 673 continue; 674 } 675 676 // If the existing global is strong, never replace it. 677 if (GVEntry->hasExternalLinkage() || 678 GVEntry->hasDLLImportLinkage() || 679 GVEntry->hasDLLExportLinkage()) 680 continue; 681 682 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 683 // symbol. 684 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 685 GVEntry = GV; 686 } 687 } 688 } 689 690 std::vector<const GlobalValue*> NonCanonicalGlobals; 691 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 692 Module &M = *Modules[m]->getModule(); 693 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 694 I != E; ++I) { 695 // In the multi-module case, see what this global maps to. 696 if (!LinkedGlobalsMap.empty()) { 697 if (const GlobalValue *GVEntry = 698 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 699 // If something else is the canonical global, ignore this one. 700 if (GVEntry != &*I) { 701 NonCanonicalGlobals.push_back(I); 702 continue; 703 } 704 } 705 } 706 707 if (!I->isExternal()) { 708 // Get the type of the global. 709 const Type *Ty = I->getType()->getElementType(); 710 711 // Allocate some memory for it! 712 unsigned Size = TD->getTypeSize(Ty); 713 addGlobalMapping(I, new char[Size]); 714 } else { 715 // External variable reference. Try to use the dynamic loader to 716 // get a pointer to it. 717 if (void *SymAddr = 718 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 719 addGlobalMapping(I, SymAddr); 720 else { 721 cerr << "Could not resolve external global address: " 722 << I->getName() << "\n"; 723 abort(); 724 } 725 } 726 } 727 728 // If there are multiple modules, map the non-canonical globals to their 729 // canonical location. 730 if (!NonCanonicalGlobals.empty()) { 731 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 732 const GlobalValue *GV = NonCanonicalGlobals[i]; 733 const GlobalValue *CGV = 734 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 735 void *Ptr = getPointerToGlobalIfAvailable(CGV); 736 assert(Ptr && "Canonical global wasn't codegen'd!"); 737 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 738 } 739 } 740 741 // Now that all of the globals are set up in memory, loop through them all and 742 // initialize their contents. 743 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 744 I != E; ++I) { 745 if (!I->isExternal()) { 746 if (!LinkedGlobalsMap.empty()) { 747 if (const GlobalValue *GVEntry = 748 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 749 if (GVEntry != &*I) // Not the canonical variable. 750 continue; 751 } 752 EmitGlobalVariable(I); 753 } 754 } 755 } 756 } 757 758 // EmitGlobalVariable - This method emits the specified global variable to the 759 // address specified in GlobalAddresses, or allocates new memory if it's not 760 // already in the map. 761 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 762 void *GA = getPointerToGlobalIfAvailable(GV); 763 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 764 765 const Type *ElTy = GV->getType()->getElementType(); 766 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 767 if (GA == 0) { 768 // If it's not already specified, allocate memory for the global. 769 GA = new char[GVSize]; 770 addGlobalMapping(GV, GA); 771 } 772 773 InitializeMemory(GV->getInitializer(), GA); 774 NumInitBytes += (unsigned)GVSize; 775 ++NumGlobals; 776 } 777