1 //===-- ExecutionEngine.cpp - Common Implementation shared by EE's --------===// 2 // 3 // This file defines the common interface used by the various execution engine 4 // subclasses. 5 // 6 //===----------------------------------------------------------------------===// 7 8 #define DEBUG_TYPE "jit" 9 #include "ExecutionEngine.h" 10 #include "GenericValue.h" 11 #include "llvm/DerivedTypes.h" 12 #include "llvm/Constants.h" 13 #include "llvm/Module.h" 14 #include "llvm/Target/TargetData.h" 15 #include "Support/Debug.h" 16 #include "Support/Statistic.h" 17 #include "Config/dlfcn.h" 18 19 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 20 21 // getPointerToGlobal - This returns the address of the specified global 22 // value. This may involve code generation if it's a function. 23 // 24 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 25 if (const Function *F = dyn_cast<Function>(GV)) 26 return getPointerToFunction(F); 27 28 assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?"); 29 return GlobalAddress[GV]; 30 } 31 32 33 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 34 GenericValue Result; 35 36 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 37 switch (CE->getOpcode()) { 38 case Instruction::GetElementPtr: { 39 Result = getConstantValue(CE->getOperand(0)); 40 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 41 uint64_t Offset = 42 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 43 44 Result.LongVal += Offset; 45 return Result; 46 } 47 case Instruction::Cast: { 48 // We only need to handle a few cases here. Almost all casts will 49 // automatically fold, just the ones involving pointers won't. 50 // 51 Constant *Op = CE->getOperand(0); 52 53 // Handle cast of pointer to pointer... 54 if (Op->getType()->getPrimitiveID() == C->getType()->getPrimitiveID()) 55 return getConstantValue(Op); 56 57 // Handle cast of long to pointer or pointer to long... 58 if ((isa<PointerType>(Op->getType()) && (C->getType() == Type::LongTy || 59 C->getType() == Type::ULongTy))|| 60 (isa<PointerType>(C->getType()) && (Op->getType() == Type::LongTy || 61 Op->getType() == Type::ULongTy))){ 62 return getConstantValue(Op); 63 } 64 break; 65 } 66 67 case Instruction::Add: 68 if (CE->getOperand(0)->getType() == Type::LongTy || 69 CE->getOperand(0)->getType() == Type::ULongTy) 70 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 71 getConstantValue(CE->getOperand(1)).LongVal; 72 else 73 break; 74 return Result; 75 76 default: 77 break; 78 } 79 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 80 abort(); 81 } 82 83 switch (C->getType()->getPrimitiveID()) { 84 #define GET_CONST_VAL(TY, CLASS) \ 85 case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break 86 GET_CONST_VAL(Bool , ConstantBool); 87 GET_CONST_VAL(UByte , ConstantUInt); 88 GET_CONST_VAL(SByte , ConstantSInt); 89 GET_CONST_VAL(UShort , ConstantUInt); 90 GET_CONST_VAL(Short , ConstantSInt); 91 GET_CONST_VAL(UInt , ConstantUInt); 92 GET_CONST_VAL(Int , ConstantSInt); 93 GET_CONST_VAL(ULong , ConstantUInt); 94 GET_CONST_VAL(Long , ConstantSInt); 95 GET_CONST_VAL(Float , ConstantFP); 96 GET_CONST_VAL(Double , ConstantFP); 97 #undef GET_CONST_VAL 98 case Type::PointerTyID: 99 if (isa<ConstantPointerNull>(C)) { 100 Result.PointerVal = 0; 101 } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){ 102 Result = PTOGV(getPointerToGlobal(CPR->getValue())); 103 104 } else { 105 assert(0 && "Unknown constant pointer type!"); 106 } 107 break; 108 default: 109 std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n"; 110 abort(); 111 } 112 return Result; 113 } 114 115 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 116 const Type *Ty) { 117 if (getTargetData().isLittleEndian()) { 118 switch (Ty->getPrimitiveID()) { 119 case Type::BoolTyID: 120 case Type::UByteTyID: 121 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 122 case Type::UShortTyID: 123 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 124 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 125 break; 126 Store4BytesLittleEndian: 127 case Type::FloatTyID: 128 case Type::UIntTyID: 129 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 130 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 131 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 132 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 133 break; 134 case Type::PointerTyID: if (CurMod.has32BitPointers()) 135 goto Store4BytesLittleEndian; 136 case Type::DoubleTyID: 137 case Type::ULongTyID: 138 case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255; 139 Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255; 140 Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255; 141 Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255; 142 Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255; 143 Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255; 144 Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255; 145 Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255; 146 break; 147 default: 148 std::cout << "Cannot store value of type " << Ty << "!\n"; 149 } 150 } else { 151 switch (Ty->getPrimitiveID()) { 152 case Type::BoolTyID: 153 case Type::UByteTyID: 154 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 155 case Type::UShortTyID: 156 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 157 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 158 break; 159 Store4BytesBigEndian: 160 case Type::FloatTyID: 161 case Type::UIntTyID: 162 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 163 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 164 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 165 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 166 break; 167 case Type::PointerTyID: if (CurMod.has32BitPointers()) 168 goto Store4BytesBigEndian; 169 case Type::DoubleTyID: 170 case Type::ULongTyID: 171 case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255; 172 Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255; 173 Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255; 174 Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255; 175 Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255; 176 Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255; 177 Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255; 178 Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255; 179 break; 180 default: 181 std::cout << "Cannot store value of type " << Ty << "!\n"; 182 } 183 } 184 } 185 186 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 187 const Type *Ty) { 188 GenericValue Result; 189 if (getTargetData().isLittleEndian()) { 190 switch (Ty->getPrimitiveID()) { 191 case Type::BoolTyID: 192 case Type::UByteTyID: 193 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 194 case Type::UShortTyID: 195 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 196 ((unsigned)Ptr->Untyped[1] << 8); 197 break; 198 Load4BytesLittleEndian: 199 case Type::FloatTyID: 200 case Type::UIntTyID: 201 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 202 ((unsigned)Ptr->Untyped[1] << 8) | 203 ((unsigned)Ptr->Untyped[2] << 16) | 204 ((unsigned)Ptr->Untyped[3] << 24); 205 break; 206 case Type::PointerTyID: if (getModule().has32BitPointers()) 207 goto Load4BytesLittleEndian; 208 case Type::DoubleTyID: 209 case Type::ULongTyID: 210 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 211 ((uint64_t)Ptr->Untyped[1] << 8) | 212 ((uint64_t)Ptr->Untyped[2] << 16) | 213 ((uint64_t)Ptr->Untyped[3] << 24) | 214 ((uint64_t)Ptr->Untyped[4] << 32) | 215 ((uint64_t)Ptr->Untyped[5] << 40) | 216 ((uint64_t)Ptr->Untyped[6] << 48) | 217 ((uint64_t)Ptr->Untyped[7] << 56); 218 break; 219 default: 220 std::cout << "Cannot load value of type " << *Ty << "!\n"; 221 abort(); 222 } 223 } else { 224 switch (Ty->getPrimitiveID()) { 225 case Type::BoolTyID: 226 case Type::UByteTyID: 227 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 228 case Type::UShortTyID: 229 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 230 ((unsigned)Ptr->Untyped[0] << 8); 231 break; 232 Load4BytesBigEndian: 233 case Type::FloatTyID: 234 case Type::UIntTyID: 235 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 236 ((unsigned)Ptr->Untyped[2] << 8) | 237 ((unsigned)Ptr->Untyped[1] << 16) | 238 ((unsigned)Ptr->Untyped[0] << 24); 239 break; 240 case Type::PointerTyID: if (getModule().has32BitPointers()) 241 goto Load4BytesBigEndian; 242 case Type::DoubleTyID: 243 case Type::ULongTyID: 244 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 245 ((uint64_t)Ptr->Untyped[6] << 8) | 246 ((uint64_t)Ptr->Untyped[5] << 16) | 247 ((uint64_t)Ptr->Untyped[4] << 24) | 248 ((uint64_t)Ptr->Untyped[3] << 32) | 249 ((uint64_t)Ptr->Untyped[2] << 40) | 250 ((uint64_t)Ptr->Untyped[1] << 48) | 251 ((uint64_t)Ptr->Untyped[0] << 56); 252 break; 253 default: 254 std::cout << "Cannot load value of type " << *Ty << "!\n"; 255 abort(); 256 } 257 } 258 return Result; 259 } 260 261 262 // InitializeMemory - Recursive function to apply a Constant value into the 263 // specified memory location... 264 // 265 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 266 if (Init->getType()->isFirstClassType()) { 267 GenericValue Val = getConstantValue(Init); 268 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 269 return; 270 } 271 272 switch (Init->getType()->getPrimitiveID()) { 273 case Type::ArrayTyID: { 274 const ConstantArray *CPA = cast<ConstantArray>(Init); 275 const std::vector<Use> &Val = CPA->getValues(); 276 unsigned ElementSize = 277 getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType()); 278 for (unsigned i = 0; i < Val.size(); ++i) 279 InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize); 280 return; 281 } 282 283 case Type::StructTyID: { 284 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 285 const StructLayout *SL = 286 getTargetData().getStructLayout(cast<StructType>(CPS->getType())); 287 const std::vector<Use> &Val = CPS->getValues(); 288 for (unsigned i = 0; i < Val.size(); ++i) 289 InitializeMemory(cast<Constant>(Val[i].get()), 290 (char*)Addr+SL->MemberOffsets[i]); 291 return; 292 } 293 294 default: 295 std::cerr << "Bad Type: " << Init->getType() << "\n"; 296 assert(0 && "Unknown constant type to initialize memory with!"); 297 } 298 } 299 300 void *ExecutionEngine::CreateArgv(const std::vector<std::string> &InputArgv) { 301 if (getTargetData().getPointerSize() == 8) { // 64 bit target? 302 PointerTy *Result = new PointerTy[InputArgv.size()+1]; 303 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 304 305 for (unsigned i = 0; i < InputArgv.size(); ++i) { 306 unsigned Size = InputArgv[i].size()+1; 307 char *Dest = new char[Size]; 308 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 309 310 copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 311 Dest[Size-1] = 0; 312 313 // Endian safe: Result[i] = (PointerTy)Dest; 314 StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i), Type::LongTy); 315 } 316 Result[InputArgv.size()] = 0; 317 return Result; 318 319 } else { // 32 bit target? 320 int *Result = new int[InputArgv.size()+1]; 321 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 322 323 for (unsigned i = 0; i < InputArgv.size(); ++i) { 324 unsigned Size = InputArgv[i].size()+1; 325 char *Dest = new char[Size]; 326 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 327 328 copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 329 Dest[Size-1] = 0; 330 331 // Endian safe: Result[i] = (PointerTy)Dest; 332 StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i), Type::IntTy); 333 } 334 Result[InputArgv.size()] = 0; // null terminate it 335 return Result; 336 } 337 } 338 339 /// EmitGlobals - Emit all of the global variables to memory, storing their 340 /// addresses into GlobalAddress. This must make sure to copy the contents of 341 /// their initializers into the memory. 342 /// 343 void ExecutionEngine::emitGlobals() { 344 const TargetData &TD = getTargetData(); 345 346 // Loop over all of the global variables in the program, allocating the memory 347 // to hold them. 348 for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); 349 I != E; ++I) 350 if (!I->isExternal()) { 351 // Get the type of the global... 352 const Type *Ty = I->getType()->getElementType(); 353 354 // Allocate some memory for it! 355 unsigned Size = TD.getTypeSize(Ty); 356 GlobalAddress[I] = new char[Size]; 357 NumInitBytes += Size; 358 359 DEBUG(std::cerr << "Global '" << I->getName() << "' -> " 360 << (void*)GlobalAddress[I] << "\n"); 361 } else { 362 // On Sparc, RTLD_SELF is already defined and it's not zero 363 // Linux/x86 wants to use a 0, other systems may differ 364 #ifndef RTLD_SELF 365 #define RTLD_SELF 0 366 #endif 367 // External variable reference, try to use dlsym to get a pointer to it in 368 // the LLI image. 369 if (void *SymAddr = dlsym(RTLD_SELF, I->getName().c_str())) 370 GlobalAddress[I] = SymAddr; 371 else { 372 std::cerr << "Could not resolve external global address: " 373 << I->getName() << "\n"; 374 abort(); 375 } 376 } 377 378 // Now that all of the globals are set up in memory, loop through them all and 379 // initialize their contents. 380 for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); 381 I != E; ++I) 382 if (!I->isExternal()) 383 InitializeMemory(I->getInitializer(), GlobalAddress[I]); 384 } 385 386