1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Config/alloca.h" 22 #include "llvm/ExecutionEngine/ExecutionEngine.h" 23 #include "llvm/ExecutionEngine/GenericValue.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MutexGuard.h" 26 #include "llvm/System/DynamicLibrary.h" 27 #include "llvm/System/Host.h" 28 #include "llvm/Target/TargetData.h" 29 #include <math.h> 30 using namespace llvm; 31 32 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 33 STATISTIC(NumGlobals , "Number of global vars initialized"); 34 35 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 36 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 37 38 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 39 LazyCompilationDisabled = false; 40 Modules.push_back(P); 41 assert(P && "ModuleProvider is null?"); 42 } 43 44 ExecutionEngine::~ExecutionEngine() { 45 clearAllGlobalMappings(); 46 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 47 delete Modules[i]; 48 } 49 50 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 51 /// Release module from ModuleProvider. 52 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 53 std::string *ErrInfo) { 54 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 55 E = Modules.end(); I != E; ++I) { 56 ModuleProvider *MP = *I; 57 if (MP == P) { 58 Modules.erase(I); 59 return MP->releaseModule(ErrInfo); 60 } 61 } 62 return NULL; 63 } 64 65 /// FindFunctionNamed - Search all of the active modules to find the one that 66 /// defines FnName. This is very slow operation and shouldn't be used for 67 /// general code. 68 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 69 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 70 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 71 return F; 72 } 73 return 0; 74 } 75 76 77 /// addGlobalMapping - Tell the execution engine that the specified global is 78 /// at the specified location. This is used internally as functions are JIT'd 79 /// and as global variables are laid out in memory. It can and should also be 80 /// used by clients of the EE that want to have an LLVM global overlay 81 /// existing data in memory. 82 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 83 MutexGuard locked(lock); 84 85 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 86 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 87 CurVal = Addr; 88 89 // If we are using the reverse mapping, add it too 90 if (!state.getGlobalAddressReverseMap(locked).empty()) { 91 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 92 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 93 V = GV; 94 } 95 } 96 97 /// clearAllGlobalMappings - Clear all global mappings and start over again 98 /// use in dynamic compilation scenarios when you want to move globals 99 void ExecutionEngine::clearAllGlobalMappings() { 100 MutexGuard locked(lock); 101 102 state.getGlobalAddressMap(locked).clear(); 103 state.getGlobalAddressReverseMap(locked).clear(); 104 } 105 106 /// updateGlobalMapping - Replace an existing mapping for GV with a new 107 /// address. This updates both maps as required. If "Addr" is null, the 108 /// entry for the global is removed from the mappings. 109 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 110 MutexGuard locked(lock); 111 112 // Deleting from the mapping? 113 if (Addr == 0) { 114 state.getGlobalAddressMap(locked).erase(GV); 115 if (!state.getGlobalAddressReverseMap(locked).empty()) 116 state.getGlobalAddressReverseMap(locked).erase(Addr); 117 return; 118 } 119 120 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 121 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 122 state.getGlobalAddressReverseMap(locked).erase(CurVal); 123 CurVal = Addr; 124 125 // If we are using the reverse mapping, add it too 126 if (!state.getGlobalAddressReverseMap(locked).empty()) { 127 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 128 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 129 V = GV; 130 } 131 } 132 133 /// getPointerToGlobalIfAvailable - This returns the address of the specified 134 /// global value if it is has already been codegen'd, otherwise it returns null. 135 /// 136 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 137 MutexGuard locked(lock); 138 139 std::map<const GlobalValue*, void*>::iterator I = 140 state.getGlobalAddressMap(locked).find(GV); 141 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 142 } 143 144 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 145 /// at the specified address. 146 /// 147 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 148 MutexGuard locked(lock); 149 150 // If we haven't computed the reverse mapping yet, do so first. 151 if (state.getGlobalAddressReverseMap(locked).empty()) { 152 for (std::map<const GlobalValue*, void *>::iterator 153 I = state.getGlobalAddressMap(locked).begin(), 154 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 155 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 156 I->first)); 157 } 158 159 std::map<void *, const GlobalValue*>::iterator I = 160 state.getGlobalAddressReverseMap(locked).find(Addr); 161 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 162 } 163 164 // CreateArgv - Turn a vector of strings into a nice argv style array of 165 // pointers to null terminated strings. 166 // 167 static void *CreateArgv(ExecutionEngine *EE, 168 const std::vector<std::string> &InputArgv) { 169 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 170 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 171 172 DOUT << "ARGV = " << (void*)Result << "\n"; 173 const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); 174 175 for (unsigned i = 0; i != InputArgv.size(); ++i) { 176 unsigned Size = InputArgv[i].size()+1; 177 char *Dest = new char[Size]; 178 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 179 180 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 181 Dest[Size-1] = 0; 182 183 // Endian safe: Result[i] = (PointerTy)Dest; 184 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 185 SBytePtr); 186 } 187 188 // Null terminate it 189 EE->StoreValueToMemory(PTOGV(0), 190 (GenericValue*)(Result+InputArgv.size()*PtrSize), 191 SBytePtr); 192 return Result; 193 } 194 195 196 /// runStaticConstructorsDestructors - This method is used to execute all of 197 /// the static constructors or destructors for a program, depending on the 198 /// value of isDtors. 199 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 200 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 201 202 // Execute global ctors/dtors for each module in the program. 203 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 204 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 205 206 // If this global has internal linkage, or if it has a use, then it must be 207 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 208 // this is the case, don't execute any of the global ctors, __main will do 209 // it. 210 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 211 212 // Should be an array of '{ int, void ()* }' structs. The first value is 213 // the init priority, which we ignore. 214 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 215 if (!InitList) continue; 216 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 217 if (ConstantStruct *CS = 218 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 219 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 220 221 Constant *FP = CS->getOperand(1); 222 if (FP->isNullValue()) 223 break; // Found a null terminator, exit. 224 225 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 226 if (CE->isCast()) 227 FP = CE->getOperand(0); 228 if (Function *F = dyn_cast<Function>(FP)) { 229 // Execute the ctor/dtor function! 230 runFunction(F, std::vector<GenericValue>()); 231 } 232 } 233 } 234 } 235 236 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 237 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 238 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 239 for (unsigned i = 0; i < PtrSize; ++i) 240 if (*(i + (uint8_t*)Loc)) 241 return false; 242 return true; 243 } 244 245 /// runFunctionAsMain - This is a helper function which wraps runFunction to 246 /// handle the common task of starting up main with the specified argc, argv, 247 /// and envp parameters. 248 int ExecutionEngine::runFunctionAsMain(Function *Fn, 249 const std::vector<std::string> &argv, 250 const char * const * envp) { 251 std::vector<GenericValue> GVArgs; 252 GenericValue GVArgc; 253 GVArgc.IntVal = APInt(32, argv.size()); 254 255 // Check main() type 256 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 257 const FunctionType *FTy = Fn->getFunctionType(); 258 const Type* PPInt8Ty = 259 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); 260 switch (NumArgs) { 261 case 3: 262 if (FTy->getParamType(2) != PPInt8Ty) { 263 cerr << "Invalid type for third argument of main() supplied\n"; 264 abort(); 265 } 266 // FALLS THROUGH 267 case 2: 268 if (FTy->getParamType(1) != PPInt8Ty) { 269 cerr << "Invalid type for second argument of main() supplied\n"; 270 abort(); 271 } 272 // FALLS THROUGH 273 case 1: 274 if (FTy->getParamType(0) != Type::Int32Ty) { 275 cerr << "Invalid type for first argument of main() supplied\n"; 276 abort(); 277 } 278 // FALLS THROUGH 279 case 0: 280 if (FTy->getReturnType() != Type::Int32Ty && 281 FTy->getReturnType() != Type::VoidTy) { 282 cerr << "Invalid return type of main() supplied\n"; 283 abort(); 284 } 285 break; 286 default: 287 cerr << "Invalid number of arguments of main() supplied\n"; 288 abort(); 289 } 290 291 if (NumArgs) { 292 GVArgs.push_back(GVArgc); // Arg #0 = argc. 293 if (NumArgs > 1) { 294 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 295 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 296 "argv[0] was null after CreateArgv"); 297 if (NumArgs > 2) { 298 std::vector<std::string> EnvVars; 299 for (unsigned i = 0; envp[i]; ++i) 300 EnvVars.push_back(envp[i]); 301 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 302 } 303 } 304 } 305 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 306 } 307 308 /// If possible, create a JIT, unless the caller specifically requests an 309 /// Interpreter or there's an error. If even an Interpreter cannot be created, 310 /// NULL is returned. 311 /// 312 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 313 bool ForceInterpreter, 314 std::string *ErrorStr) { 315 ExecutionEngine *EE = 0; 316 317 // Unless the interpreter was explicitly selected, try making a JIT. 318 if (!ForceInterpreter && JITCtor) 319 EE = JITCtor(MP, ErrorStr); 320 321 // If we can't make a JIT, make an interpreter instead. 322 if (EE == 0 && InterpCtor) 323 EE = InterpCtor(MP, ErrorStr); 324 325 if (EE) { 326 // Make sure we can resolve symbols in the program as well. The zero arg 327 // to the function tells DynamicLibrary to load the program, not a library. 328 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) { 329 delete EE; 330 return 0; 331 } 332 } 333 334 return EE; 335 } 336 337 ExecutionEngine *ExecutionEngine::create(Module *M) { 338 return create(new ExistingModuleProvider(M)); 339 } 340 341 /// getPointerToGlobal - This returns the address of the specified global 342 /// value. This may involve code generation if it's a function. 343 /// 344 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 345 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 346 return getPointerToFunction(F); 347 348 MutexGuard locked(lock); 349 void *p = state.getGlobalAddressMap(locked)[GV]; 350 if (p) 351 return p; 352 353 // Global variable might have been added since interpreter started. 354 if (GlobalVariable *GVar = 355 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 356 EmitGlobalVariable(GVar); 357 else 358 assert(0 && "Global hasn't had an address allocated yet!"); 359 return state.getGlobalAddressMap(locked)[GV]; 360 } 361 362 /// This function converts a Constant* into a GenericValue. The interesting 363 /// part is if C is a ConstantExpr. 364 /// @brief Get a GenericValue for a Constant* 365 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 366 // If its undefined, return the garbage. 367 if (isa<UndefValue>(C)) 368 return GenericValue(); 369 370 // If the value is a ConstantExpr 371 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 372 Constant *Op0 = CE->getOperand(0); 373 switch (CE->getOpcode()) { 374 case Instruction::GetElementPtr: { 375 // Compute the index 376 GenericValue Result = getConstantValue(Op0); 377 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 378 uint64_t Offset = 379 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 380 381 char* tmp = (char*) Result.PointerVal; 382 Result = PTOGV(tmp + Offset); 383 return Result; 384 } 385 case Instruction::Trunc: { 386 GenericValue GV = getConstantValue(Op0); 387 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 388 GV.IntVal = GV.IntVal.trunc(BitWidth); 389 return GV; 390 } 391 case Instruction::ZExt: { 392 GenericValue GV = getConstantValue(Op0); 393 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 394 GV.IntVal = GV.IntVal.zext(BitWidth); 395 return GV; 396 } 397 case Instruction::SExt: { 398 GenericValue GV = getConstantValue(Op0); 399 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 400 GV.IntVal = GV.IntVal.sext(BitWidth); 401 return GV; 402 } 403 case Instruction::FPTrunc: { 404 // FIXME long double 405 GenericValue GV = getConstantValue(Op0); 406 GV.FloatVal = float(GV.DoubleVal); 407 return GV; 408 } 409 case Instruction::FPExt:{ 410 // FIXME long double 411 GenericValue GV = getConstantValue(Op0); 412 GV.DoubleVal = double(GV.FloatVal); 413 return GV; 414 } 415 case Instruction::UIToFP: { 416 GenericValue GV = getConstantValue(Op0); 417 if (CE->getType() == Type::FloatTy) 418 GV.FloatVal = float(GV.IntVal.roundToDouble()); 419 else if (CE->getType() == Type::DoubleTy) 420 GV.DoubleVal = GV.IntVal.roundToDouble(); 421 else if (CE->getType() == Type::X86_FP80Ty) { 422 const uint64_t zero[] = {0, 0}; 423 APFloat apf = APFloat(APInt(80, 2, zero)); 424 (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(), 425 GV.IntVal.getBitWidth(), false, 426 APFloat::rmNearestTiesToEven); 427 GV.IntVal = apf.convertToAPInt(); 428 } 429 return GV; 430 } 431 case Instruction::SIToFP: { 432 GenericValue GV = getConstantValue(Op0); 433 if (CE->getType() == Type::FloatTy) 434 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 435 else if (CE->getType() == Type::DoubleTy) 436 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 437 else if (CE->getType() == Type::X86_FP80Ty) { 438 const uint64_t zero[] = { 0, 0}; 439 APFloat apf = APFloat(APInt(80, 2, zero)); 440 (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(), 441 GV.IntVal.getBitWidth(), true, 442 APFloat::rmNearestTiesToEven); 443 GV.IntVal = apf.convertToAPInt(); 444 } 445 return GV; 446 } 447 case Instruction::FPToUI: // double->APInt conversion handles sign 448 case Instruction::FPToSI: { 449 GenericValue GV = getConstantValue(Op0); 450 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 451 if (Op0->getType() == Type::FloatTy) 452 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 453 else if (Op0->getType() == Type::DoubleTy) 454 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 455 else if (Op0->getType() == Type::X86_FP80Ty) { 456 APFloat apf = APFloat(GV.IntVal); 457 uint64_t v; 458 (void)apf.convertToInteger(&v, BitWidth, 459 CE->getOpcode()==Instruction::FPToSI, 460 APFloat::rmTowardZero); 461 GV.IntVal = v; // endian? 462 } 463 return GV; 464 } 465 case Instruction::PtrToInt: { 466 GenericValue GV = getConstantValue(Op0); 467 uint32_t PtrWidth = TD->getPointerSizeInBits(); 468 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 469 return GV; 470 } 471 case Instruction::IntToPtr: { 472 GenericValue GV = getConstantValue(Op0); 473 uint32_t PtrWidth = TD->getPointerSizeInBits(); 474 if (PtrWidth != GV.IntVal.getBitWidth()) 475 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 476 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 477 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 478 return GV; 479 } 480 case Instruction::BitCast: { 481 GenericValue GV = getConstantValue(Op0); 482 const Type* DestTy = CE->getType(); 483 switch (Op0->getType()->getTypeID()) { 484 default: assert(0 && "Invalid bitcast operand"); 485 case Type::IntegerTyID: 486 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 487 if (DestTy == Type::FloatTy) 488 GV.FloatVal = GV.IntVal.bitsToFloat(); 489 else if (DestTy == Type::DoubleTy) 490 GV.DoubleVal = GV.IntVal.bitsToDouble(); 491 break; 492 case Type::FloatTyID: 493 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 494 GV.IntVal.floatToBits(GV.FloatVal); 495 break; 496 case Type::DoubleTyID: 497 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 498 GV.IntVal.doubleToBits(GV.DoubleVal); 499 break; 500 case Type::PointerTyID: 501 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 502 break; // getConstantValue(Op0) above already converted it 503 } 504 return GV; 505 } 506 case Instruction::Add: 507 case Instruction::Sub: 508 case Instruction::Mul: 509 case Instruction::UDiv: 510 case Instruction::SDiv: 511 case Instruction::URem: 512 case Instruction::SRem: 513 case Instruction::And: 514 case Instruction::Or: 515 case Instruction::Xor: { 516 GenericValue LHS = getConstantValue(Op0); 517 GenericValue RHS = getConstantValue(CE->getOperand(1)); 518 GenericValue GV; 519 switch (CE->getOperand(0)->getType()->getTypeID()) { 520 default: assert(0 && "Bad add type!"); abort(); 521 case Type::IntegerTyID: 522 switch (CE->getOpcode()) { 523 default: assert(0 && "Invalid integer opcode"); 524 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 525 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 526 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 527 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 528 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 529 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 530 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 531 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 532 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 533 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 534 } 535 break; 536 case Type::FloatTyID: 537 switch (CE->getOpcode()) { 538 default: assert(0 && "Invalid float opcode"); abort(); 539 case Instruction::Add: 540 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 541 case Instruction::Sub: 542 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 543 case Instruction::Mul: 544 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 545 case Instruction::FDiv: 546 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 547 case Instruction::FRem: 548 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 549 } 550 break; 551 case Type::DoubleTyID: 552 switch (CE->getOpcode()) { 553 default: assert(0 && "Invalid double opcode"); abort(); 554 case Instruction::Add: 555 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 556 case Instruction::Sub: 557 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 558 case Instruction::Mul: 559 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 560 case Instruction::FDiv: 561 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 562 case Instruction::FRem: 563 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 564 } 565 break; 566 case Type::X86_FP80TyID: 567 case Type::PPC_FP128TyID: 568 case Type::FP128TyID: { 569 APFloat apfLHS = APFloat(LHS.IntVal); 570 switch (CE->getOpcode()) { 571 default: assert(0 && "Invalid long double opcode"); abort(); 572 case Instruction::Add: 573 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 574 GV.IntVal = apfLHS.convertToAPInt(); 575 break; 576 case Instruction::Sub: 577 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 578 GV.IntVal = apfLHS.convertToAPInt(); 579 break; 580 case Instruction::Mul: 581 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 582 GV.IntVal = apfLHS.convertToAPInt(); 583 break; 584 case Instruction::FDiv: 585 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 586 GV.IntVal = apfLHS.convertToAPInt(); 587 break; 588 case Instruction::FRem: 589 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 590 GV.IntVal = apfLHS.convertToAPInt(); 591 break; 592 } 593 } 594 break; 595 } 596 return GV; 597 } 598 default: 599 break; 600 } 601 cerr << "ConstantExpr not handled: " << *CE << "\n"; 602 abort(); 603 } 604 605 GenericValue Result; 606 switch (C->getType()->getTypeID()) { 607 case Type::FloatTyID: 608 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 609 break; 610 case Type::DoubleTyID: 611 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 612 break; 613 case Type::X86_FP80TyID: 614 case Type::FP128TyID: 615 case Type::PPC_FP128TyID: 616 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt(); 617 break; 618 case Type::IntegerTyID: 619 Result.IntVal = cast<ConstantInt>(C)->getValue(); 620 break; 621 case Type::PointerTyID: 622 if (isa<ConstantPointerNull>(C)) 623 Result.PointerVal = 0; 624 else if (const Function *F = dyn_cast<Function>(C)) 625 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 626 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 627 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 628 else 629 assert(0 && "Unknown constant pointer type!"); 630 break; 631 default: 632 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 633 abort(); 634 } 635 return Result; 636 } 637 638 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 639 /// with the integer held in IntVal. 640 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 641 unsigned StoreBytes) { 642 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 643 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 644 645 if (sys::littleEndianHost()) 646 // Little-endian host - the source is ordered from LSB to MSB. Order the 647 // destination from LSB to MSB: Do a straight copy. 648 memcpy(Dst, Src, StoreBytes); 649 else { 650 // Big-endian host - the source is an array of 64 bit words ordered from 651 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 652 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 653 while (StoreBytes > sizeof(uint64_t)) { 654 StoreBytes -= sizeof(uint64_t); 655 // May not be aligned so use memcpy. 656 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 657 Src += sizeof(uint64_t); 658 } 659 660 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 661 } 662 } 663 664 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 665 /// is the address of the memory at which to store Val, cast to GenericValue *. 666 /// It is not a pointer to a GenericValue containing the address at which to 667 /// store Val. 668 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 669 const Type *Ty) { 670 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 671 672 switch (Ty->getTypeID()) { 673 case Type::IntegerTyID: 674 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 675 break; 676 case Type::FloatTyID: 677 *((float*)Ptr) = Val.FloatVal; 678 break; 679 case Type::DoubleTyID: 680 *((double*)Ptr) = Val.DoubleVal; 681 break; 682 case Type::X86_FP80TyID: { 683 uint16_t *Dest = (uint16_t*)Ptr; 684 const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData(); 685 // This is endian dependent, but it will only work on x86 anyway. 686 Dest[0] = Src[4]; 687 Dest[1] = Src[0]; 688 Dest[2] = Src[1]; 689 Dest[3] = Src[2]; 690 Dest[4] = Src[3]; 691 break; 692 } 693 case Type::PointerTyID: 694 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 695 if (StoreBytes != sizeof(PointerTy)) 696 memset(Ptr, 0, StoreBytes); 697 698 *((PointerTy*)Ptr) = Val.PointerVal; 699 break; 700 default: 701 cerr << "Cannot store value of type " << *Ty << "!\n"; 702 } 703 704 if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) 705 // Host and target are different endian - reverse the stored bytes. 706 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 707 } 708 709 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 710 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 711 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 712 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 713 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 714 715 if (sys::littleEndianHost()) 716 // Little-endian host - the destination must be ordered from LSB to MSB. 717 // The source is ordered from LSB to MSB: Do a straight copy. 718 memcpy(Dst, Src, LoadBytes); 719 else { 720 // Big-endian - the destination is an array of 64 bit words ordered from 721 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 722 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 723 // a word. 724 while (LoadBytes > sizeof(uint64_t)) { 725 LoadBytes -= sizeof(uint64_t); 726 // May not be aligned so use memcpy. 727 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 728 Dst += sizeof(uint64_t); 729 } 730 731 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 732 } 733 } 734 735 /// FIXME: document 736 /// 737 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 738 GenericValue *Ptr, 739 const Type *Ty) { 740 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 741 742 if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) { 743 // Host and target are different endian - reverse copy the stored 744 // bytes into a buffer, and load from that. 745 uint8_t *Src = (uint8_t*)Ptr; 746 uint8_t *Buf = (uint8_t*)alloca(LoadBytes); 747 std::reverse_copy(Src, Src + LoadBytes, Buf); 748 Ptr = (GenericValue*)Buf; 749 } 750 751 switch (Ty->getTypeID()) { 752 case Type::IntegerTyID: 753 // An APInt with all words initially zero. 754 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 755 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 756 break; 757 case Type::FloatTyID: 758 Result.FloatVal = *((float*)Ptr); 759 break; 760 case Type::DoubleTyID: 761 Result.DoubleVal = *((double*)Ptr); 762 break; 763 case Type::PointerTyID: 764 Result.PointerVal = *((PointerTy*)Ptr); 765 break; 766 case Type::X86_FP80TyID: { 767 // This is endian dependent, but it will only work on x86 anyway. 768 // FIXME: Will not trap if loading a signaling NaN. 769 uint16_t *p = (uint16_t*)Ptr; 770 union { 771 uint16_t x[8]; 772 uint64_t y[2]; 773 }; 774 x[0] = p[1]; 775 x[1] = p[2]; 776 x[2] = p[3]; 777 x[3] = p[4]; 778 x[4] = p[0]; 779 Result.IntVal = APInt(80, 2, y); 780 break; 781 } 782 default: 783 cerr << "Cannot load value of type " << *Ty << "!\n"; 784 abort(); 785 } 786 } 787 788 // InitializeMemory - Recursive function to apply a Constant value into the 789 // specified memory location... 790 // 791 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 792 if (isa<UndefValue>(Init)) { 793 return; 794 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 795 unsigned ElementSize = 796 getTargetData()->getABITypeSize(CP->getType()->getElementType()); 797 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 798 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 799 return; 800 } else if (Init->getType()->isFirstClassType()) { 801 GenericValue Val = getConstantValue(Init); 802 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 803 return; 804 } else if (isa<ConstantAggregateZero>(Init)) { 805 memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType())); 806 return; 807 } 808 809 switch (Init->getType()->getTypeID()) { 810 case Type::ArrayTyID: { 811 const ConstantArray *CPA = cast<ConstantArray>(Init); 812 unsigned ElementSize = 813 getTargetData()->getABITypeSize(CPA->getType()->getElementType()); 814 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 815 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 816 return; 817 } 818 819 case Type::StructTyID: { 820 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 821 const StructLayout *SL = 822 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 823 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 824 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 825 return; 826 } 827 828 default: 829 cerr << "Bad Type: " << *Init->getType() << "\n"; 830 assert(0 && "Unknown constant type to initialize memory with!"); 831 } 832 } 833 834 /// EmitGlobals - Emit all of the global variables to memory, storing their 835 /// addresses into GlobalAddress. This must make sure to copy the contents of 836 /// their initializers into the memory. 837 /// 838 void ExecutionEngine::emitGlobals() { 839 const TargetData *TD = getTargetData(); 840 841 // Loop over all of the global variables in the program, allocating the memory 842 // to hold them. If there is more than one module, do a prepass over globals 843 // to figure out how the different modules should link together. 844 // 845 std::map<std::pair<std::string, const Type*>, 846 const GlobalValue*> LinkedGlobalsMap; 847 848 if (Modules.size() != 1) { 849 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 850 Module &M = *Modules[m]->getModule(); 851 for (Module::const_global_iterator I = M.global_begin(), 852 E = M.global_end(); I != E; ++I) { 853 const GlobalValue *GV = I; 854 if (GV->hasInternalLinkage() || GV->isDeclaration() || 855 GV->hasAppendingLinkage() || !GV->hasName()) 856 continue;// Ignore external globals and globals with internal linkage. 857 858 const GlobalValue *&GVEntry = 859 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 860 861 // If this is the first time we've seen this global, it is the canonical 862 // version. 863 if (!GVEntry) { 864 GVEntry = GV; 865 continue; 866 } 867 868 // If the existing global is strong, never replace it. 869 if (GVEntry->hasExternalLinkage() || 870 GVEntry->hasDLLImportLinkage() || 871 GVEntry->hasDLLExportLinkage()) 872 continue; 873 874 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 875 // symbol. 876 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 877 GVEntry = GV; 878 } 879 } 880 } 881 882 std::vector<const GlobalValue*> NonCanonicalGlobals; 883 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 884 Module &M = *Modules[m]->getModule(); 885 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 886 I != E; ++I) { 887 // In the multi-module case, see what this global maps to. 888 if (!LinkedGlobalsMap.empty()) { 889 if (const GlobalValue *GVEntry = 890 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 891 // If something else is the canonical global, ignore this one. 892 if (GVEntry != &*I) { 893 NonCanonicalGlobals.push_back(I); 894 continue; 895 } 896 } 897 } 898 899 if (!I->isDeclaration()) { 900 // Get the type of the global. 901 const Type *Ty = I->getType()->getElementType(); 902 903 // Allocate some memory for it! 904 unsigned Size = TD->getABITypeSize(Ty); 905 addGlobalMapping(I, new char[Size]); 906 } else { 907 // External variable reference. Try to use the dynamic loader to 908 // get a pointer to it. 909 if (void *SymAddr = 910 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 911 addGlobalMapping(I, SymAddr); 912 else { 913 cerr << "Could not resolve external global address: " 914 << I->getName() << "\n"; 915 abort(); 916 } 917 } 918 } 919 920 // If there are multiple modules, map the non-canonical globals to their 921 // canonical location. 922 if (!NonCanonicalGlobals.empty()) { 923 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 924 const GlobalValue *GV = NonCanonicalGlobals[i]; 925 const GlobalValue *CGV = 926 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 927 void *Ptr = getPointerToGlobalIfAvailable(CGV); 928 assert(Ptr && "Canonical global wasn't codegen'd!"); 929 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 930 } 931 } 932 933 // Now that all of the globals are set up in memory, loop through them all 934 // and initialize their contents. 935 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 936 I != E; ++I) { 937 if (!I->isDeclaration()) { 938 if (!LinkedGlobalsMap.empty()) { 939 if (const GlobalValue *GVEntry = 940 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 941 if (GVEntry != &*I) // Not the canonical variable. 942 continue; 943 } 944 EmitGlobalVariable(I); 945 } 946 } 947 } 948 } 949 950 // EmitGlobalVariable - This method emits the specified global variable to the 951 // address specified in GlobalAddresses, or allocates new memory if it's not 952 // already in the map. 953 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 954 void *GA = getPointerToGlobalIfAvailable(GV); 955 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 956 957 const Type *ElTy = GV->getType()->getElementType(); 958 size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy); 959 if (GA == 0) { 960 // If it's not already specified, allocate memory for the global. 961 GA = new char[GVSize]; 962 addGlobalMapping(GV, GA); 963 } 964 965 InitializeMemory(GV->getInitializer(), GA); 966 NumInitBytes += (unsigned)GVSize; 967 ++NumGlobals; 968 } 969