1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Constants.h" 20 #include "llvm/DataLayout.h" 21 #include "llvm/DerivedTypes.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Module.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/DynamicLibrary.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/Host.h" 28 #include "llvm/Support/MutexGuard.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include "llvm/Support/ValueHandle.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cmath> 34 #include <cstring> 35 using namespace llvm; 36 37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 38 STATISTIC(NumGlobals , "Number of global vars initialized"); 39 40 ExecutionEngine *(*ExecutionEngine::JITCtor)( 41 Module *M, 42 std::string *ErrorStr, 43 JITMemoryManager *JMM, 44 bool GVsWithCode, 45 TargetMachine *TM) = 0; 46 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 47 Module *M, 48 std::string *ErrorStr, 49 JITMemoryManager *JMM, 50 bool GVsWithCode, 51 TargetMachine *TM) = 0; 52 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 53 std::string *ErrorStr) = 0; 54 55 ExecutionEngine::ExecutionEngine(Module *M) 56 : EEState(*this), 57 LazyFunctionCreator(0), 58 ExceptionTableRegister(0), 59 ExceptionTableDeregister(0) { 60 CompilingLazily = false; 61 GVCompilationDisabled = false; 62 SymbolSearchingDisabled = false; 63 Modules.push_back(M); 64 assert(M && "Module is null?"); 65 } 66 67 ExecutionEngine::~ExecutionEngine() { 68 clearAllGlobalMappings(); 69 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 70 delete Modules[i]; 71 } 72 73 void ExecutionEngine::DeregisterAllTables() { 74 if (ExceptionTableDeregister) { 75 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 76 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 77 for (; it != ite; ++it) 78 ExceptionTableDeregister(it->second); 79 AllExceptionTables.clear(); 80 } 81 } 82 83 namespace { 84 /// \brief Helper class which uses a value handler to automatically deletes the 85 /// memory block when the GlobalVariable is destroyed. 86 class GVMemoryBlock : public CallbackVH { 87 GVMemoryBlock(const GlobalVariable *GV) 88 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 89 90 public: 91 /// \brief Returns the address the GlobalVariable should be written into. The 92 /// GVMemoryBlock object prefixes that. 93 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 94 Type *ElTy = GV->getType()->getElementType(); 95 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 96 void *RawMemory = ::operator new( 97 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 98 TD.getPreferredAlignment(GV)) 99 + GVSize); 100 new(RawMemory) GVMemoryBlock(GV); 101 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 102 } 103 104 virtual void deleted() { 105 // We allocated with operator new and with some extra memory hanging off the 106 // end, so don't just delete this. I'm not sure if this is actually 107 // required. 108 this->~GVMemoryBlock(); 109 ::operator delete(this); 110 } 111 }; 112 } // anonymous namespace 113 114 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 115 return GVMemoryBlock::Create(GV, *getDataLayout()); 116 } 117 118 bool ExecutionEngine::removeModule(Module *M) { 119 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 120 E = Modules.end(); I != E; ++I) { 121 Module *Found = *I; 122 if (Found == M) { 123 Modules.erase(I); 124 clearGlobalMappingsFromModule(M); 125 return true; 126 } 127 } 128 return false; 129 } 130 131 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 132 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 133 if (Function *F = Modules[i]->getFunction(FnName)) 134 return F; 135 } 136 return 0; 137 } 138 139 140 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 141 const GlobalValue *ToUnmap) { 142 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 143 void *OldVal; 144 145 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 146 // GlobalAddressMap. 147 if (I == GlobalAddressMap.end()) 148 OldVal = 0; 149 else { 150 OldVal = I->second; 151 GlobalAddressMap.erase(I); 152 } 153 154 GlobalAddressReverseMap.erase(OldVal); 155 return OldVal; 156 } 157 158 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 159 MutexGuard locked(lock); 160 161 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 162 << "\' to [" << Addr << "]\n";); 163 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 164 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 165 CurVal = Addr; 166 167 // If we are using the reverse mapping, add it too. 168 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 169 AssertingVH<const GlobalValue> &V = 170 EEState.getGlobalAddressReverseMap(locked)[Addr]; 171 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 172 V = GV; 173 } 174 } 175 176 void ExecutionEngine::clearAllGlobalMappings() { 177 MutexGuard locked(lock); 178 179 EEState.getGlobalAddressMap(locked).clear(); 180 EEState.getGlobalAddressReverseMap(locked).clear(); 181 } 182 183 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 184 MutexGuard locked(lock); 185 186 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 187 EEState.RemoveMapping(locked, FI); 188 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 189 GI != GE; ++GI) 190 EEState.RemoveMapping(locked, GI); 191 } 192 193 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 194 MutexGuard locked(lock); 195 196 ExecutionEngineState::GlobalAddressMapTy &Map = 197 EEState.getGlobalAddressMap(locked); 198 199 // Deleting from the mapping? 200 if (Addr == 0) 201 return EEState.RemoveMapping(locked, GV); 202 203 void *&CurVal = Map[GV]; 204 void *OldVal = CurVal; 205 206 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 207 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 208 CurVal = Addr; 209 210 // If we are using the reverse mapping, add it too. 211 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 212 AssertingVH<const GlobalValue> &V = 213 EEState.getGlobalAddressReverseMap(locked)[Addr]; 214 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 215 V = GV; 216 } 217 return OldVal; 218 } 219 220 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 221 MutexGuard locked(lock); 222 223 ExecutionEngineState::GlobalAddressMapTy::iterator I = 224 EEState.getGlobalAddressMap(locked).find(GV); 225 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 226 } 227 228 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 229 MutexGuard locked(lock); 230 231 // If we haven't computed the reverse mapping yet, do so first. 232 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 233 for (ExecutionEngineState::GlobalAddressMapTy::iterator 234 I = EEState.getGlobalAddressMap(locked).begin(), 235 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 236 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 237 I->second, I->first)); 238 } 239 240 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 241 EEState.getGlobalAddressReverseMap(locked).find(Addr); 242 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 243 } 244 245 namespace { 246 class ArgvArray { 247 char *Array; 248 std::vector<char*> Values; 249 public: 250 ArgvArray() : Array(NULL) {} 251 ~ArgvArray() { clear(); } 252 void clear() { 253 delete[] Array; 254 Array = NULL; 255 for (size_t I = 0, E = Values.size(); I != E; ++I) { 256 delete[] Values[I]; 257 } 258 Values.clear(); 259 } 260 /// Turn a vector of strings into a nice argv style array of pointers to null 261 /// terminated strings. 262 void *reset(LLVMContext &C, ExecutionEngine *EE, 263 const std::vector<std::string> &InputArgv); 264 }; 265 } // anonymous namespace 266 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 267 const std::vector<std::string> &InputArgv) { 268 clear(); // Free the old contents. 269 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 270 Array = new char[(InputArgv.size()+1)*PtrSize]; 271 272 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 273 Type *SBytePtr = Type::getInt8PtrTy(C); 274 275 for (unsigned i = 0; i != InputArgv.size(); ++i) { 276 unsigned Size = InputArgv[i].size()+1; 277 char *Dest = new char[Size]; 278 Values.push_back(Dest); 279 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 280 281 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 282 Dest[Size-1] = 0; 283 284 // Endian safe: Array[i] = (PointerTy)Dest; 285 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 286 SBytePtr); 287 } 288 289 // Null terminate it 290 EE->StoreValueToMemory(PTOGV(0), 291 (GenericValue*)(Array+InputArgv.size()*PtrSize), 292 SBytePtr); 293 return Array; 294 } 295 296 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 297 bool isDtors) { 298 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 299 GlobalVariable *GV = module->getNamedGlobal(Name); 300 301 // If this global has internal linkage, or if it has a use, then it must be 302 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 303 // this is the case, don't execute any of the global ctors, __main will do 304 // it. 305 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 306 307 // Should be an array of '{ i32, void ()* }' structs. The first value is 308 // the init priority, which we ignore. 309 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 310 if (InitList == 0) 311 return; 312 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 313 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 314 if (CS == 0) continue; 315 316 Constant *FP = CS->getOperand(1); 317 if (FP->isNullValue()) 318 continue; // Found a sentinal value, ignore. 319 320 // Strip off constant expression casts. 321 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 322 if (CE->isCast()) 323 FP = CE->getOperand(0); 324 325 // Execute the ctor/dtor function! 326 if (Function *F = dyn_cast<Function>(FP)) 327 runFunction(F, std::vector<GenericValue>()); 328 329 // FIXME: It is marginally lame that we just do nothing here if we see an 330 // entry we don't recognize. It might not be unreasonable for the verifier 331 // to not even allow this and just assert here. 332 } 333 } 334 335 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 336 // Execute global ctors/dtors for each module in the program. 337 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 338 runStaticConstructorsDestructors(Modules[i], isDtors); 339 } 340 341 #ifndef NDEBUG 342 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 343 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 344 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 345 for (unsigned i = 0; i < PtrSize; ++i) 346 if (*(i + (uint8_t*)Loc)) 347 return false; 348 return true; 349 } 350 #endif 351 352 int ExecutionEngine::runFunctionAsMain(Function *Fn, 353 const std::vector<std::string> &argv, 354 const char * const * envp) { 355 std::vector<GenericValue> GVArgs; 356 GenericValue GVArgc; 357 GVArgc.IntVal = APInt(32, argv.size()); 358 359 // Check main() type 360 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 361 FunctionType *FTy = Fn->getFunctionType(); 362 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 363 364 // Check the argument types. 365 if (NumArgs > 3) 366 report_fatal_error("Invalid number of arguments of main() supplied"); 367 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 368 report_fatal_error("Invalid type for third argument of main() supplied"); 369 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 370 report_fatal_error("Invalid type for second argument of main() supplied"); 371 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 372 report_fatal_error("Invalid type for first argument of main() supplied"); 373 if (!FTy->getReturnType()->isIntegerTy() && 374 !FTy->getReturnType()->isVoidTy()) 375 report_fatal_error("Invalid return type of main() supplied"); 376 377 ArgvArray CArgv; 378 ArgvArray CEnv; 379 if (NumArgs) { 380 GVArgs.push_back(GVArgc); // Arg #0 = argc. 381 if (NumArgs > 1) { 382 // Arg #1 = argv. 383 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 384 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 385 "argv[0] was null after CreateArgv"); 386 if (NumArgs > 2) { 387 std::vector<std::string> EnvVars; 388 for (unsigned i = 0; envp[i]; ++i) 389 EnvVars.push_back(envp[i]); 390 // Arg #2 = envp. 391 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 392 } 393 } 394 } 395 396 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 397 } 398 399 ExecutionEngine *ExecutionEngine::create(Module *M, 400 bool ForceInterpreter, 401 std::string *ErrorStr, 402 CodeGenOpt::Level OptLevel, 403 bool GVsWithCode) { 404 EngineBuilder EB = EngineBuilder(M) 405 .setEngineKind(ForceInterpreter 406 ? EngineKind::Interpreter 407 : EngineKind::JIT) 408 .setErrorStr(ErrorStr) 409 .setOptLevel(OptLevel) 410 .setAllocateGVsWithCode(GVsWithCode); 411 412 return EB.create(); 413 } 414 415 /// createJIT - This is the factory method for creating a JIT for the current 416 /// machine, it does not fall back to the interpreter. This takes ownership 417 /// of the module. 418 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 419 std::string *ErrorStr, 420 JITMemoryManager *JMM, 421 CodeGenOpt::Level OL, 422 bool GVsWithCode, 423 Reloc::Model RM, 424 CodeModel::Model CMM) { 425 if (ExecutionEngine::JITCtor == 0) { 426 if (ErrorStr) 427 *ErrorStr = "JIT has not been linked in."; 428 return 0; 429 } 430 431 // Use the defaults for extra parameters. Users can use EngineBuilder to 432 // set them. 433 EngineBuilder EB(M); 434 EB.setEngineKind(EngineKind::JIT); 435 EB.setErrorStr(ErrorStr); 436 EB.setRelocationModel(RM); 437 EB.setCodeModel(CMM); 438 EB.setAllocateGVsWithCode(GVsWithCode); 439 EB.setOptLevel(OL); 440 EB.setJITMemoryManager(JMM); 441 442 // TODO: permit custom TargetOptions here 443 TargetMachine *TM = EB.selectTarget(); 444 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 445 446 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 447 } 448 449 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 450 OwningPtr<TargetMachine> TheTM(TM); // Take ownership. 451 452 // Make sure we can resolve symbols in the program as well. The zero arg 453 // to the function tells DynamicLibrary to load the program, not a library. 454 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 455 return 0; 456 457 // If the user specified a memory manager but didn't specify which engine to 458 // create, we assume they only want the JIT, and we fail if they only want 459 // the interpreter. 460 if (JMM) { 461 if (WhichEngine & EngineKind::JIT) 462 WhichEngine = EngineKind::JIT; 463 else { 464 if (ErrorStr) 465 *ErrorStr = "Cannot create an interpreter with a memory manager."; 466 return 0; 467 } 468 } 469 470 // Unless the interpreter was explicitly selected or the JIT is not linked, 471 // try making a JIT. 472 if ((WhichEngine & EngineKind::JIT) && TheTM) { 473 Triple TT(M->getTargetTriple()); 474 if (!TM->getTarget().hasJIT()) { 475 errs() << "WARNING: This target JIT is not designed for the host" 476 << " you are running. If bad things happen, please choose" 477 << " a different -march switch.\n"; 478 } 479 480 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 481 ExecutionEngine *EE = 482 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, 483 AllocateGVsWithCode, TheTM.take()); 484 if (EE) return EE; 485 } else if (ExecutionEngine::JITCtor) { 486 ExecutionEngine *EE = 487 ExecutionEngine::JITCtor(M, ErrorStr, JMM, 488 AllocateGVsWithCode, TheTM.take()); 489 if (EE) return EE; 490 } 491 } 492 493 // If we can't make a JIT and we didn't request one specifically, try making 494 // an interpreter instead. 495 if (WhichEngine & EngineKind::Interpreter) { 496 if (ExecutionEngine::InterpCtor) 497 return ExecutionEngine::InterpCtor(M, ErrorStr); 498 if (ErrorStr) 499 *ErrorStr = "Interpreter has not been linked in."; 500 return 0; 501 } 502 503 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 && 504 ExecutionEngine::MCJITCtor == 0) { 505 if (ErrorStr) 506 *ErrorStr = "JIT has not been linked in."; 507 } 508 509 return 0; 510 } 511 512 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 513 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 514 return getPointerToFunction(F); 515 516 MutexGuard locked(lock); 517 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 518 return P; 519 520 // Global variable might have been added since interpreter started. 521 if (GlobalVariable *GVar = 522 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 523 EmitGlobalVariable(GVar); 524 else 525 llvm_unreachable("Global hasn't had an address allocated yet!"); 526 527 return EEState.getGlobalAddressMap(locked)[GV]; 528 } 529 530 /// \brief Converts a Constant* into a GenericValue, including handling of 531 /// ConstantExpr values. 532 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 533 // If its undefined, return the garbage. 534 if (isa<UndefValue>(C)) { 535 GenericValue Result; 536 switch (C->getType()->getTypeID()) { 537 case Type::IntegerTyID: 538 case Type::X86_FP80TyID: 539 case Type::FP128TyID: 540 case Type::PPC_FP128TyID: 541 // Although the value is undefined, we still have to construct an APInt 542 // with the correct bit width. 543 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 544 break; 545 default: 546 break; 547 } 548 return Result; 549 } 550 551 // Otherwise, if the value is a ConstantExpr... 552 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 553 Constant *Op0 = CE->getOperand(0); 554 switch (CE->getOpcode()) { 555 case Instruction::GetElementPtr: { 556 // Compute the index 557 GenericValue Result = getConstantValue(Op0); 558 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 559 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices); 560 561 char* tmp = (char*) Result.PointerVal; 562 Result = PTOGV(tmp + Offset); 563 return Result; 564 } 565 case Instruction::Trunc: { 566 GenericValue GV = getConstantValue(Op0); 567 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 568 GV.IntVal = GV.IntVal.trunc(BitWidth); 569 return GV; 570 } 571 case Instruction::ZExt: { 572 GenericValue GV = getConstantValue(Op0); 573 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 574 GV.IntVal = GV.IntVal.zext(BitWidth); 575 return GV; 576 } 577 case Instruction::SExt: { 578 GenericValue GV = getConstantValue(Op0); 579 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 580 GV.IntVal = GV.IntVal.sext(BitWidth); 581 return GV; 582 } 583 case Instruction::FPTrunc: { 584 // FIXME long double 585 GenericValue GV = getConstantValue(Op0); 586 GV.FloatVal = float(GV.DoubleVal); 587 return GV; 588 } 589 case Instruction::FPExt:{ 590 // FIXME long double 591 GenericValue GV = getConstantValue(Op0); 592 GV.DoubleVal = double(GV.FloatVal); 593 return GV; 594 } 595 case Instruction::UIToFP: { 596 GenericValue GV = getConstantValue(Op0); 597 if (CE->getType()->isFloatTy()) 598 GV.FloatVal = float(GV.IntVal.roundToDouble()); 599 else if (CE->getType()->isDoubleTy()) 600 GV.DoubleVal = GV.IntVal.roundToDouble(); 601 else if (CE->getType()->isX86_FP80Ty()) { 602 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 603 (void)apf.convertFromAPInt(GV.IntVal, 604 false, 605 APFloat::rmNearestTiesToEven); 606 GV.IntVal = apf.bitcastToAPInt(); 607 } 608 return GV; 609 } 610 case Instruction::SIToFP: { 611 GenericValue GV = getConstantValue(Op0); 612 if (CE->getType()->isFloatTy()) 613 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 614 else if (CE->getType()->isDoubleTy()) 615 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 616 else if (CE->getType()->isX86_FP80Ty()) { 617 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 618 (void)apf.convertFromAPInt(GV.IntVal, 619 true, 620 APFloat::rmNearestTiesToEven); 621 GV.IntVal = apf.bitcastToAPInt(); 622 } 623 return GV; 624 } 625 case Instruction::FPToUI: // double->APInt conversion handles sign 626 case Instruction::FPToSI: { 627 GenericValue GV = getConstantValue(Op0); 628 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 629 if (Op0->getType()->isFloatTy()) 630 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 631 else if (Op0->getType()->isDoubleTy()) 632 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 633 else if (Op0->getType()->isX86_FP80Ty()) { 634 APFloat apf = APFloat(GV.IntVal); 635 uint64_t v; 636 bool ignored; 637 (void)apf.convertToInteger(&v, BitWidth, 638 CE->getOpcode()==Instruction::FPToSI, 639 APFloat::rmTowardZero, &ignored); 640 GV.IntVal = v; // endian? 641 } 642 return GV; 643 } 644 case Instruction::PtrToInt: { 645 GenericValue GV = getConstantValue(Op0); 646 uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType()); 647 assert(PtrWidth <= 64 && "Bad pointer width"); 648 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 649 uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType()); 650 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 651 return GV; 652 } 653 case Instruction::IntToPtr: { 654 GenericValue GV = getConstantValue(Op0); 655 uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType()); 656 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 657 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 658 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 659 return GV; 660 } 661 case Instruction::BitCast: { 662 GenericValue GV = getConstantValue(Op0); 663 Type* DestTy = CE->getType(); 664 switch (Op0->getType()->getTypeID()) { 665 default: llvm_unreachable("Invalid bitcast operand"); 666 case Type::IntegerTyID: 667 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 668 if (DestTy->isFloatTy()) 669 GV.FloatVal = GV.IntVal.bitsToFloat(); 670 else if (DestTy->isDoubleTy()) 671 GV.DoubleVal = GV.IntVal.bitsToDouble(); 672 break; 673 case Type::FloatTyID: 674 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 675 GV.IntVal = APInt::floatToBits(GV.FloatVal); 676 break; 677 case Type::DoubleTyID: 678 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 679 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 680 break; 681 case Type::PointerTyID: 682 assert(DestTy->isPointerTy() && "Invalid bitcast"); 683 break; // getConstantValue(Op0) above already converted it 684 } 685 return GV; 686 } 687 case Instruction::Add: 688 case Instruction::FAdd: 689 case Instruction::Sub: 690 case Instruction::FSub: 691 case Instruction::Mul: 692 case Instruction::FMul: 693 case Instruction::UDiv: 694 case Instruction::SDiv: 695 case Instruction::URem: 696 case Instruction::SRem: 697 case Instruction::And: 698 case Instruction::Or: 699 case Instruction::Xor: { 700 GenericValue LHS = getConstantValue(Op0); 701 GenericValue RHS = getConstantValue(CE->getOperand(1)); 702 GenericValue GV; 703 switch (CE->getOperand(0)->getType()->getTypeID()) { 704 default: llvm_unreachable("Bad add type!"); 705 case Type::IntegerTyID: 706 switch (CE->getOpcode()) { 707 default: llvm_unreachable("Invalid integer opcode"); 708 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 709 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 710 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 711 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 712 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 713 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 714 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 715 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 716 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 717 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 718 } 719 break; 720 case Type::FloatTyID: 721 switch (CE->getOpcode()) { 722 default: llvm_unreachable("Invalid float opcode"); 723 case Instruction::FAdd: 724 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 725 case Instruction::FSub: 726 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 727 case Instruction::FMul: 728 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 729 case Instruction::FDiv: 730 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 731 case Instruction::FRem: 732 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 733 } 734 break; 735 case Type::DoubleTyID: 736 switch (CE->getOpcode()) { 737 default: llvm_unreachable("Invalid double opcode"); 738 case Instruction::FAdd: 739 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 740 case Instruction::FSub: 741 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 742 case Instruction::FMul: 743 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 744 case Instruction::FDiv: 745 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 746 case Instruction::FRem: 747 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 748 } 749 break; 750 case Type::X86_FP80TyID: 751 case Type::PPC_FP128TyID: 752 case Type::FP128TyID: { 753 APFloat apfLHS = APFloat(LHS.IntVal); 754 switch (CE->getOpcode()) { 755 default: llvm_unreachable("Invalid long double opcode"); 756 case Instruction::FAdd: 757 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 758 GV.IntVal = apfLHS.bitcastToAPInt(); 759 break; 760 case Instruction::FSub: 761 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 762 GV.IntVal = apfLHS.bitcastToAPInt(); 763 break; 764 case Instruction::FMul: 765 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 766 GV.IntVal = apfLHS.bitcastToAPInt(); 767 break; 768 case Instruction::FDiv: 769 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 770 GV.IntVal = apfLHS.bitcastToAPInt(); 771 break; 772 case Instruction::FRem: 773 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 774 GV.IntVal = apfLHS.bitcastToAPInt(); 775 break; 776 } 777 } 778 break; 779 } 780 return GV; 781 } 782 default: 783 break; 784 } 785 786 SmallString<256> Msg; 787 raw_svector_ostream OS(Msg); 788 OS << "ConstantExpr not handled: " << *CE; 789 report_fatal_error(OS.str()); 790 } 791 792 // Otherwise, we have a simple constant. 793 GenericValue Result; 794 switch (C->getType()->getTypeID()) { 795 case Type::FloatTyID: 796 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 797 break; 798 case Type::DoubleTyID: 799 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 800 break; 801 case Type::X86_FP80TyID: 802 case Type::FP128TyID: 803 case Type::PPC_FP128TyID: 804 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 805 break; 806 case Type::IntegerTyID: 807 Result.IntVal = cast<ConstantInt>(C)->getValue(); 808 break; 809 case Type::PointerTyID: 810 if (isa<ConstantPointerNull>(C)) 811 Result.PointerVal = 0; 812 else if (const Function *F = dyn_cast<Function>(C)) 813 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 814 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 815 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 816 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 817 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 818 BA->getBasicBlock()))); 819 else 820 llvm_unreachable("Unknown constant pointer type!"); 821 break; 822 default: 823 SmallString<256> Msg; 824 raw_svector_ostream OS(Msg); 825 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 826 report_fatal_error(OS.str()); 827 } 828 829 return Result; 830 } 831 832 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 833 /// with the integer held in IntVal. 834 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 835 unsigned StoreBytes) { 836 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 837 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 838 839 if (sys::isLittleEndianHost()) { 840 // Little-endian host - the source is ordered from LSB to MSB. Order the 841 // destination from LSB to MSB: Do a straight copy. 842 memcpy(Dst, Src, StoreBytes); 843 } else { 844 // Big-endian host - the source is an array of 64 bit words ordered from 845 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 846 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 847 while (StoreBytes > sizeof(uint64_t)) { 848 StoreBytes -= sizeof(uint64_t); 849 // May not be aligned so use memcpy. 850 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 851 Src += sizeof(uint64_t); 852 } 853 854 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 855 } 856 } 857 858 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 859 GenericValue *Ptr, Type *Ty) { 860 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 861 862 switch (Ty->getTypeID()) { 863 case Type::IntegerTyID: 864 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 865 break; 866 case Type::FloatTyID: 867 *((float*)Ptr) = Val.FloatVal; 868 break; 869 case Type::DoubleTyID: 870 *((double*)Ptr) = Val.DoubleVal; 871 break; 872 case Type::X86_FP80TyID: 873 memcpy(Ptr, Val.IntVal.getRawData(), 10); 874 break; 875 case Type::PointerTyID: 876 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 877 if (StoreBytes != sizeof(PointerTy)) 878 memset(&(Ptr->PointerVal), 0, StoreBytes); 879 880 *((PointerTy*)Ptr) = Val.PointerVal; 881 break; 882 default: 883 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 884 } 885 886 if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian()) 887 // Host and target are different endian - reverse the stored bytes. 888 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 889 } 890 891 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 892 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 893 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 894 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 895 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 896 897 if (sys::isLittleEndianHost()) 898 // Little-endian host - the destination must be ordered from LSB to MSB. 899 // The source is ordered from LSB to MSB: Do a straight copy. 900 memcpy(Dst, Src, LoadBytes); 901 else { 902 // Big-endian - the destination is an array of 64 bit words ordered from 903 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 904 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 905 // a word. 906 while (LoadBytes > sizeof(uint64_t)) { 907 LoadBytes -= sizeof(uint64_t); 908 // May not be aligned so use memcpy. 909 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 910 Dst += sizeof(uint64_t); 911 } 912 913 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 914 } 915 } 916 917 /// FIXME: document 918 /// 919 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 920 GenericValue *Ptr, 921 Type *Ty) { 922 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 923 924 switch (Ty->getTypeID()) { 925 case Type::IntegerTyID: 926 // An APInt with all words initially zero. 927 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 928 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 929 break; 930 case Type::FloatTyID: 931 Result.FloatVal = *((float*)Ptr); 932 break; 933 case Type::DoubleTyID: 934 Result.DoubleVal = *((double*)Ptr); 935 break; 936 case Type::PointerTyID: 937 Result.PointerVal = *((PointerTy*)Ptr); 938 break; 939 case Type::X86_FP80TyID: { 940 // This is endian dependent, but it will only work on x86 anyway. 941 // FIXME: Will not trap if loading a signaling NaN. 942 uint64_t y[2]; 943 memcpy(y, Ptr, 10); 944 Result.IntVal = APInt(80, y); 945 break; 946 } 947 default: 948 SmallString<256> Msg; 949 raw_svector_ostream OS(Msg); 950 OS << "Cannot load value of type " << *Ty << "!"; 951 report_fatal_error(OS.str()); 952 } 953 } 954 955 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 956 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 957 DEBUG(Init->dump()); 958 if (isa<UndefValue>(Init)) 959 return; 960 961 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 962 unsigned ElementSize = 963 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 964 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 965 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 966 return; 967 } 968 969 if (isa<ConstantAggregateZero>(Init)) { 970 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 971 return; 972 } 973 974 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 975 unsigned ElementSize = 976 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 977 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 978 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 979 return; 980 } 981 982 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 983 const StructLayout *SL = 984 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 985 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 986 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 987 return; 988 } 989 990 if (const ConstantDataSequential *CDS = 991 dyn_cast<ConstantDataSequential>(Init)) { 992 // CDS is already laid out in host memory order. 993 StringRef Data = CDS->getRawDataValues(); 994 memcpy(Addr, Data.data(), Data.size()); 995 return; 996 } 997 998 if (Init->getType()->isFirstClassType()) { 999 GenericValue Val = getConstantValue(Init); 1000 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1001 return; 1002 } 1003 1004 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1005 llvm_unreachable("Unknown constant type to initialize memory with!"); 1006 } 1007 1008 /// EmitGlobals - Emit all of the global variables to memory, storing their 1009 /// addresses into GlobalAddress. This must make sure to copy the contents of 1010 /// their initializers into the memory. 1011 void ExecutionEngine::emitGlobals() { 1012 // Loop over all of the global variables in the program, allocating the memory 1013 // to hold them. If there is more than one module, do a prepass over globals 1014 // to figure out how the different modules should link together. 1015 std::map<std::pair<std::string, Type*>, 1016 const GlobalValue*> LinkedGlobalsMap; 1017 1018 if (Modules.size() != 1) { 1019 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1020 Module &M = *Modules[m]; 1021 for (Module::const_global_iterator I = M.global_begin(), 1022 E = M.global_end(); I != E; ++I) { 1023 const GlobalValue *GV = I; 1024 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1025 GV->hasAppendingLinkage() || !GV->hasName()) 1026 continue;// Ignore external globals and globals with internal linkage. 1027 1028 const GlobalValue *&GVEntry = 1029 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1030 1031 // If this is the first time we've seen this global, it is the canonical 1032 // version. 1033 if (!GVEntry) { 1034 GVEntry = GV; 1035 continue; 1036 } 1037 1038 // If the existing global is strong, never replace it. 1039 if (GVEntry->hasExternalLinkage() || 1040 GVEntry->hasDLLImportLinkage() || 1041 GVEntry->hasDLLExportLinkage()) 1042 continue; 1043 1044 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1045 // symbol. FIXME is this right for common? 1046 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1047 GVEntry = GV; 1048 } 1049 } 1050 } 1051 1052 std::vector<const GlobalValue*> NonCanonicalGlobals; 1053 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1054 Module &M = *Modules[m]; 1055 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1056 I != E; ++I) { 1057 // In the multi-module case, see what this global maps to. 1058 if (!LinkedGlobalsMap.empty()) { 1059 if (const GlobalValue *GVEntry = 1060 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1061 // If something else is the canonical global, ignore this one. 1062 if (GVEntry != &*I) { 1063 NonCanonicalGlobals.push_back(I); 1064 continue; 1065 } 1066 } 1067 } 1068 1069 if (!I->isDeclaration()) { 1070 addGlobalMapping(I, getMemoryForGV(I)); 1071 } else { 1072 // External variable reference. Try to use the dynamic loader to 1073 // get a pointer to it. 1074 if (void *SymAddr = 1075 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1076 addGlobalMapping(I, SymAddr); 1077 else { 1078 report_fatal_error("Could not resolve external global address: " 1079 +I->getName()); 1080 } 1081 } 1082 } 1083 1084 // If there are multiple modules, map the non-canonical globals to their 1085 // canonical location. 1086 if (!NonCanonicalGlobals.empty()) { 1087 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1088 const GlobalValue *GV = NonCanonicalGlobals[i]; 1089 const GlobalValue *CGV = 1090 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1091 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1092 assert(Ptr && "Canonical global wasn't codegen'd!"); 1093 addGlobalMapping(GV, Ptr); 1094 } 1095 } 1096 1097 // Now that all of the globals are set up in memory, loop through them all 1098 // and initialize their contents. 1099 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1100 I != E; ++I) { 1101 if (!I->isDeclaration()) { 1102 if (!LinkedGlobalsMap.empty()) { 1103 if (const GlobalValue *GVEntry = 1104 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1105 if (GVEntry != &*I) // Not the canonical variable. 1106 continue; 1107 } 1108 EmitGlobalVariable(I); 1109 } 1110 } 1111 } 1112 } 1113 1114 // EmitGlobalVariable - This method emits the specified global variable to the 1115 // address specified in GlobalAddresses, or allocates new memory if it's not 1116 // already in the map. 1117 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1118 void *GA = getPointerToGlobalIfAvailable(GV); 1119 1120 if (GA == 0) { 1121 // If it's not already specified, allocate memory for the global. 1122 GA = getMemoryForGV(GV); 1123 addGlobalMapping(GV, GA); 1124 } 1125 1126 // Don't initialize if it's thread local, let the client do it. 1127 if (!GV->isThreadLocal()) 1128 InitializeMemory(GV->getInitializer(), GA); 1129 1130 Type *ElTy = GV->getType()->getElementType(); 1131 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1132 NumInitBytes += (unsigned)GVSize; 1133 ++NumGlobals; 1134 } 1135 1136 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1137 : EE(EE), GlobalAddressMap(this) { 1138 } 1139 1140 sys::Mutex * 1141 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1142 return &EES->EE.lock; 1143 } 1144 1145 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1146 const GlobalValue *Old) { 1147 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1148 EES->GlobalAddressReverseMap.erase(OldVal); 1149 } 1150 1151 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1152 const GlobalValue *, 1153 const GlobalValue *) { 1154 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1155 " RAUW on a value it has a global mapping for."); 1156 } 1157