1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/ObjectCache.h" 22 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Mangler.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Object/Archive.h" 31 #include "llvm/Object/ObjectFile.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/DynamicLibrary.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Host.h" 36 #include "llvm/Support/MutexGuard.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include <cmath> 41 #include <cstring> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "jit" 45 46 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 47 STATISTIC(NumGlobals , "Number of global vars initialized"); 48 49 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 50 std::unique_ptr<Module> M, std::string *ErrorStr, 51 std::shared_ptr<MCJITMemoryManager> MemMgr, 52 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 53 std::unique_ptr<TargetMachine> TM) = nullptr; 54 55 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 56 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 57 std::shared_ptr<LegacyJITSymbolResolver> Resolver, 58 std::unique_ptr<TargetMachine> TM) = nullptr; 59 60 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 61 std::string *ErrorStr) =nullptr; 62 63 void JITEventListener::anchor() {} 64 65 void ObjectCache::anchor() {} 66 67 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 68 CompilingLazily = false; 69 GVCompilationDisabled = false; 70 SymbolSearchingDisabled = false; 71 72 // IR module verification is enabled by default in debug builds, and disabled 73 // by default in release builds. 74 #ifndef NDEBUG 75 VerifyModules = true; 76 #else 77 VerifyModules = false; 78 #endif 79 80 assert(M && "Module is null?"); 81 Modules.push_back(std::move(M)); 82 } 83 84 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 85 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 86 Init(std::move(M)); 87 } 88 89 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 90 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 91 Init(std::move(M)); 92 } 93 94 ExecutionEngine::~ExecutionEngine() { 95 clearAllGlobalMappings(); 96 } 97 98 namespace { 99 /// Helper class which uses a value handler to automatically deletes the 100 /// memory block when the GlobalVariable is destroyed. 101 class GVMemoryBlock final : public CallbackVH { 102 GVMemoryBlock(const GlobalVariable *GV) 103 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 104 105 public: 106 /// Returns the address the GlobalVariable should be written into. The 107 /// GVMemoryBlock object prefixes that. 108 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 109 Type *ElTy = GV->getValueType(); 110 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 111 void *RawMemory = ::operator new( 112 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); 113 new(RawMemory) GVMemoryBlock(GV); 114 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 115 } 116 117 void deleted() override { 118 // We allocated with operator new and with some extra memory hanging off the 119 // end, so don't just delete this. I'm not sure if this is actually 120 // required. 121 this->~GVMemoryBlock(); 122 ::operator delete(this); 123 } 124 }; 125 } // anonymous namespace 126 127 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 128 return GVMemoryBlock::Create(GV, getDataLayout()); 129 } 130 131 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 132 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 133 } 134 135 void 136 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 137 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 138 } 139 140 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 141 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 142 } 143 144 bool ExecutionEngine::removeModule(Module *M) { 145 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 146 Module *Found = I->get(); 147 if (Found == M) { 148 I->release(); 149 Modules.erase(I); 150 clearGlobalMappingsFromModule(M); 151 return true; 152 } 153 } 154 return false; 155 } 156 157 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { 158 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 159 Function *F = Modules[i]->getFunction(FnName); 160 if (F && !F->isDeclaration()) 161 return F; 162 } 163 return nullptr; 164 } 165 166 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { 167 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 168 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 169 if (GV && !GV->isDeclaration()) 170 return GV; 171 } 172 return nullptr; 173 } 174 175 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 176 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 177 uint64_t OldVal; 178 179 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 180 // GlobalAddressMap. 181 if (I == GlobalAddressMap.end()) 182 OldVal = 0; 183 else { 184 GlobalAddressReverseMap.erase(I->second); 185 OldVal = I->second; 186 GlobalAddressMap.erase(I); 187 } 188 189 return OldVal; 190 } 191 192 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 193 assert(GV->hasName() && "Global must have name."); 194 195 MutexGuard locked(lock); 196 SmallString<128> FullName; 197 198 const DataLayout &DL = 199 GV->getParent()->getDataLayout().isDefault() 200 ? getDataLayout() 201 : GV->getParent()->getDataLayout(); 202 203 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 204 return FullName.str(); 205 } 206 207 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 208 MutexGuard locked(lock); 209 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 210 } 211 212 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 213 MutexGuard locked(lock); 214 215 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 216 217 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 218 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 219 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 220 CurVal = Addr; 221 222 // If we are using the reverse mapping, add it too. 223 if (!EEState.getGlobalAddressReverseMap().empty()) { 224 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 225 assert((!V.empty() || !Name.empty()) && 226 "GlobalMapping already established!"); 227 V = Name; 228 } 229 } 230 231 void ExecutionEngine::clearAllGlobalMappings() { 232 MutexGuard locked(lock); 233 234 EEState.getGlobalAddressMap().clear(); 235 EEState.getGlobalAddressReverseMap().clear(); 236 } 237 238 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 239 MutexGuard locked(lock); 240 241 for (GlobalObject &GO : M->global_objects()) 242 EEState.RemoveMapping(getMangledName(&GO)); 243 } 244 245 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 246 void *Addr) { 247 MutexGuard locked(lock); 248 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 249 } 250 251 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 252 MutexGuard locked(lock); 253 254 ExecutionEngineState::GlobalAddressMapTy &Map = 255 EEState.getGlobalAddressMap(); 256 257 // Deleting from the mapping? 258 if (!Addr) 259 return EEState.RemoveMapping(Name); 260 261 uint64_t &CurVal = Map[Name]; 262 uint64_t OldVal = CurVal; 263 264 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 265 EEState.getGlobalAddressReverseMap().erase(CurVal); 266 CurVal = Addr; 267 268 // If we are using the reverse mapping, add it too. 269 if (!EEState.getGlobalAddressReverseMap().empty()) { 270 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 271 assert((!V.empty() || !Name.empty()) && 272 "GlobalMapping already established!"); 273 V = Name; 274 } 275 return OldVal; 276 } 277 278 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 279 MutexGuard locked(lock); 280 uint64_t Address = 0; 281 ExecutionEngineState::GlobalAddressMapTy::iterator I = 282 EEState.getGlobalAddressMap().find(S); 283 if (I != EEState.getGlobalAddressMap().end()) 284 Address = I->second; 285 return Address; 286 } 287 288 289 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 290 MutexGuard locked(lock); 291 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 292 return Address; 293 return nullptr; 294 } 295 296 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 297 MutexGuard locked(lock); 298 return getPointerToGlobalIfAvailable(getMangledName(GV)); 299 } 300 301 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 302 MutexGuard locked(lock); 303 304 // If we haven't computed the reverse mapping yet, do so first. 305 if (EEState.getGlobalAddressReverseMap().empty()) { 306 for (ExecutionEngineState::GlobalAddressMapTy::iterator 307 I = EEState.getGlobalAddressMap().begin(), 308 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 309 StringRef Name = I->first(); 310 uint64_t Addr = I->second; 311 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 312 Addr, Name)); 313 } 314 } 315 316 std::map<uint64_t, std::string>::iterator I = 317 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 318 319 if (I != EEState.getGlobalAddressReverseMap().end()) { 320 StringRef Name = I->second; 321 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 322 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 323 return GV; 324 } 325 return nullptr; 326 } 327 328 namespace { 329 class ArgvArray { 330 std::unique_ptr<char[]> Array; 331 std::vector<std::unique_ptr<char[]>> Values; 332 public: 333 /// Turn a vector of strings into a nice argv style array of pointers to null 334 /// terminated strings. 335 void *reset(LLVMContext &C, ExecutionEngine *EE, 336 const std::vector<std::string> &InputArgv); 337 }; 338 } // anonymous namespace 339 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 340 const std::vector<std::string> &InputArgv) { 341 Values.clear(); // Free the old contents. 342 Values.reserve(InputArgv.size()); 343 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 344 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 345 346 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n"); 347 Type *SBytePtr = Type::getInt8PtrTy(C); 348 349 for (unsigned i = 0; i != InputArgv.size(); ++i) { 350 unsigned Size = InputArgv[i].size()+1; 351 auto Dest = make_unique<char[]>(Size); 352 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() 353 << "\n"); 354 355 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 356 Dest[Size-1] = 0; 357 358 // Endian safe: Array[i] = (PointerTy)Dest; 359 EE->StoreValueToMemory(PTOGV(Dest.get()), 360 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 361 Values.push_back(std::move(Dest)); 362 } 363 364 // Null terminate it 365 EE->StoreValueToMemory(PTOGV(nullptr), 366 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 367 SBytePtr); 368 return Array.get(); 369 } 370 371 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 372 bool isDtors) { 373 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors"); 374 GlobalVariable *GV = module.getNamedGlobal(Name); 375 376 // If this global has internal linkage, or if it has a use, then it must be 377 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 378 // this is the case, don't execute any of the global ctors, __main will do 379 // it. 380 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 381 382 // Should be an array of '{ i32, void ()* }' structs. The first value is 383 // the init priority, which we ignore. 384 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 385 if (!InitList) 386 return; 387 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 388 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 389 if (!CS) continue; 390 391 Constant *FP = CS->getOperand(1); 392 if (FP->isNullValue()) 393 continue; // Found a sentinal value, ignore. 394 395 // Strip off constant expression casts. 396 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 397 if (CE->isCast()) 398 FP = CE->getOperand(0); 399 400 // Execute the ctor/dtor function! 401 if (Function *F = dyn_cast<Function>(FP)) 402 runFunction(F, None); 403 404 // FIXME: It is marginally lame that we just do nothing here if we see an 405 // entry we don't recognize. It might not be unreasonable for the verifier 406 // to not even allow this and just assert here. 407 } 408 } 409 410 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 411 // Execute global ctors/dtors for each module in the program. 412 for (std::unique_ptr<Module> &M : Modules) 413 runStaticConstructorsDestructors(*M, isDtors); 414 } 415 416 #ifndef NDEBUG 417 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 418 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 419 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 420 for (unsigned i = 0; i < PtrSize; ++i) 421 if (*(i + (uint8_t*)Loc)) 422 return false; 423 return true; 424 } 425 #endif 426 427 int ExecutionEngine::runFunctionAsMain(Function *Fn, 428 const std::vector<std::string> &argv, 429 const char * const * envp) { 430 std::vector<GenericValue> GVArgs; 431 GenericValue GVArgc; 432 GVArgc.IntVal = APInt(32, argv.size()); 433 434 // Check main() type 435 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 436 FunctionType *FTy = Fn->getFunctionType(); 437 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 438 439 // Check the argument types. 440 if (NumArgs > 3) 441 report_fatal_error("Invalid number of arguments of main() supplied"); 442 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 443 report_fatal_error("Invalid type for third argument of main() supplied"); 444 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 445 report_fatal_error("Invalid type for second argument of main() supplied"); 446 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 447 report_fatal_error("Invalid type for first argument of main() supplied"); 448 if (!FTy->getReturnType()->isIntegerTy() && 449 !FTy->getReturnType()->isVoidTy()) 450 report_fatal_error("Invalid return type of main() supplied"); 451 452 ArgvArray CArgv; 453 ArgvArray CEnv; 454 if (NumArgs) { 455 GVArgs.push_back(GVArgc); // Arg #0 = argc. 456 if (NumArgs > 1) { 457 // Arg #1 = argv. 458 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 459 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 460 "argv[0] was null after CreateArgv"); 461 if (NumArgs > 2) { 462 std::vector<std::string> EnvVars; 463 for (unsigned i = 0; envp[i]; ++i) 464 EnvVars.emplace_back(envp[i]); 465 // Arg #2 = envp. 466 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 467 } 468 } 469 } 470 471 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 472 } 473 474 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 475 476 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 477 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 478 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 479 UseOrcMCJITReplacement(false) { 480 // IR module verification is enabled by default in debug builds, and disabled 481 // by default in release builds. 482 #ifndef NDEBUG 483 VerifyModules = true; 484 #else 485 VerifyModules = false; 486 #endif 487 } 488 489 EngineBuilder::~EngineBuilder() = default; 490 491 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 492 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 493 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 494 MemMgr = SharedMM; 495 Resolver = SharedMM; 496 return *this; 497 } 498 499 EngineBuilder& 500 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 501 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 502 return *this; 503 } 504 505 EngineBuilder & 506 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { 507 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); 508 return *this; 509 } 510 511 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 512 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 513 514 // Make sure we can resolve symbols in the program as well. The zero arg 515 // to the function tells DynamicLibrary to load the program, not a library. 516 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 517 return nullptr; 518 519 // If the user specified a memory manager but didn't specify which engine to 520 // create, we assume they only want the JIT, and we fail if they only want 521 // the interpreter. 522 if (MemMgr) { 523 if (WhichEngine & EngineKind::JIT) 524 WhichEngine = EngineKind::JIT; 525 else { 526 if (ErrorStr) 527 *ErrorStr = "Cannot create an interpreter with a memory manager."; 528 return nullptr; 529 } 530 } 531 532 // Unless the interpreter was explicitly selected or the JIT is not linked, 533 // try making a JIT. 534 if ((WhichEngine & EngineKind::JIT) && TheTM) { 535 if (!TM->getTarget().hasJIT()) { 536 errs() << "WARNING: This target JIT is not designed for the host" 537 << " you are running. If bad things happen, please choose" 538 << " a different -march switch.\n"; 539 } 540 541 ExecutionEngine *EE = nullptr; 542 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 543 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 544 std::move(Resolver), 545 std::move(TheTM)); 546 EE->addModule(std::move(M)); 547 } else if (ExecutionEngine::MCJITCtor) 548 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 549 std::move(Resolver), std::move(TheTM)); 550 551 if (EE) { 552 EE->setVerifyModules(VerifyModules); 553 return EE; 554 } 555 } 556 557 // If we can't make a JIT and we didn't request one specifically, try making 558 // an interpreter instead. 559 if (WhichEngine & EngineKind::Interpreter) { 560 if (ExecutionEngine::InterpCtor) 561 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 562 if (ErrorStr) 563 *ErrorStr = "Interpreter has not been linked in."; 564 return nullptr; 565 } 566 567 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 568 if (ErrorStr) 569 *ErrorStr = "JIT has not been linked in."; 570 } 571 572 return nullptr; 573 } 574 575 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 576 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 577 return getPointerToFunction(F); 578 579 MutexGuard locked(lock); 580 if (void* P = getPointerToGlobalIfAvailable(GV)) 581 return P; 582 583 // Global variable might have been added since interpreter started. 584 if (GlobalVariable *GVar = 585 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 586 EmitGlobalVariable(GVar); 587 else 588 llvm_unreachable("Global hasn't had an address allocated yet!"); 589 590 return getPointerToGlobalIfAvailable(GV); 591 } 592 593 /// Converts a Constant* into a GenericValue, including handling of 594 /// ConstantExpr values. 595 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 596 // If its undefined, return the garbage. 597 if (isa<UndefValue>(C)) { 598 GenericValue Result; 599 switch (C->getType()->getTypeID()) { 600 default: 601 break; 602 case Type::IntegerTyID: 603 case Type::X86_FP80TyID: 604 case Type::FP128TyID: 605 case Type::PPC_FP128TyID: 606 // Although the value is undefined, we still have to construct an APInt 607 // with the correct bit width. 608 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 609 break; 610 case Type::StructTyID: { 611 // if the whole struct is 'undef' just reserve memory for the value. 612 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 613 unsigned int elemNum = STy->getNumElements(); 614 Result.AggregateVal.resize(elemNum); 615 for (unsigned int i = 0; i < elemNum; ++i) { 616 Type *ElemTy = STy->getElementType(i); 617 if (ElemTy->isIntegerTy()) 618 Result.AggregateVal[i].IntVal = 619 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 620 else if (ElemTy->isAggregateType()) { 621 const Constant *ElemUndef = UndefValue::get(ElemTy); 622 Result.AggregateVal[i] = getConstantValue(ElemUndef); 623 } 624 } 625 } 626 } 627 break; 628 case Type::VectorTyID: 629 // if the whole vector is 'undef' just reserve memory for the value. 630 auto* VTy = dyn_cast<VectorType>(C->getType()); 631 Type *ElemTy = VTy->getElementType(); 632 unsigned int elemNum = VTy->getNumElements(); 633 Result.AggregateVal.resize(elemNum); 634 if (ElemTy->isIntegerTy()) 635 for (unsigned int i = 0; i < elemNum; ++i) 636 Result.AggregateVal[i].IntVal = 637 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 638 break; 639 } 640 return Result; 641 } 642 643 // Otherwise, if the value is a ConstantExpr... 644 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 645 Constant *Op0 = CE->getOperand(0); 646 switch (CE->getOpcode()) { 647 case Instruction::GetElementPtr: { 648 // Compute the index 649 GenericValue Result = getConstantValue(Op0); 650 APInt Offset(DL.getPointerSizeInBits(), 0); 651 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 652 653 char* tmp = (char*) Result.PointerVal; 654 Result = PTOGV(tmp + Offset.getSExtValue()); 655 return Result; 656 } 657 case Instruction::Trunc: { 658 GenericValue GV = getConstantValue(Op0); 659 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 660 GV.IntVal = GV.IntVal.trunc(BitWidth); 661 return GV; 662 } 663 case Instruction::ZExt: { 664 GenericValue GV = getConstantValue(Op0); 665 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 666 GV.IntVal = GV.IntVal.zext(BitWidth); 667 return GV; 668 } 669 case Instruction::SExt: { 670 GenericValue GV = getConstantValue(Op0); 671 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 672 GV.IntVal = GV.IntVal.sext(BitWidth); 673 return GV; 674 } 675 case Instruction::FPTrunc: { 676 // FIXME long double 677 GenericValue GV = getConstantValue(Op0); 678 GV.FloatVal = float(GV.DoubleVal); 679 return GV; 680 } 681 case Instruction::FPExt:{ 682 // FIXME long double 683 GenericValue GV = getConstantValue(Op0); 684 GV.DoubleVal = double(GV.FloatVal); 685 return GV; 686 } 687 case Instruction::UIToFP: { 688 GenericValue GV = getConstantValue(Op0); 689 if (CE->getType()->isFloatTy()) 690 GV.FloatVal = float(GV.IntVal.roundToDouble()); 691 else if (CE->getType()->isDoubleTy()) 692 GV.DoubleVal = GV.IntVal.roundToDouble(); 693 else if (CE->getType()->isX86_FP80Ty()) { 694 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 695 (void)apf.convertFromAPInt(GV.IntVal, 696 false, 697 APFloat::rmNearestTiesToEven); 698 GV.IntVal = apf.bitcastToAPInt(); 699 } 700 return GV; 701 } 702 case Instruction::SIToFP: { 703 GenericValue GV = getConstantValue(Op0); 704 if (CE->getType()->isFloatTy()) 705 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 706 else if (CE->getType()->isDoubleTy()) 707 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 708 else if (CE->getType()->isX86_FP80Ty()) { 709 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended()); 710 (void)apf.convertFromAPInt(GV.IntVal, 711 true, 712 APFloat::rmNearestTiesToEven); 713 GV.IntVal = apf.bitcastToAPInt(); 714 } 715 return GV; 716 } 717 case Instruction::FPToUI: // double->APInt conversion handles sign 718 case Instruction::FPToSI: { 719 GenericValue GV = getConstantValue(Op0); 720 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 721 if (Op0->getType()->isFloatTy()) 722 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 723 else if (Op0->getType()->isDoubleTy()) 724 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 725 else if (Op0->getType()->isX86_FP80Ty()) { 726 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); 727 uint64_t v; 728 bool ignored; 729 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth, 730 CE->getOpcode()==Instruction::FPToSI, 731 APFloat::rmTowardZero, &ignored); 732 GV.IntVal = v; // endian? 733 } 734 return GV; 735 } 736 case Instruction::PtrToInt: { 737 GenericValue GV = getConstantValue(Op0); 738 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 739 assert(PtrWidth <= 64 && "Bad pointer width"); 740 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 741 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 742 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 743 return GV; 744 } 745 case Instruction::IntToPtr: { 746 GenericValue GV = getConstantValue(Op0); 747 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 748 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 749 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 750 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 751 return GV; 752 } 753 case Instruction::BitCast: { 754 GenericValue GV = getConstantValue(Op0); 755 Type* DestTy = CE->getType(); 756 switch (Op0->getType()->getTypeID()) { 757 default: llvm_unreachable("Invalid bitcast operand"); 758 case Type::IntegerTyID: 759 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 760 if (DestTy->isFloatTy()) 761 GV.FloatVal = GV.IntVal.bitsToFloat(); 762 else if (DestTy->isDoubleTy()) 763 GV.DoubleVal = GV.IntVal.bitsToDouble(); 764 break; 765 case Type::FloatTyID: 766 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 767 GV.IntVal = APInt::floatToBits(GV.FloatVal); 768 break; 769 case Type::DoubleTyID: 770 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 771 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 772 break; 773 case Type::PointerTyID: 774 assert(DestTy->isPointerTy() && "Invalid bitcast"); 775 break; // getConstantValue(Op0) above already converted it 776 } 777 return GV; 778 } 779 case Instruction::Add: 780 case Instruction::FAdd: 781 case Instruction::Sub: 782 case Instruction::FSub: 783 case Instruction::Mul: 784 case Instruction::FMul: 785 case Instruction::UDiv: 786 case Instruction::SDiv: 787 case Instruction::URem: 788 case Instruction::SRem: 789 case Instruction::And: 790 case Instruction::Or: 791 case Instruction::Xor: { 792 GenericValue LHS = getConstantValue(Op0); 793 GenericValue RHS = getConstantValue(CE->getOperand(1)); 794 GenericValue GV; 795 switch (CE->getOperand(0)->getType()->getTypeID()) { 796 default: llvm_unreachable("Bad add type!"); 797 case Type::IntegerTyID: 798 switch (CE->getOpcode()) { 799 default: llvm_unreachable("Invalid integer opcode"); 800 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 801 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 802 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 803 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 804 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 805 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 806 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 807 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 808 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 809 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 810 } 811 break; 812 case Type::FloatTyID: 813 switch (CE->getOpcode()) { 814 default: llvm_unreachable("Invalid float opcode"); 815 case Instruction::FAdd: 816 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 817 case Instruction::FSub: 818 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 819 case Instruction::FMul: 820 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 821 case Instruction::FDiv: 822 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 823 case Instruction::FRem: 824 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 825 } 826 break; 827 case Type::DoubleTyID: 828 switch (CE->getOpcode()) { 829 default: llvm_unreachable("Invalid double opcode"); 830 case Instruction::FAdd: 831 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 832 case Instruction::FSub: 833 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 834 case Instruction::FMul: 835 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 836 case Instruction::FDiv: 837 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 838 case Instruction::FRem: 839 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 840 } 841 break; 842 case Type::X86_FP80TyID: 843 case Type::PPC_FP128TyID: 844 case Type::FP128TyID: { 845 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 846 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 847 switch (CE->getOpcode()) { 848 default: llvm_unreachable("Invalid long double opcode"); 849 case Instruction::FAdd: 850 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 851 GV.IntVal = apfLHS.bitcastToAPInt(); 852 break; 853 case Instruction::FSub: 854 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 855 APFloat::rmNearestTiesToEven); 856 GV.IntVal = apfLHS.bitcastToAPInt(); 857 break; 858 case Instruction::FMul: 859 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 860 APFloat::rmNearestTiesToEven); 861 GV.IntVal = apfLHS.bitcastToAPInt(); 862 break; 863 case Instruction::FDiv: 864 apfLHS.divide(APFloat(Sem, RHS.IntVal), 865 APFloat::rmNearestTiesToEven); 866 GV.IntVal = apfLHS.bitcastToAPInt(); 867 break; 868 case Instruction::FRem: 869 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 870 GV.IntVal = apfLHS.bitcastToAPInt(); 871 break; 872 } 873 } 874 break; 875 } 876 return GV; 877 } 878 default: 879 break; 880 } 881 882 SmallString<256> Msg; 883 raw_svector_ostream OS(Msg); 884 OS << "ConstantExpr not handled: " << *CE; 885 report_fatal_error(OS.str()); 886 } 887 888 // Otherwise, we have a simple constant. 889 GenericValue Result; 890 switch (C->getType()->getTypeID()) { 891 case Type::FloatTyID: 892 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 893 break; 894 case Type::DoubleTyID: 895 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 896 break; 897 case Type::X86_FP80TyID: 898 case Type::FP128TyID: 899 case Type::PPC_FP128TyID: 900 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 901 break; 902 case Type::IntegerTyID: 903 Result.IntVal = cast<ConstantInt>(C)->getValue(); 904 break; 905 case Type::PointerTyID: 906 if (isa<ConstantPointerNull>(C)) 907 Result.PointerVal = nullptr; 908 else if (const Function *F = dyn_cast<Function>(C)) 909 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 910 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 911 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 912 else 913 llvm_unreachable("Unknown constant pointer type!"); 914 break; 915 case Type::VectorTyID: { 916 unsigned elemNum; 917 Type* ElemTy; 918 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 919 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 920 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 921 922 if (CDV) { 923 elemNum = CDV->getNumElements(); 924 ElemTy = CDV->getElementType(); 925 } else if (CV || CAZ) { 926 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 927 elemNum = VTy->getNumElements(); 928 ElemTy = VTy->getElementType(); 929 } else { 930 llvm_unreachable("Unknown constant vector type!"); 931 } 932 933 Result.AggregateVal.resize(elemNum); 934 // Check if vector holds floats. 935 if(ElemTy->isFloatTy()) { 936 if (CAZ) { 937 GenericValue floatZero; 938 floatZero.FloatVal = 0.f; 939 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 940 floatZero); 941 break; 942 } 943 if(CV) { 944 for (unsigned i = 0; i < elemNum; ++i) 945 if (!isa<UndefValue>(CV->getOperand(i))) 946 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 947 CV->getOperand(i))->getValueAPF().convertToFloat(); 948 break; 949 } 950 if(CDV) 951 for (unsigned i = 0; i < elemNum; ++i) 952 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 953 954 break; 955 } 956 // Check if vector holds doubles. 957 if (ElemTy->isDoubleTy()) { 958 if (CAZ) { 959 GenericValue doubleZero; 960 doubleZero.DoubleVal = 0.0; 961 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 962 doubleZero); 963 break; 964 } 965 if(CV) { 966 for (unsigned i = 0; i < elemNum; ++i) 967 if (!isa<UndefValue>(CV->getOperand(i))) 968 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 969 CV->getOperand(i))->getValueAPF().convertToDouble(); 970 break; 971 } 972 if(CDV) 973 for (unsigned i = 0; i < elemNum; ++i) 974 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 975 976 break; 977 } 978 // Check if vector holds integers. 979 if (ElemTy->isIntegerTy()) { 980 if (CAZ) { 981 GenericValue intZero; 982 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 983 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 984 intZero); 985 break; 986 } 987 if(CV) { 988 for (unsigned i = 0; i < elemNum; ++i) 989 if (!isa<UndefValue>(CV->getOperand(i))) 990 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 991 CV->getOperand(i))->getValue(); 992 else { 993 Result.AggregateVal[i].IntVal = 994 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 995 } 996 break; 997 } 998 if(CDV) 999 for (unsigned i = 0; i < elemNum; ++i) 1000 Result.AggregateVal[i].IntVal = APInt( 1001 CDV->getElementType()->getPrimitiveSizeInBits(), 1002 CDV->getElementAsInteger(i)); 1003 1004 break; 1005 } 1006 llvm_unreachable("Unknown constant pointer type!"); 1007 } 1008 break; 1009 1010 default: 1011 SmallString<256> Msg; 1012 raw_svector_ostream OS(Msg); 1013 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1014 report_fatal_error(OS.str()); 1015 } 1016 1017 return Result; 1018 } 1019 1020 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1021 /// with the integer held in IntVal. 1022 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1023 unsigned StoreBytes) { 1024 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1025 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1026 1027 if (sys::IsLittleEndianHost) { 1028 // Little-endian host - the source is ordered from LSB to MSB. Order the 1029 // destination from LSB to MSB: Do a straight copy. 1030 memcpy(Dst, Src, StoreBytes); 1031 } else { 1032 // Big-endian host - the source is an array of 64 bit words ordered from 1033 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1034 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1035 while (StoreBytes > sizeof(uint64_t)) { 1036 StoreBytes -= sizeof(uint64_t); 1037 // May not be aligned so use memcpy. 1038 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1039 Src += sizeof(uint64_t); 1040 } 1041 1042 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1043 } 1044 } 1045 1046 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1047 GenericValue *Ptr, Type *Ty) { 1048 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1049 1050 switch (Ty->getTypeID()) { 1051 default: 1052 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1053 break; 1054 case Type::IntegerTyID: 1055 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1056 break; 1057 case Type::FloatTyID: 1058 *((float*)Ptr) = Val.FloatVal; 1059 break; 1060 case Type::DoubleTyID: 1061 *((double*)Ptr) = Val.DoubleVal; 1062 break; 1063 case Type::X86_FP80TyID: 1064 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1065 break; 1066 case Type::PointerTyID: 1067 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1068 if (StoreBytes != sizeof(PointerTy)) 1069 memset(&(Ptr->PointerVal), 0, StoreBytes); 1070 1071 *((PointerTy*)Ptr) = Val.PointerVal; 1072 break; 1073 case Type::VectorTyID: 1074 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1075 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1076 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1077 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1078 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1079 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1080 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1081 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1082 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1083 } 1084 } 1085 break; 1086 } 1087 1088 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1089 // Host and target are different endian - reverse the stored bytes. 1090 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1091 } 1092 1093 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1094 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1095 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1096 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1097 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1098 const_cast<uint64_t *>(IntVal.getRawData())); 1099 1100 if (sys::IsLittleEndianHost) 1101 // Little-endian host - the destination must be ordered from LSB to MSB. 1102 // The source is ordered from LSB to MSB: Do a straight copy. 1103 memcpy(Dst, Src, LoadBytes); 1104 else { 1105 // Big-endian - the destination is an array of 64 bit words ordered from 1106 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1107 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1108 // a word. 1109 while (LoadBytes > sizeof(uint64_t)) { 1110 LoadBytes -= sizeof(uint64_t); 1111 // May not be aligned so use memcpy. 1112 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1113 Dst += sizeof(uint64_t); 1114 } 1115 1116 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1117 } 1118 } 1119 1120 /// FIXME: document 1121 /// 1122 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1123 GenericValue *Ptr, 1124 Type *Ty) { 1125 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1126 1127 switch (Ty->getTypeID()) { 1128 case Type::IntegerTyID: 1129 // An APInt with all words initially zero. 1130 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1131 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1132 break; 1133 case Type::FloatTyID: 1134 Result.FloatVal = *((float*)Ptr); 1135 break; 1136 case Type::DoubleTyID: 1137 Result.DoubleVal = *((double*)Ptr); 1138 break; 1139 case Type::PointerTyID: 1140 Result.PointerVal = *((PointerTy*)Ptr); 1141 break; 1142 case Type::X86_FP80TyID: { 1143 // This is endian dependent, but it will only work on x86 anyway. 1144 // FIXME: Will not trap if loading a signaling NaN. 1145 uint64_t y[2]; 1146 memcpy(y, Ptr, 10); 1147 Result.IntVal = APInt(80, y); 1148 break; 1149 } 1150 case Type::VectorTyID: { 1151 auto *VT = cast<VectorType>(Ty); 1152 Type *ElemT = VT->getElementType(); 1153 const unsigned numElems = VT->getNumElements(); 1154 if (ElemT->isFloatTy()) { 1155 Result.AggregateVal.resize(numElems); 1156 for (unsigned i = 0; i < numElems; ++i) 1157 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1158 } 1159 if (ElemT->isDoubleTy()) { 1160 Result.AggregateVal.resize(numElems); 1161 for (unsigned i = 0; i < numElems; ++i) 1162 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1163 } 1164 if (ElemT->isIntegerTy()) { 1165 GenericValue intZero; 1166 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1167 intZero.IntVal = APInt(elemBitWidth, 0); 1168 Result.AggregateVal.resize(numElems, intZero); 1169 for (unsigned i = 0; i < numElems; ++i) 1170 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1171 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1172 } 1173 break; 1174 } 1175 default: 1176 SmallString<256> Msg; 1177 raw_svector_ostream OS(Msg); 1178 OS << "Cannot load value of type " << *Ty << "!"; 1179 report_fatal_error(OS.str()); 1180 } 1181 } 1182 1183 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1184 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1185 LLVM_DEBUG(Init->dump()); 1186 if (isa<UndefValue>(Init)) 1187 return; 1188 1189 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1190 unsigned ElementSize = 1191 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1192 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1193 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1194 return; 1195 } 1196 1197 if (isa<ConstantAggregateZero>(Init)) { 1198 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1199 return; 1200 } 1201 1202 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1203 unsigned ElementSize = 1204 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1205 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1206 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1207 return; 1208 } 1209 1210 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1211 const StructLayout *SL = 1212 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1213 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1214 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1215 return; 1216 } 1217 1218 if (const ConstantDataSequential *CDS = 1219 dyn_cast<ConstantDataSequential>(Init)) { 1220 // CDS is already laid out in host memory order. 1221 StringRef Data = CDS->getRawDataValues(); 1222 memcpy(Addr, Data.data(), Data.size()); 1223 return; 1224 } 1225 1226 if (Init->getType()->isFirstClassType()) { 1227 GenericValue Val = getConstantValue(Init); 1228 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1229 return; 1230 } 1231 1232 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1233 llvm_unreachable("Unknown constant type to initialize memory with!"); 1234 } 1235 1236 /// EmitGlobals - Emit all of the global variables to memory, storing their 1237 /// addresses into GlobalAddress. This must make sure to copy the contents of 1238 /// their initializers into the memory. 1239 void ExecutionEngine::emitGlobals() { 1240 // Loop over all of the global variables in the program, allocating the memory 1241 // to hold them. If there is more than one module, do a prepass over globals 1242 // to figure out how the different modules should link together. 1243 std::map<std::pair<std::string, Type*>, 1244 const GlobalValue*> LinkedGlobalsMap; 1245 1246 if (Modules.size() != 1) { 1247 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1248 Module &M = *Modules[m]; 1249 for (const auto &GV : M.globals()) { 1250 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1251 GV.hasAppendingLinkage() || !GV.hasName()) 1252 continue;// Ignore external globals and globals with internal linkage. 1253 1254 const GlobalValue *&GVEntry = 1255 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1256 1257 // If this is the first time we've seen this global, it is the canonical 1258 // version. 1259 if (!GVEntry) { 1260 GVEntry = &GV; 1261 continue; 1262 } 1263 1264 // If the existing global is strong, never replace it. 1265 if (GVEntry->hasExternalLinkage()) 1266 continue; 1267 1268 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1269 // symbol. FIXME is this right for common? 1270 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1271 GVEntry = &GV; 1272 } 1273 } 1274 } 1275 1276 std::vector<const GlobalValue*> NonCanonicalGlobals; 1277 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1278 Module &M = *Modules[m]; 1279 for (const auto &GV : M.globals()) { 1280 // In the multi-module case, see what this global maps to. 1281 if (!LinkedGlobalsMap.empty()) { 1282 if (const GlobalValue *GVEntry = 1283 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1284 // If something else is the canonical global, ignore this one. 1285 if (GVEntry != &GV) { 1286 NonCanonicalGlobals.push_back(&GV); 1287 continue; 1288 } 1289 } 1290 } 1291 1292 if (!GV.isDeclaration()) { 1293 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1294 } else { 1295 // External variable reference. Try to use the dynamic loader to 1296 // get a pointer to it. 1297 if (void *SymAddr = 1298 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1299 addGlobalMapping(&GV, SymAddr); 1300 else { 1301 report_fatal_error("Could not resolve external global address: " 1302 +GV.getName()); 1303 } 1304 } 1305 } 1306 1307 // If there are multiple modules, map the non-canonical globals to their 1308 // canonical location. 1309 if (!NonCanonicalGlobals.empty()) { 1310 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1311 const GlobalValue *GV = NonCanonicalGlobals[i]; 1312 const GlobalValue *CGV = 1313 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1314 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1315 assert(Ptr && "Canonical global wasn't codegen'd!"); 1316 addGlobalMapping(GV, Ptr); 1317 } 1318 } 1319 1320 // Now that all of the globals are set up in memory, loop through them all 1321 // and initialize their contents. 1322 for (const auto &GV : M.globals()) { 1323 if (!GV.isDeclaration()) { 1324 if (!LinkedGlobalsMap.empty()) { 1325 if (const GlobalValue *GVEntry = 1326 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1327 if (GVEntry != &GV) // Not the canonical variable. 1328 continue; 1329 } 1330 EmitGlobalVariable(&GV); 1331 } 1332 } 1333 } 1334 } 1335 1336 // EmitGlobalVariable - This method emits the specified global variable to the 1337 // address specified in GlobalAddresses, or allocates new memory if it's not 1338 // already in the map. 1339 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1340 void *GA = getPointerToGlobalIfAvailable(GV); 1341 1342 if (!GA) { 1343 // If it's not already specified, allocate memory for the global. 1344 GA = getMemoryForGV(GV); 1345 1346 // If we failed to allocate memory for this global, return. 1347 if (!GA) return; 1348 1349 addGlobalMapping(GV, GA); 1350 } 1351 1352 // Don't initialize if it's thread local, let the client do it. 1353 if (!GV->isThreadLocal()) 1354 InitializeMemory(GV->getInitializer(), GA); 1355 1356 Type *ElTy = GV->getValueType(); 1357 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1358 NumInitBytes += (unsigned)GVSize; 1359 ++NumGlobals; 1360 } 1361