1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/DynamicLibrary.h" 30 #include "llvm/System/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(ModuleProvider *P) 50 : EEState(*this), 51 LazyFunctionCreator(0) { 52 LazyCompilationDisabled = false; 53 GVCompilationDisabled = false; 54 SymbolSearchingDisabled = false; 55 DlsymStubsEnabled = false; 56 Modules.push_back(P); 57 assert(P && "ModuleProvider is null?"); 58 } 59 60 ExecutionEngine::~ExecutionEngine() { 61 clearAllGlobalMappings(); 62 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 63 delete Modules[i]; 64 } 65 66 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 67 const Type *ElTy = GV->getType()->getElementType(); 68 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 69 return new char[GVSize]; 70 } 71 72 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 73 /// Relases the Module from the ModuleProvider, materializing it in the 74 /// process, and returns the materialized Module. 75 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 76 std::string *ErrInfo) { 77 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 78 E = Modules.end(); I != E; ++I) { 79 ModuleProvider *MP = *I; 80 if (MP == P) { 81 Modules.erase(I); 82 clearGlobalMappingsFromModule(MP->getModule()); 83 return MP->releaseModule(ErrInfo); 84 } 85 } 86 return NULL; 87 } 88 89 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 90 /// and deletes the ModuleProvider and owned Module. Avoids materializing 91 /// the underlying module. 92 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 93 std::string *ErrInfo) { 94 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 95 E = Modules.end(); I != E; ++I) { 96 ModuleProvider *MP = *I; 97 if (MP == P) { 98 Modules.erase(I); 99 clearGlobalMappingsFromModule(MP->getModule()); 100 delete MP; 101 return; 102 } 103 } 104 } 105 106 /// FindFunctionNamed - Search all of the active modules to find the one that 107 /// defines FnName. This is very slow operation and shouldn't be used for 108 /// general code. 109 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 110 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 111 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 112 return F; 113 } 114 return 0; 115 } 116 117 118 void *ExecutionEngineState::RemoveMapping( 119 const MutexGuard &, const GlobalValue *ToUnmap) { 120 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 121 void *OldVal; 122 if (I == GlobalAddressMap.end()) 123 OldVal = 0; 124 else { 125 OldVal = I->second; 126 GlobalAddressMap.erase(I); 127 } 128 129 GlobalAddressReverseMap.erase(OldVal); 130 return OldVal; 131 } 132 133 /// addGlobalMapping - Tell the execution engine that the specified global is 134 /// at the specified location. This is used internally as functions are JIT'd 135 /// and as global variables are laid out in memory. It can and should also be 136 /// used by clients of the EE that want to have an LLVM global overlay 137 /// existing data in memory. 138 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 139 MutexGuard locked(lock); 140 141 DEBUG(errs() << "JIT: Map \'" << GV->getName() 142 << "\' to [" << Addr << "]\n";); 143 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 144 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 145 CurVal = Addr; 146 147 // If we are using the reverse mapping, add it too 148 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 149 AssertingVH<const GlobalValue> &V = 150 EEState.getGlobalAddressReverseMap(locked)[Addr]; 151 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 152 V = GV; 153 } 154 } 155 156 /// clearAllGlobalMappings - Clear all global mappings and start over again 157 /// use in dynamic compilation scenarios when you want to move globals 158 void ExecutionEngine::clearAllGlobalMappings() { 159 MutexGuard locked(lock); 160 161 EEState.getGlobalAddressMap(locked).clear(); 162 EEState.getGlobalAddressReverseMap(locked).clear(); 163 } 164 165 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 166 /// particular module, because it has been removed from the JIT. 167 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 168 MutexGuard locked(lock); 169 170 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 171 EEState.RemoveMapping(locked, FI); 172 } 173 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 174 GI != GE; ++GI) { 175 EEState.RemoveMapping(locked, GI); 176 } 177 } 178 179 /// updateGlobalMapping - Replace an existing mapping for GV with a new 180 /// address. This updates both maps as required. If "Addr" is null, the 181 /// entry for the global is removed from the mappings. 182 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 183 MutexGuard locked(lock); 184 185 ExecutionEngineState::GlobalAddressMapTy &Map = 186 EEState.getGlobalAddressMap(locked); 187 188 // Deleting from the mapping? 189 if (Addr == 0) { 190 return EEState.RemoveMapping(locked, GV); 191 } 192 193 void *&CurVal = Map[GV]; 194 void *OldVal = CurVal; 195 196 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 197 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 198 CurVal = Addr; 199 200 // If we are using the reverse mapping, add it too 201 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 202 AssertingVH<const GlobalValue> &V = 203 EEState.getGlobalAddressReverseMap(locked)[Addr]; 204 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 205 V = GV; 206 } 207 return OldVal; 208 } 209 210 /// getPointerToGlobalIfAvailable - This returns the address of the specified 211 /// global value if it is has already been codegen'd, otherwise it returns null. 212 /// 213 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 214 MutexGuard locked(lock); 215 216 ExecutionEngineState::GlobalAddressMapTy::iterator I = 217 EEState.getGlobalAddressMap(locked).find(GV); 218 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 219 } 220 221 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 222 /// at the specified address. 223 /// 224 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 225 MutexGuard locked(lock); 226 227 // If we haven't computed the reverse mapping yet, do so first. 228 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 229 for (ExecutionEngineState::GlobalAddressMapTy::iterator 230 I = EEState.getGlobalAddressMap(locked).begin(), 231 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 232 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 233 I->first)); 234 } 235 236 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 237 EEState.getGlobalAddressReverseMap(locked).find(Addr); 238 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 239 } 240 241 // CreateArgv - Turn a vector of strings into a nice argv style array of 242 // pointers to null terminated strings. 243 // 244 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 245 const std::vector<std::string> &InputArgv) { 246 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 247 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 248 249 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); 250 const Type *SBytePtr = Type::getInt8PtrTy(C); 251 252 for (unsigned i = 0; i != InputArgv.size(); ++i) { 253 unsigned Size = InputArgv[i].size()+1; 254 char *Dest = new char[Size]; 255 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 256 257 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 258 Dest[Size-1] = 0; 259 260 // Endian safe: Result[i] = (PointerTy)Dest; 261 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 262 SBytePtr); 263 } 264 265 // Null terminate it 266 EE->StoreValueToMemory(PTOGV(0), 267 (GenericValue*)(Result+InputArgv.size()*PtrSize), 268 SBytePtr); 269 return Result; 270 } 271 272 273 /// runStaticConstructorsDestructors - This method is used to execute all of 274 /// the static constructors or destructors for a module, depending on the 275 /// value of isDtors. 276 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 277 bool isDtors) { 278 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 279 280 // Execute global ctors/dtors for each module in the program. 281 282 GlobalVariable *GV = module->getNamedGlobal(Name); 283 284 // If this global has internal linkage, or if it has a use, then it must be 285 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 286 // this is the case, don't execute any of the global ctors, __main will do 287 // it. 288 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 289 290 // Should be an array of '{ int, void ()* }' structs. The first value is 291 // the init priority, which we ignore. 292 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 293 if (!InitList) return; 294 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 295 if (ConstantStruct *CS = 296 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 297 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 298 299 Constant *FP = CS->getOperand(1); 300 if (FP->isNullValue()) 301 break; // Found a null terminator, exit. 302 303 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 304 if (CE->isCast()) 305 FP = CE->getOperand(0); 306 if (Function *F = dyn_cast<Function>(FP)) { 307 // Execute the ctor/dtor function! 308 runFunction(F, std::vector<GenericValue>()); 309 } 310 } 311 } 312 313 /// runStaticConstructorsDestructors - This method is used to execute all of 314 /// the static constructors or destructors for a program, depending on the 315 /// value of isDtors. 316 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 317 // Execute global ctors/dtors for each module in the program. 318 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 319 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 320 } 321 322 #ifndef NDEBUG 323 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 324 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 325 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 326 for (unsigned i = 0; i < PtrSize; ++i) 327 if (*(i + (uint8_t*)Loc)) 328 return false; 329 return true; 330 } 331 #endif 332 333 /// runFunctionAsMain - This is a helper function which wraps runFunction to 334 /// handle the common task of starting up main with the specified argc, argv, 335 /// and envp parameters. 336 int ExecutionEngine::runFunctionAsMain(Function *Fn, 337 const std::vector<std::string> &argv, 338 const char * const * envp) { 339 std::vector<GenericValue> GVArgs; 340 GenericValue GVArgc; 341 GVArgc.IntVal = APInt(32, argv.size()); 342 343 // Check main() type 344 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 345 const FunctionType *FTy = Fn->getFunctionType(); 346 const Type* PPInt8Ty = 347 PointerType::getUnqual(PointerType::getUnqual( 348 Type::getInt8Ty(Fn->getContext()))); 349 switch (NumArgs) { 350 case 3: 351 if (FTy->getParamType(2) != PPInt8Ty) { 352 llvm_report_error("Invalid type for third argument of main() supplied"); 353 } 354 // FALLS THROUGH 355 case 2: 356 if (FTy->getParamType(1) != PPInt8Ty) { 357 llvm_report_error("Invalid type for second argument of main() supplied"); 358 } 359 // FALLS THROUGH 360 case 1: 361 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 362 llvm_report_error("Invalid type for first argument of main() supplied"); 363 } 364 // FALLS THROUGH 365 case 0: 366 if (!isa<IntegerType>(FTy->getReturnType()) && 367 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 368 llvm_report_error("Invalid return type of main() supplied"); 369 } 370 break; 371 default: 372 llvm_report_error("Invalid number of arguments of main() supplied"); 373 } 374 375 if (NumArgs) { 376 GVArgs.push_back(GVArgc); // Arg #0 = argc. 377 if (NumArgs > 1) { 378 // Arg #1 = argv. 379 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 380 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 381 "argv[0] was null after CreateArgv"); 382 if (NumArgs > 2) { 383 std::vector<std::string> EnvVars; 384 for (unsigned i = 0; envp[i]; ++i) 385 EnvVars.push_back(envp[i]); 386 // Arg #2 = envp. 387 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 388 } 389 } 390 } 391 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 392 } 393 394 /// If possible, create a JIT, unless the caller specifically requests an 395 /// Interpreter or there's an error. If even an Interpreter cannot be created, 396 /// NULL is returned. 397 /// 398 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 399 bool ForceInterpreter, 400 std::string *ErrorStr, 401 CodeGenOpt::Level OptLevel, 402 bool GVsWithCode) { 403 return EngineBuilder(MP) 404 .setEngineKind(ForceInterpreter 405 ? EngineKind::Interpreter 406 : EngineKind::JIT) 407 .setErrorStr(ErrorStr) 408 .setOptLevel(OptLevel) 409 .setAllocateGVsWithCode(GVsWithCode) 410 .create(); 411 } 412 413 ExecutionEngine *ExecutionEngine::create(Module *M) { 414 return EngineBuilder(M).create(); 415 } 416 417 /// EngineBuilder - Overloaded constructor that automatically creates an 418 /// ExistingModuleProvider for an existing module. 419 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 420 InitEngine(); 421 } 422 423 ExecutionEngine *EngineBuilder::create() { 424 // Make sure we can resolve symbols in the program as well. The zero arg 425 // to the function tells DynamicLibrary to load the program, not a library. 426 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 427 return 0; 428 429 // If the user specified a memory manager but didn't specify which engine to 430 // create, we assume they only want the JIT, and we fail if they only want 431 // the interpreter. 432 if (JMM) { 433 if (WhichEngine & EngineKind::JIT) 434 WhichEngine = EngineKind::JIT; 435 else { 436 if (ErrorStr) 437 *ErrorStr = "Cannot create an interpreter with a memory manager."; 438 return 0; 439 } 440 } 441 442 // Unless the interpreter was explicitly selected or the JIT is not linked, 443 // try making a JIT. 444 if (WhichEngine & EngineKind::JIT) { 445 if (ExecutionEngine::JITCtor) { 446 ExecutionEngine *EE = 447 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 448 AllocateGVsWithCode); 449 if (EE) return EE; 450 } 451 } 452 453 // If we can't make a JIT and we didn't request one specifically, try making 454 // an interpreter instead. 455 if (WhichEngine & EngineKind::Interpreter) { 456 if (ExecutionEngine::InterpCtor) 457 return ExecutionEngine::InterpCtor(MP, ErrorStr); 458 if (ErrorStr) 459 *ErrorStr = "Interpreter has not been linked in."; 460 return 0; 461 } 462 463 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 464 if (ErrorStr) 465 *ErrorStr = "JIT has not been linked in."; 466 } 467 return 0; 468 } 469 470 /// getPointerToGlobal - This returns the address of the specified global 471 /// value. This may involve code generation if it's a function. 472 /// 473 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 474 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 475 return getPointerToFunction(F); 476 477 MutexGuard locked(lock); 478 void *p = EEState.getGlobalAddressMap(locked)[GV]; 479 if (p) 480 return p; 481 482 // Global variable might have been added since interpreter started. 483 if (GlobalVariable *GVar = 484 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 485 EmitGlobalVariable(GVar); 486 else 487 llvm_unreachable("Global hasn't had an address allocated yet!"); 488 return EEState.getGlobalAddressMap(locked)[GV]; 489 } 490 491 /// This function converts a Constant* into a GenericValue. The interesting 492 /// part is if C is a ConstantExpr. 493 /// @brief Get a GenericValue for a Constant* 494 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 495 // If its undefined, return the garbage. 496 if (isa<UndefValue>(C)) 497 return GenericValue(); 498 499 // If the value is a ConstantExpr 500 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 501 Constant *Op0 = CE->getOperand(0); 502 switch (CE->getOpcode()) { 503 case Instruction::GetElementPtr: { 504 // Compute the index 505 GenericValue Result = getConstantValue(Op0); 506 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 507 uint64_t Offset = 508 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 509 510 char* tmp = (char*) Result.PointerVal; 511 Result = PTOGV(tmp + Offset); 512 return Result; 513 } 514 case Instruction::Trunc: { 515 GenericValue GV = getConstantValue(Op0); 516 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 517 GV.IntVal = GV.IntVal.trunc(BitWidth); 518 return GV; 519 } 520 case Instruction::ZExt: { 521 GenericValue GV = getConstantValue(Op0); 522 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 523 GV.IntVal = GV.IntVal.zext(BitWidth); 524 return GV; 525 } 526 case Instruction::SExt: { 527 GenericValue GV = getConstantValue(Op0); 528 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 529 GV.IntVal = GV.IntVal.sext(BitWidth); 530 return GV; 531 } 532 case Instruction::FPTrunc: { 533 // FIXME long double 534 GenericValue GV = getConstantValue(Op0); 535 GV.FloatVal = float(GV.DoubleVal); 536 return GV; 537 } 538 case Instruction::FPExt:{ 539 // FIXME long double 540 GenericValue GV = getConstantValue(Op0); 541 GV.DoubleVal = double(GV.FloatVal); 542 return GV; 543 } 544 case Instruction::UIToFP: { 545 GenericValue GV = getConstantValue(Op0); 546 if (CE->getType()->isFloatTy()) 547 GV.FloatVal = float(GV.IntVal.roundToDouble()); 548 else if (CE->getType()->isDoubleTy()) 549 GV.DoubleVal = GV.IntVal.roundToDouble(); 550 else if (CE->getType()->isX86_FP80Ty()) { 551 const uint64_t zero[] = {0, 0}; 552 APFloat apf = APFloat(APInt(80, 2, zero)); 553 (void)apf.convertFromAPInt(GV.IntVal, 554 false, 555 APFloat::rmNearestTiesToEven); 556 GV.IntVal = apf.bitcastToAPInt(); 557 } 558 return GV; 559 } 560 case Instruction::SIToFP: { 561 GenericValue GV = getConstantValue(Op0); 562 if (CE->getType()->isFloatTy()) 563 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 564 else if (CE->getType()->isDoubleTy()) 565 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 566 else if (CE->getType()->isX86_FP80Ty()) { 567 const uint64_t zero[] = { 0, 0}; 568 APFloat apf = APFloat(APInt(80, 2, zero)); 569 (void)apf.convertFromAPInt(GV.IntVal, 570 true, 571 APFloat::rmNearestTiesToEven); 572 GV.IntVal = apf.bitcastToAPInt(); 573 } 574 return GV; 575 } 576 case Instruction::FPToUI: // double->APInt conversion handles sign 577 case Instruction::FPToSI: { 578 GenericValue GV = getConstantValue(Op0); 579 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 580 if (Op0->getType()->isFloatTy()) 581 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 582 else if (Op0->getType()->isDoubleTy()) 583 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 584 else if (Op0->getType()->isX86_FP80Ty()) { 585 APFloat apf = APFloat(GV.IntVal); 586 uint64_t v; 587 bool ignored; 588 (void)apf.convertToInteger(&v, BitWidth, 589 CE->getOpcode()==Instruction::FPToSI, 590 APFloat::rmTowardZero, &ignored); 591 GV.IntVal = v; // endian? 592 } 593 return GV; 594 } 595 case Instruction::PtrToInt: { 596 GenericValue GV = getConstantValue(Op0); 597 uint32_t PtrWidth = TD->getPointerSizeInBits(); 598 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 599 return GV; 600 } 601 case Instruction::IntToPtr: { 602 GenericValue GV = getConstantValue(Op0); 603 uint32_t PtrWidth = TD->getPointerSizeInBits(); 604 if (PtrWidth != GV.IntVal.getBitWidth()) 605 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 606 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 607 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 608 return GV; 609 } 610 case Instruction::BitCast: { 611 GenericValue GV = getConstantValue(Op0); 612 const Type* DestTy = CE->getType(); 613 switch (Op0->getType()->getTypeID()) { 614 default: llvm_unreachable("Invalid bitcast operand"); 615 case Type::IntegerTyID: 616 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 617 if (DestTy->isFloatTy()) 618 GV.FloatVal = GV.IntVal.bitsToFloat(); 619 else if (DestTy->isDoubleTy()) 620 GV.DoubleVal = GV.IntVal.bitsToDouble(); 621 break; 622 case Type::FloatTyID: 623 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 624 "Invalid bitcast"); 625 GV.IntVal.floatToBits(GV.FloatVal); 626 break; 627 case Type::DoubleTyID: 628 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 629 "Invalid bitcast"); 630 GV.IntVal.doubleToBits(GV.DoubleVal); 631 break; 632 case Type::PointerTyID: 633 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 634 break; // getConstantValue(Op0) above already converted it 635 } 636 return GV; 637 } 638 case Instruction::Add: 639 case Instruction::FAdd: 640 case Instruction::Sub: 641 case Instruction::FSub: 642 case Instruction::Mul: 643 case Instruction::FMul: 644 case Instruction::UDiv: 645 case Instruction::SDiv: 646 case Instruction::URem: 647 case Instruction::SRem: 648 case Instruction::And: 649 case Instruction::Or: 650 case Instruction::Xor: { 651 GenericValue LHS = getConstantValue(Op0); 652 GenericValue RHS = getConstantValue(CE->getOperand(1)); 653 GenericValue GV; 654 switch (CE->getOperand(0)->getType()->getTypeID()) { 655 default: llvm_unreachable("Bad add type!"); 656 case Type::IntegerTyID: 657 switch (CE->getOpcode()) { 658 default: llvm_unreachable("Invalid integer opcode"); 659 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 660 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 661 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 662 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 663 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 664 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 665 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 666 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 667 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 668 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 669 } 670 break; 671 case Type::FloatTyID: 672 switch (CE->getOpcode()) { 673 default: llvm_unreachable("Invalid float opcode"); 674 case Instruction::FAdd: 675 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 676 case Instruction::FSub: 677 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 678 case Instruction::FMul: 679 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 680 case Instruction::FDiv: 681 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 682 case Instruction::FRem: 683 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 684 } 685 break; 686 case Type::DoubleTyID: 687 switch (CE->getOpcode()) { 688 default: llvm_unreachable("Invalid double opcode"); 689 case Instruction::FAdd: 690 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 691 case Instruction::FSub: 692 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 693 case Instruction::FMul: 694 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 695 case Instruction::FDiv: 696 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 697 case Instruction::FRem: 698 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 699 } 700 break; 701 case Type::X86_FP80TyID: 702 case Type::PPC_FP128TyID: 703 case Type::FP128TyID: { 704 APFloat apfLHS = APFloat(LHS.IntVal); 705 switch (CE->getOpcode()) { 706 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 707 case Instruction::FAdd: 708 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 709 GV.IntVal = apfLHS.bitcastToAPInt(); 710 break; 711 case Instruction::FSub: 712 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 713 GV.IntVal = apfLHS.bitcastToAPInt(); 714 break; 715 case Instruction::FMul: 716 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 717 GV.IntVal = apfLHS.bitcastToAPInt(); 718 break; 719 case Instruction::FDiv: 720 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 721 GV.IntVal = apfLHS.bitcastToAPInt(); 722 break; 723 case Instruction::FRem: 724 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 725 GV.IntVal = apfLHS.bitcastToAPInt(); 726 break; 727 } 728 } 729 break; 730 } 731 return GV; 732 } 733 default: 734 break; 735 } 736 std::string msg; 737 raw_string_ostream Msg(msg); 738 Msg << "ConstantExpr not handled: " << *CE; 739 llvm_report_error(Msg.str()); 740 } 741 742 GenericValue Result; 743 switch (C->getType()->getTypeID()) { 744 case Type::FloatTyID: 745 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 746 break; 747 case Type::DoubleTyID: 748 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 749 break; 750 case Type::X86_FP80TyID: 751 case Type::FP128TyID: 752 case Type::PPC_FP128TyID: 753 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 754 break; 755 case Type::IntegerTyID: 756 Result.IntVal = cast<ConstantInt>(C)->getValue(); 757 break; 758 case Type::PointerTyID: 759 if (isa<ConstantPointerNull>(C)) 760 Result.PointerVal = 0; 761 else if (const Function *F = dyn_cast<Function>(C)) 762 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 763 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 764 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 765 else 766 llvm_unreachable("Unknown constant pointer type!"); 767 break; 768 default: 769 std::string msg; 770 raw_string_ostream Msg(msg); 771 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 772 llvm_report_error(Msg.str()); 773 } 774 return Result; 775 } 776 777 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 778 /// with the integer held in IntVal. 779 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 780 unsigned StoreBytes) { 781 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 782 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 783 784 if (sys::isLittleEndianHost()) 785 // Little-endian host - the source is ordered from LSB to MSB. Order the 786 // destination from LSB to MSB: Do a straight copy. 787 memcpy(Dst, Src, StoreBytes); 788 else { 789 // Big-endian host - the source is an array of 64 bit words ordered from 790 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 791 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 792 while (StoreBytes > sizeof(uint64_t)) { 793 StoreBytes -= sizeof(uint64_t); 794 // May not be aligned so use memcpy. 795 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 796 Src += sizeof(uint64_t); 797 } 798 799 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 800 } 801 } 802 803 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 804 /// is the address of the memory at which to store Val, cast to GenericValue *. 805 /// It is not a pointer to a GenericValue containing the address at which to 806 /// store Val. 807 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 808 GenericValue *Ptr, const Type *Ty) { 809 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 810 811 switch (Ty->getTypeID()) { 812 case Type::IntegerTyID: 813 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 814 break; 815 case Type::FloatTyID: 816 *((float*)Ptr) = Val.FloatVal; 817 break; 818 case Type::DoubleTyID: 819 *((double*)Ptr) = Val.DoubleVal; 820 break; 821 case Type::X86_FP80TyID: 822 memcpy(Ptr, Val.IntVal.getRawData(), 10); 823 break; 824 case Type::PointerTyID: 825 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 826 if (StoreBytes != sizeof(PointerTy)) 827 memset(Ptr, 0, StoreBytes); 828 829 *((PointerTy*)Ptr) = Val.PointerVal; 830 break; 831 default: 832 errs() << "Cannot store value of type " << *Ty << "!\n"; 833 } 834 835 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 836 // Host and target are different endian - reverse the stored bytes. 837 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 838 } 839 840 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 841 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 842 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 843 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 844 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 845 846 if (sys::isLittleEndianHost()) 847 // Little-endian host - the destination must be ordered from LSB to MSB. 848 // The source is ordered from LSB to MSB: Do a straight copy. 849 memcpy(Dst, Src, LoadBytes); 850 else { 851 // Big-endian - the destination is an array of 64 bit words ordered from 852 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 853 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 854 // a word. 855 while (LoadBytes > sizeof(uint64_t)) { 856 LoadBytes -= sizeof(uint64_t); 857 // May not be aligned so use memcpy. 858 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 859 Dst += sizeof(uint64_t); 860 } 861 862 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 863 } 864 } 865 866 /// FIXME: document 867 /// 868 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 869 GenericValue *Ptr, 870 const Type *Ty) { 871 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 872 873 switch (Ty->getTypeID()) { 874 case Type::IntegerTyID: 875 // An APInt with all words initially zero. 876 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 877 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 878 break; 879 case Type::FloatTyID: 880 Result.FloatVal = *((float*)Ptr); 881 break; 882 case Type::DoubleTyID: 883 Result.DoubleVal = *((double*)Ptr); 884 break; 885 case Type::PointerTyID: 886 Result.PointerVal = *((PointerTy*)Ptr); 887 break; 888 case Type::X86_FP80TyID: { 889 // This is endian dependent, but it will only work on x86 anyway. 890 // FIXME: Will not trap if loading a signaling NaN. 891 uint64_t y[2]; 892 memcpy(y, Ptr, 10); 893 Result.IntVal = APInt(80, 2, y); 894 break; 895 } 896 default: 897 std::string msg; 898 raw_string_ostream Msg(msg); 899 Msg << "Cannot load value of type " << *Ty << "!"; 900 llvm_report_error(Msg.str()); 901 } 902 } 903 904 // InitializeMemory - Recursive function to apply a Constant value into the 905 // specified memory location... 906 // 907 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 908 DEBUG(errs() << "JIT: Initializing " << Addr << " "); 909 DEBUG(Init->dump()); 910 if (isa<UndefValue>(Init)) { 911 return; 912 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 913 unsigned ElementSize = 914 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 915 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 916 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 917 return; 918 } else if (isa<ConstantAggregateZero>(Init)) { 919 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 920 return; 921 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 922 unsigned ElementSize = 923 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 924 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 925 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 926 return; 927 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 928 const StructLayout *SL = 929 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 930 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 931 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 932 return; 933 } else if (Init->getType()->isFirstClassType()) { 934 GenericValue Val = getConstantValue(Init); 935 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 936 return; 937 } 938 939 errs() << "Bad Type: " << *Init->getType() << "\n"; 940 llvm_unreachable("Unknown constant type to initialize memory with!"); 941 } 942 943 /// EmitGlobals - Emit all of the global variables to memory, storing their 944 /// addresses into GlobalAddress. This must make sure to copy the contents of 945 /// their initializers into the memory. 946 /// 947 void ExecutionEngine::emitGlobals() { 948 949 // Loop over all of the global variables in the program, allocating the memory 950 // to hold them. If there is more than one module, do a prepass over globals 951 // to figure out how the different modules should link together. 952 // 953 std::map<std::pair<std::string, const Type*>, 954 const GlobalValue*> LinkedGlobalsMap; 955 956 if (Modules.size() != 1) { 957 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 958 Module &M = *Modules[m]->getModule(); 959 for (Module::const_global_iterator I = M.global_begin(), 960 E = M.global_end(); I != E; ++I) { 961 const GlobalValue *GV = I; 962 if (GV->hasLocalLinkage() || GV->isDeclaration() || 963 GV->hasAppendingLinkage() || !GV->hasName()) 964 continue;// Ignore external globals and globals with internal linkage. 965 966 const GlobalValue *&GVEntry = 967 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 968 969 // If this is the first time we've seen this global, it is the canonical 970 // version. 971 if (!GVEntry) { 972 GVEntry = GV; 973 continue; 974 } 975 976 // If the existing global is strong, never replace it. 977 if (GVEntry->hasExternalLinkage() || 978 GVEntry->hasDLLImportLinkage() || 979 GVEntry->hasDLLExportLinkage()) 980 continue; 981 982 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 983 // symbol. FIXME is this right for common? 984 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 985 GVEntry = GV; 986 } 987 } 988 } 989 990 std::vector<const GlobalValue*> NonCanonicalGlobals; 991 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 992 Module &M = *Modules[m]->getModule(); 993 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 994 I != E; ++I) { 995 // In the multi-module case, see what this global maps to. 996 if (!LinkedGlobalsMap.empty()) { 997 if (const GlobalValue *GVEntry = 998 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 999 // If something else is the canonical global, ignore this one. 1000 if (GVEntry != &*I) { 1001 NonCanonicalGlobals.push_back(I); 1002 continue; 1003 } 1004 } 1005 } 1006 1007 if (!I->isDeclaration()) { 1008 addGlobalMapping(I, getMemoryForGV(I)); 1009 } else { 1010 // External variable reference. Try to use the dynamic loader to 1011 // get a pointer to it. 1012 if (void *SymAddr = 1013 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1014 addGlobalMapping(I, SymAddr); 1015 else { 1016 llvm_report_error("Could not resolve external global address: " 1017 +I->getName()); 1018 } 1019 } 1020 } 1021 1022 // If there are multiple modules, map the non-canonical globals to their 1023 // canonical location. 1024 if (!NonCanonicalGlobals.empty()) { 1025 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1026 const GlobalValue *GV = NonCanonicalGlobals[i]; 1027 const GlobalValue *CGV = 1028 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1029 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1030 assert(Ptr && "Canonical global wasn't codegen'd!"); 1031 addGlobalMapping(GV, Ptr); 1032 } 1033 } 1034 1035 // Now that all of the globals are set up in memory, loop through them all 1036 // and initialize their contents. 1037 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1038 I != E; ++I) { 1039 if (!I->isDeclaration()) { 1040 if (!LinkedGlobalsMap.empty()) { 1041 if (const GlobalValue *GVEntry = 1042 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1043 if (GVEntry != &*I) // Not the canonical variable. 1044 continue; 1045 } 1046 EmitGlobalVariable(I); 1047 } 1048 } 1049 } 1050 } 1051 1052 // EmitGlobalVariable - This method emits the specified global variable to the 1053 // address specified in GlobalAddresses, or allocates new memory if it's not 1054 // already in the map. 1055 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1056 void *GA = getPointerToGlobalIfAvailable(GV); 1057 1058 if (GA == 0) { 1059 // If it's not already specified, allocate memory for the global. 1060 GA = getMemoryForGV(GV); 1061 addGlobalMapping(GV, GA); 1062 } 1063 1064 // Don't initialize if it's thread local, let the client do it. 1065 if (!GV->isThreadLocal()) 1066 InitializeMemory(GV->getInitializer(), GA); 1067 1068 const Type *ElTy = GV->getType()->getElementType(); 1069 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1070 NumInitBytes += (unsigned)GVSize; 1071 ++NumGlobals; 1072 } 1073 1074 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1075 : EE(EE), GlobalAddressMap(this) { 1076 } 1077 1078 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1079 ExecutionEngineState *EES) { 1080 return &EES->EE.lock; 1081 } 1082 void ExecutionEngineState::AddressMapConfig::onDelete( 1083 ExecutionEngineState *EES, const GlobalValue *Old) { 1084 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1085 EES->GlobalAddressReverseMap.erase(OldVal); 1086 } 1087 1088 void ExecutionEngineState::AddressMapConfig::onRAUW( 1089 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1090 assert(false && "The ExecutionEngine doesn't know how to handle a" 1091 " RAUW on a value it has a global mapping for."); 1092 } 1093