1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/DynamicLibrary.h" 30 #include "llvm/System/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode, 44 CodeModel::Model CMM) = 0; 45 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 46 std::string *ErrorStr) = 0; 47 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 48 49 50 ExecutionEngine::ExecutionEngine(ModuleProvider *P) 51 : EEState(*this), 52 LazyFunctionCreator(0) { 53 CompilingLazily = false; 54 GVCompilationDisabled = false; 55 SymbolSearchingDisabled = false; 56 Modules.push_back(P); 57 assert(P && "ModuleProvider is null?"); 58 } 59 60 ExecutionEngine::~ExecutionEngine() { 61 clearAllGlobalMappings(); 62 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 63 delete Modules[i]; 64 } 65 66 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 67 const Type *ElTy = GV->getType()->getElementType(); 68 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 69 return new char[GVSize]; 70 } 71 72 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 73 /// Relases the Module from the ModuleProvider, materializing it in the 74 /// process, and returns the materialized Module. 75 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 76 std::string *ErrInfo) { 77 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 78 E = Modules.end(); I != E; ++I) { 79 ModuleProvider *MP = *I; 80 if (MP == P) { 81 Modules.erase(I); 82 clearGlobalMappingsFromModule(MP->getModule()); 83 return MP->releaseModule(ErrInfo); 84 } 85 } 86 return NULL; 87 } 88 89 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 90 /// and deletes the ModuleProvider and owned Module. Avoids materializing 91 /// the underlying module. 92 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 93 std::string *ErrInfo) { 94 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 95 E = Modules.end(); I != E; ++I) { 96 ModuleProvider *MP = *I; 97 if (MP == P) { 98 Modules.erase(I); 99 clearGlobalMappingsFromModule(MP->getModule()); 100 delete MP; 101 return; 102 } 103 } 104 } 105 106 /// FindFunctionNamed - Search all of the active modules to find the one that 107 /// defines FnName. This is very slow operation and shouldn't be used for 108 /// general code. 109 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 110 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 111 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 112 return F; 113 } 114 return 0; 115 } 116 117 118 void *ExecutionEngineState::RemoveMapping( 119 const MutexGuard &, const GlobalValue *ToUnmap) { 120 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 121 void *OldVal; 122 if (I == GlobalAddressMap.end()) 123 OldVal = 0; 124 else { 125 OldVal = I->second; 126 GlobalAddressMap.erase(I); 127 } 128 129 GlobalAddressReverseMap.erase(OldVal); 130 return OldVal; 131 } 132 133 /// addGlobalMapping - Tell the execution engine that the specified global is 134 /// at the specified location. This is used internally as functions are JIT'd 135 /// and as global variables are laid out in memory. It can and should also be 136 /// used by clients of the EE that want to have an LLVM global overlay 137 /// existing data in memory. 138 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 139 MutexGuard locked(lock); 140 141 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 142 << "\' to [" << Addr << "]\n";); 143 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 144 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 145 CurVal = Addr; 146 147 // If we are using the reverse mapping, add it too 148 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 149 AssertingVH<const GlobalValue> &V = 150 EEState.getGlobalAddressReverseMap(locked)[Addr]; 151 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 152 V = GV; 153 } 154 } 155 156 /// clearAllGlobalMappings - Clear all global mappings and start over again 157 /// use in dynamic compilation scenarios when you want to move globals 158 void ExecutionEngine::clearAllGlobalMappings() { 159 MutexGuard locked(lock); 160 161 EEState.getGlobalAddressMap(locked).clear(); 162 EEState.getGlobalAddressReverseMap(locked).clear(); 163 } 164 165 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 166 /// particular module, because it has been removed from the JIT. 167 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 168 MutexGuard locked(lock); 169 170 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 171 EEState.RemoveMapping(locked, FI); 172 } 173 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 174 GI != GE; ++GI) { 175 EEState.RemoveMapping(locked, GI); 176 } 177 } 178 179 /// updateGlobalMapping - Replace an existing mapping for GV with a new 180 /// address. This updates both maps as required. If "Addr" is null, the 181 /// entry for the global is removed from the mappings. 182 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 183 MutexGuard locked(lock); 184 185 ExecutionEngineState::GlobalAddressMapTy &Map = 186 EEState.getGlobalAddressMap(locked); 187 188 // Deleting from the mapping? 189 if (Addr == 0) { 190 return EEState.RemoveMapping(locked, GV); 191 } 192 193 void *&CurVal = Map[GV]; 194 void *OldVal = CurVal; 195 196 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 197 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 198 CurVal = Addr; 199 200 // If we are using the reverse mapping, add it too 201 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 202 AssertingVH<const GlobalValue> &V = 203 EEState.getGlobalAddressReverseMap(locked)[Addr]; 204 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 205 V = GV; 206 } 207 return OldVal; 208 } 209 210 /// getPointerToGlobalIfAvailable - This returns the address of the specified 211 /// global value if it is has already been codegen'd, otherwise it returns null. 212 /// 213 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 214 MutexGuard locked(lock); 215 216 ExecutionEngineState::GlobalAddressMapTy::iterator I = 217 EEState.getGlobalAddressMap(locked).find(GV); 218 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 219 } 220 221 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 222 /// at the specified address. 223 /// 224 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 225 MutexGuard locked(lock); 226 227 // If we haven't computed the reverse mapping yet, do so first. 228 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 229 for (ExecutionEngineState::GlobalAddressMapTy::iterator 230 I = EEState.getGlobalAddressMap(locked).begin(), 231 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 232 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 233 I->first)); 234 } 235 236 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 237 EEState.getGlobalAddressReverseMap(locked).find(Addr); 238 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 239 } 240 241 // CreateArgv - Turn a vector of strings into a nice argv style array of 242 // pointers to null terminated strings. 243 // 244 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 245 const std::vector<std::string> &InputArgv) { 246 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 247 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 248 249 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n"); 250 const Type *SBytePtr = Type::getInt8PtrTy(C); 251 252 for (unsigned i = 0; i != InputArgv.size(); ++i) { 253 unsigned Size = InputArgv[i].size()+1; 254 char *Dest = new char[Size]; 255 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 256 257 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 258 Dest[Size-1] = 0; 259 260 // Endian safe: Result[i] = (PointerTy)Dest; 261 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 262 SBytePtr); 263 } 264 265 // Null terminate it 266 EE->StoreValueToMemory(PTOGV(0), 267 (GenericValue*)(Result+InputArgv.size()*PtrSize), 268 SBytePtr); 269 return Result; 270 } 271 272 273 /// runStaticConstructorsDestructors - This method is used to execute all of 274 /// the static constructors or destructors for a module, depending on the 275 /// value of isDtors. 276 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 277 bool isDtors) { 278 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 279 280 // Execute global ctors/dtors for each module in the program. 281 282 GlobalVariable *GV = module->getNamedGlobal(Name); 283 284 // If this global has internal linkage, or if it has a use, then it must be 285 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 286 // this is the case, don't execute any of the global ctors, __main will do 287 // it. 288 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 289 290 // Should be an array of '{ int, void ()* }' structs. The first value is 291 // the init priority, which we ignore. 292 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 293 if (!InitList) return; 294 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 295 if (ConstantStruct *CS = 296 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 297 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 298 299 Constant *FP = CS->getOperand(1); 300 if (FP->isNullValue()) 301 break; // Found a null terminator, exit. 302 303 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 304 if (CE->isCast()) 305 FP = CE->getOperand(0); 306 if (Function *F = dyn_cast<Function>(FP)) { 307 // Execute the ctor/dtor function! 308 runFunction(F, std::vector<GenericValue>()); 309 } 310 } 311 } 312 313 /// runStaticConstructorsDestructors - This method is used to execute all of 314 /// the static constructors or destructors for a program, depending on the 315 /// value of isDtors. 316 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 317 // Execute global ctors/dtors for each module in the program. 318 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 319 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 320 } 321 322 #ifndef NDEBUG 323 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 324 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 325 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 326 for (unsigned i = 0; i < PtrSize; ++i) 327 if (*(i + (uint8_t*)Loc)) 328 return false; 329 return true; 330 } 331 #endif 332 333 /// runFunctionAsMain - This is a helper function which wraps runFunction to 334 /// handle the common task of starting up main with the specified argc, argv, 335 /// and envp parameters. 336 int ExecutionEngine::runFunctionAsMain(Function *Fn, 337 const std::vector<std::string> &argv, 338 const char * const * envp) { 339 std::vector<GenericValue> GVArgs; 340 GenericValue GVArgc; 341 GVArgc.IntVal = APInt(32, argv.size()); 342 343 // Check main() type 344 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 345 const FunctionType *FTy = Fn->getFunctionType(); 346 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 347 switch (NumArgs) { 348 case 3: 349 if (FTy->getParamType(2) != PPInt8Ty) { 350 llvm_report_error("Invalid type for third argument of main() supplied"); 351 } 352 // FALLS THROUGH 353 case 2: 354 if (FTy->getParamType(1) != PPInt8Ty) { 355 llvm_report_error("Invalid type for second argument of main() supplied"); 356 } 357 // FALLS THROUGH 358 case 1: 359 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 360 llvm_report_error("Invalid type for first argument of main() supplied"); 361 } 362 // FALLS THROUGH 363 case 0: 364 if (!isa<IntegerType>(FTy->getReturnType()) && 365 !FTy->getReturnType()->isVoidTy()) { 366 llvm_report_error("Invalid return type of main() supplied"); 367 } 368 break; 369 default: 370 llvm_report_error("Invalid number of arguments of main() supplied"); 371 } 372 373 if (NumArgs) { 374 GVArgs.push_back(GVArgc); // Arg #0 = argc. 375 if (NumArgs > 1) { 376 // Arg #1 = argv. 377 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 378 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 379 "argv[0] was null after CreateArgv"); 380 if (NumArgs > 2) { 381 std::vector<std::string> EnvVars; 382 for (unsigned i = 0; envp[i]; ++i) 383 EnvVars.push_back(envp[i]); 384 // Arg #2 = envp. 385 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 386 } 387 } 388 } 389 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 390 } 391 392 /// If possible, create a JIT, unless the caller specifically requests an 393 /// Interpreter or there's an error. If even an Interpreter cannot be created, 394 /// NULL is returned. 395 /// 396 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 397 bool ForceInterpreter, 398 std::string *ErrorStr, 399 CodeGenOpt::Level OptLevel, 400 bool GVsWithCode) { 401 return EngineBuilder(MP) 402 .setEngineKind(ForceInterpreter 403 ? EngineKind::Interpreter 404 : EngineKind::JIT) 405 .setErrorStr(ErrorStr) 406 .setOptLevel(OptLevel) 407 .setAllocateGVsWithCode(GVsWithCode) 408 .create(); 409 } 410 411 ExecutionEngine *ExecutionEngine::create(Module *M) { 412 return EngineBuilder(M).create(); 413 } 414 415 /// EngineBuilder - Overloaded constructor that automatically creates an 416 /// ExistingModuleProvider for an existing module. 417 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 418 InitEngine(); 419 } 420 421 ExecutionEngine *EngineBuilder::create() { 422 // Make sure we can resolve symbols in the program as well. The zero arg 423 // to the function tells DynamicLibrary to load the program, not a library. 424 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 425 return 0; 426 427 // If the user specified a memory manager but didn't specify which engine to 428 // create, we assume they only want the JIT, and we fail if they only want 429 // the interpreter. 430 if (JMM) { 431 if (WhichEngine & EngineKind::JIT) 432 WhichEngine = EngineKind::JIT; 433 else { 434 if (ErrorStr) 435 *ErrorStr = "Cannot create an interpreter with a memory manager."; 436 return 0; 437 } 438 } 439 440 // Unless the interpreter was explicitly selected or the JIT is not linked, 441 // try making a JIT. 442 if (WhichEngine & EngineKind::JIT) { 443 if (ExecutionEngine::JITCtor) { 444 ExecutionEngine *EE = 445 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 446 AllocateGVsWithCode, CMModel); 447 if (EE) return EE; 448 } 449 } 450 451 // If we can't make a JIT and we didn't request one specifically, try making 452 // an interpreter instead. 453 if (WhichEngine & EngineKind::Interpreter) { 454 if (ExecutionEngine::InterpCtor) 455 return ExecutionEngine::InterpCtor(MP, ErrorStr); 456 if (ErrorStr) 457 *ErrorStr = "Interpreter has not been linked in."; 458 return 0; 459 } 460 461 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 462 if (ErrorStr) 463 *ErrorStr = "JIT has not been linked in."; 464 } 465 return 0; 466 } 467 468 /// getPointerToGlobal - This returns the address of the specified global 469 /// value. This may involve code generation if it's a function. 470 /// 471 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 472 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 473 return getPointerToFunction(F); 474 475 MutexGuard locked(lock); 476 void *p = EEState.getGlobalAddressMap(locked)[GV]; 477 if (p) 478 return p; 479 480 // Global variable might have been added since interpreter started. 481 if (GlobalVariable *GVar = 482 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 483 EmitGlobalVariable(GVar); 484 else 485 llvm_unreachable("Global hasn't had an address allocated yet!"); 486 return EEState.getGlobalAddressMap(locked)[GV]; 487 } 488 489 /// This function converts a Constant* into a GenericValue. The interesting 490 /// part is if C is a ConstantExpr. 491 /// @brief Get a GenericValue for a Constant* 492 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 493 // If its undefined, return the garbage. 494 if (isa<UndefValue>(C)) 495 return GenericValue(); 496 497 // If the value is a ConstantExpr 498 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 499 Constant *Op0 = CE->getOperand(0); 500 switch (CE->getOpcode()) { 501 case Instruction::GetElementPtr: { 502 // Compute the index 503 GenericValue Result = getConstantValue(Op0); 504 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 505 uint64_t Offset = 506 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 507 508 char* tmp = (char*) Result.PointerVal; 509 Result = PTOGV(tmp + Offset); 510 return Result; 511 } 512 case Instruction::Trunc: { 513 GenericValue GV = getConstantValue(Op0); 514 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 515 GV.IntVal = GV.IntVal.trunc(BitWidth); 516 return GV; 517 } 518 case Instruction::ZExt: { 519 GenericValue GV = getConstantValue(Op0); 520 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 521 GV.IntVal = GV.IntVal.zext(BitWidth); 522 return GV; 523 } 524 case Instruction::SExt: { 525 GenericValue GV = getConstantValue(Op0); 526 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 527 GV.IntVal = GV.IntVal.sext(BitWidth); 528 return GV; 529 } 530 case Instruction::FPTrunc: { 531 // FIXME long double 532 GenericValue GV = getConstantValue(Op0); 533 GV.FloatVal = float(GV.DoubleVal); 534 return GV; 535 } 536 case Instruction::FPExt:{ 537 // FIXME long double 538 GenericValue GV = getConstantValue(Op0); 539 GV.DoubleVal = double(GV.FloatVal); 540 return GV; 541 } 542 case Instruction::UIToFP: { 543 GenericValue GV = getConstantValue(Op0); 544 if (CE->getType()->isFloatTy()) 545 GV.FloatVal = float(GV.IntVal.roundToDouble()); 546 else if (CE->getType()->isDoubleTy()) 547 GV.DoubleVal = GV.IntVal.roundToDouble(); 548 else if (CE->getType()->isX86_FP80Ty()) { 549 const uint64_t zero[] = {0, 0}; 550 APFloat apf = APFloat(APInt(80, 2, zero)); 551 (void)apf.convertFromAPInt(GV.IntVal, 552 false, 553 APFloat::rmNearestTiesToEven); 554 GV.IntVal = apf.bitcastToAPInt(); 555 } 556 return GV; 557 } 558 case Instruction::SIToFP: { 559 GenericValue GV = getConstantValue(Op0); 560 if (CE->getType()->isFloatTy()) 561 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 562 else if (CE->getType()->isDoubleTy()) 563 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 564 else if (CE->getType()->isX86_FP80Ty()) { 565 const uint64_t zero[] = { 0, 0}; 566 APFloat apf = APFloat(APInt(80, 2, zero)); 567 (void)apf.convertFromAPInt(GV.IntVal, 568 true, 569 APFloat::rmNearestTiesToEven); 570 GV.IntVal = apf.bitcastToAPInt(); 571 } 572 return GV; 573 } 574 case Instruction::FPToUI: // double->APInt conversion handles sign 575 case Instruction::FPToSI: { 576 GenericValue GV = getConstantValue(Op0); 577 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 578 if (Op0->getType()->isFloatTy()) 579 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 580 else if (Op0->getType()->isDoubleTy()) 581 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 582 else if (Op0->getType()->isX86_FP80Ty()) { 583 APFloat apf = APFloat(GV.IntVal); 584 uint64_t v; 585 bool ignored; 586 (void)apf.convertToInteger(&v, BitWidth, 587 CE->getOpcode()==Instruction::FPToSI, 588 APFloat::rmTowardZero, &ignored); 589 GV.IntVal = v; // endian? 590 } 591 return GV; 592 } 593 case Instruction::PtrToInt: { 594 GenericValue GV = getConstantValue(Op0); 595 uint32_t PtrWidth = TD->getPointerSizeInBits(); 596 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 597 return GV; 598 } 599 case Instruction::IntToPtr: { 600 GenericValue GV = getConstantValue(Op0); 601 uint32_t PtrWidth = TD->getPointerSizeInBits(); 602 if (PtrWidth != GV.IntVal.getBitWidth()) 603 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 604 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 605 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 606 return GV; 607 } 608 case Instruction::BitCast: { 609 GenericValue GV = getConstantValue(Op0); 610 const Type* DestTy = CE->getType(); 611 switch (Op0->getType()->getTypeID()) { 612 default: llvm_unreachable("Invalid bitcast operand"); 613 case Type::IntegerTyID: 614 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 615 if (DestTy->isFloatTy()) 616 GV.FloatVal = GV.IntVal.bitsToFloat(); 617 else if (DestTy->isDoubleTy()) 618 GV.DoubleVal = GV.IntVal.bitsToDouble(); 619 break; 620 case Type::FloatTyID: 621 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 622 "Invalid bitcast"); 623 GV.IntVal.floatToBits(GV.FloatVal); 624 break; 625 case Type::DoubleTyID: 626 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 627 "Invalid bitcast"); 628 GV.IntVal.doubleToBits(GV.DoubleVal); 629 break; 630 case Type::PointerTyID: 631 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 632 break; // getConstantValue(Op0) above already converted it 633 } 634 return GV; 635 } 636 case Instruction::Add: 637 case Instruction::FAdd: 638 case Instruction::Sub: 639 case Instruction::FSub: 640 case Instruction::Mul: 641 case Instruction::FMul: 642 case Instruction::UDiv: 643 case Instruction::SDiv: 644 case Instruction::URem: 645 case Instruction::SRem: 646 case Instruction::And: 647 case Instruction::Or: 648 case Instruction::Xor: { 649 GenericValue LHS = getConstantValue(Op0); 650 GenericValue RHS = getConstantValue(CE->getOperand(1)); 651 GenericValue GV; 652 switch (CE->getOperand(0)->getType()->getTypeID()) { 653 default: llvm_unreachable("Bad add type!"); 654 case Type::IntegerTyID: 655 switch (CE->getOpcode()) { 656 default: llvm_unreachable("Invalid integer opcode"); 657 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 658 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 659 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 660 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 661 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 662 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 663 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 664 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 665 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 666 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 667 } 668 break; 669 case Type::FloatTyID: 670 switch (CE->getOpcode()) { 671 default: llvm_unreachable("Invalid float opcode"); 672 case Instruction::FAdd: 673 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 674 case Instruction::FSub: 675 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 676 case Instruction::FMul: 677 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 678 case Instruction::FDiv: 679 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 680 case Instruction::FRem: 681 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 682 } 683 break; 684 case Type::DoubleTyID: 685 switch (CE->getOpcode()) { 686 default: llvm_unreachable("Invalid double opcode"); 687 case Instruction::FAdd: 688 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 689 case Instruction::FSub: 690 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 691 case Instruction::FMul: 692 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 693 case Instruction::FDiv: 694 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 695 case Instruction::FRem: 696 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 697 } 698 break; 699 case Type::X86_FP80TyID: 700 case Type::PPC_FP128TyID: 701 case Type::FP128TyID: { 702 APFloat apfLHS = APFloat(LHS.IntVal); 703 switch (CE->getOpcode()) { 704 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 705 case Instruction::FAdd: 706 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 707 GV.IntVal = apfLHS.bitcastToAPInt(); 708 break; 709 case Instruction::FSub: 710 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 711 GV.IntVal = apfLHS.bitcastToAPInt(); 712 break; 713 case Instruction::FMul: 714 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 715 GV.IntVal = apfLHS.bitcastToAPInt(); 716 break; 717 case Instruction::FDiv: 718 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 719 GV.IntVal = apfLHS.bitcastToAPInt(); 720 break; 721 case Instruction::FRem: 722 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 723 GV.IntVal = apfLHS.bitcastToAPInt(); 724 break; 725 } 726 } 727 break; 728 } 729 return GV; 730 } 731 default: 732 break; 733 } 734 std::string msg; 735 raw_string_ostream Msg(msg); 736 Msg << "ConstantExpr not handled: " << *CE; 737 llvm_report_error(Msg.str()); 738 } 739 740 GenericValue Result; 741 switch (C->getType()->getTypeID()) { 742 case Type::FloatTyID: 743 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 744 break; 745 case Type::DoubleTyID: 746 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 747 break; 748 case Type::X86_FP80TyID: 749 case Type::FP128TyID: 750 case Type::PPC_FP128TyID: 751 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 752 break; 753 case Type::IntegerTyID: 754 Result.IntVal = cast<ConstantInt>(C)->getValue(); 755 break; 756 case Type::PointerTyID: 757 if (isa<ConstantPointerNull>(C)) 758 Result.PointerVal = 0; 759 else if (const Function *F = dyn_cast<Function>(C)) 760 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 761 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 762 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 763 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 764 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 765 BA->getBasicBlock()))); 766 else 767 llvm_unreachable("Unknown constant pointer type!"); 768 break; 769 default: 770 std::string msg; 771 raw_string_ostream Msg(msg); 772 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 773 llvm_report_error(Msg.str()); 774 } 775 return Result; 776 } 777 778 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 779 /// with the integer held in IntVal. 780 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 781 unsigned StoreBytes) { 782 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 783 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 784 785 if (sys::isLittleEndianHost()) 786 // Little-endian host - the source is ordered from LSB to MSB. Order the 787 // destination from LSB to MSB: Do a straight copy. 788 memcpy(Dst, Src, StoreBytes); 789 else { 790 // Big-endian host - the source is an array of 64 bit words ordered from 791 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 792 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 793 while (StoreBytes > sizeof(uint64_t)) { 794 StoreBytes -= sizeof(uint64_t); 795 // May not be aligned so use memcpy. 796 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 797 Src += sizeof(uint64_t); 798 } 799 800 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 801 } 802 } 803 804 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 805 /// is the address of the memory at which to store Val, cast to GenericValue *. 806 /// It is not a pointer to a GenericValue containing the address at which to 807 /// store Val. 808 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 809 GenericValue *Ptr, const Type *Ty) { 810 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 811 812 switch (Ty->getTypeID()) { 813 case Type::IntegerTyID: 814 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 815 break; 816 case Type::FloatTyID: 817 *((float*)Ptr) = Val.FloatVal; 818 break; 819 case Type::DoubleTyID: 820 *((double*)Ptr) = Val.DoubleVal; 821 break; 822 case Type::X86_FP80TyID: 823 memcpy(Ptr, Val.IntVal.getRawData(), 10); 824 break; 825 case Type::PointerTyID: 826 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 827 if (StoreBytes != sizeof(PointerTy)) 828 memset(Ptr, 0, StoreBytes); 829 830 *((PointerTy*)Ptr) = Val.PointerVal; 831 break; 832 default: 833 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 834 } 835 836 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 837 // Host and target are different endian - reverse the stored bytes. 838 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 839 } 840 841 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 842 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 843 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 844 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 845 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 846 847 if (sys::isLittleEndianHost()) 848 // Little-endian host - the destination must be ordered from LSB to MSB. 849 // The source is ordered from LSB to MSB: Do a straight copy. 850 memcpy(Dst, Src, LoadBytes); 851 else { 852 // Big-endian - the destination is an array of 64 bit words ordered from 853 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 854 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 855 // a word. 856 while (LoadBytes > sizeof(uint64_t)) { 857 LoadBytes -= sizeof(uint64_t); 858 // May not be aligned so use memcpy. 859 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 860 Dst += sizeof(uint64_t); 861 } 862 863 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 864 } 865 } 866 867 /// FIXME: document 868 /// 869 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 870 GenericValue *Ptr, 871 const Type *Ty) { 872 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 873 874 switch (Ty->getTypeID()) { 875 case Type::IntegerTyID: 876 // An APInt with all words initially zero. 877 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 878 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 879 break; 880 case Type::FloatTyID: 881 Result.FloatVal = *((float*)Ptr); 882 break; 883 case Type::DoubleTyID: 884 Result.DoubleVal = *((double*)Ptr); 885 break; 886 case Type::PointerTyID: 887 Result.PointerVal = *((PointerTy*)Ptr); 888 break; 889 case Type::X86_FP80TyID: { 890 // This is endian dependent, but it will only work on x86 anyway. 891 // FIXME: Will not trap if loading a signaling NaN. 892 uint64_t y[2]; 893 memcpy(y, Ptr, 10); 894 Result.IntVal = APInt(80, 2, y); 895 break; 896 } 897 default: 898 std::string msg; 899 raw_string_ostream Msg(msg); 900 Msg << "Cannot load value of type " << *Ty << "!"; 901 llvm_report_error(Msg.str()); 902 } 903 } 904 905 // InitializeMemory - Recursive function to apply a Constant value into the 906 // specified memory location... 907 // 908 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 909 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 910 DEBUG(Init->dump()); 911 if (isa<UndefValue>(Init)) { 912 return; 913 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 914 unsigned ElementSize = 915 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 916 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 917 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 918 return; 919 } else if (isa<ConstantAggregateZero>(Init)) { 920 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 921 return; 922 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 923 unsigned ElementSize = 924 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 925 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 926 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 927 return; 928 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 929 const StructLayout *SL = 930 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 931 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 932 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 933 return; 934 } else if (Init->getType()->isFirstClassType()) { 935 GenericValue Val = getConstantValue(Init); 936 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 937 return; 938 } 939 940 dbgs() << "Bad Type: " << *Init->getType() << "\n"; 941 llvm_unreachable("Unknown constant type to initialize memory with!"); 942 } 943 944 /// EmitGlobals - Emit all of the global variables to memory, storing their 945 /// addresses into GlobalAddress. This must make sure to copy the contents of 946 /// their initializers into the memory. 947 /// 948 void ExecutionEngine::emitGlobals() { 949 950 // Loop over all of the global variables in the program, allocating the memory 951 // to hold them. If there is more than one module, do a prepass over globals 952 // to figure out how the different modules should link together. 953 // 954 std::map<std::pair<std::string, const Type*>, 955 const GlobalValue*> LinkedGlobalsMap; 956 957 if (Modules.size() != 1) { 958 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 959 Module &M = *Modules[m]->getModule(); 960 for (Module::const_global_iterator I = M.global_begin(), 961 E = M.global_end(); I != E; ++I) { 962 const GlobalValue *GV = I; 963 if (GV->hasLocalLinkage() || GV->isDeclaration() || 964 GV->hasAppendingLinkage() || !GV->hasName()) 965 continue;// Ignore external globals and globals with internal linkage. 966 967 const GlobalValue *&GVEntry = 968 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 969 970 // If this is the first time we've seen this global, it is the canonical 971 // version. 972 if (!GVEntry) { 973 GVEntry = GV; 974 continue; 975 } 976 977 // If the existing global is strong, never replace it. 978 if (GVEntry->hasExternalLinkage() || 979 GVEntry->hasDLLImportLinkage() || 980 GVEntry->hasDLLExportLinkage()) 981 continue; 982 983 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 984 // symbol. FIXME is this right for common? 985 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 986 GVEntry = GV; 987 } 988 } 989 } 990 991 std::vector<const GlobalValue*> NonCanonicalGlobals; 992 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 993 Module &M = *Modules[m]->getModule(); 994 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 995 I != E; ++I) { 996 // In the multi-module case, see what this global maps to. 997 if (!LinkedGlobalsMap.empty()) { 998 if (const GlobalValue *GVEntry = 999 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1000 // If something else is the canonical global, ignore this one. 1001 if (GVEntry != &*I) { 1002 NonCanonicalGlobals.push_back(I); 1003 continue; 1004 } 1005 } 1006 } 1007 1008 if (!I->isDeclaration()) { 1009 addGlobalMapping(I, getMemoryForGV(I)); 1010 } else { 1011 // External variable reference. Try to use the dynamic loader to 1012 // get a pointer to it. 1013 if (void *SymAddr = 1014 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1015 addGlobalMapping(I, SymAddr); 1016 else { 1017 llvm_report_error("Could not resolve external global address: " 1018 +I->getName()); 1019 } 1020 } 1021 } 1022 1023 // If there are multiple modules, map the non-canonical globals to their 1024 // canonical location. 1025 if (!NonCanonicalGlobals.empty()) { 1026 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1027 const GlobalValue *GV = NonCanonicalGlobals[i]; 1028 const GlobalValue *CGV = 1029 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1030 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1031 assert(Ptr && "Canonical global wasn't codegen'd!"); 1032 addGlobalMapping(GV, Ptr); 1033 } 1034 } 1035 1036 // Now that all of the globals are set up in memory, loop through them all 1037 // and initialize their contents. 1038 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1039 I != E; ++I) { 1040 if (!I->isDeclaration()) { 1041 if (!LinkedGlobalsMap.empty()) { 1042 if (const GlobalValue *GVEntry = 1043 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1044 if (GVEntry != &*I) // Not the canonical variable. 1045 continue; 1046 } 1047 EmitGlobalVariable(I); 1048 } 1049 } 1050 } 1051 } 1052 1053 // EmitGlobalVariable - This method emits the specified global variable to the 1054 // address specified in GlobalAddresses, or allocates new memory if it's not 1055 // already in the map. 1056 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1057 void *GA = getPointerToGlobalIfAvailable(GV); 1058 1059 if (GA == 0) { 1060 // If it's not already specified, allocate memory for the global. 1061 GA = getMemoryForGV(GV); 1062 addGlobalMapping(GV, GA); 1063 } 1064 1065 // Don't initialize if it's thread local, let the client do it. 1066 if (!GV->isThreadLocal()) 1067 InitializeMemory(GV->getInitializer(), GA); 1068 1069 const Type *ElTy = GV->getType()->getElementType(); 1070 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1071 NumInitBytes += (unsigned)GVSize; 1072 ++NumGlobals; 1073 } 1074 1075 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1076 : EE(EE), GlobalAddressMap(this) { 1077 } 1078 1079 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1080 ExecutionEngineState *EES) { 1081 return &EES->EE.lock; 1082 } 1083 void ExecutionEngineState::AddressMapConfig::onDelete( 1084 ExecutionEngineState *EES, const GlobalValue *Old) { 1085 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1086 EES->GlobalAddressReverseMap.erase(OldVal); 1087 } 1088 1089 void ExecutionEngineState::AddressMapConfig::onRAUW( 1090 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1091 assert(false && "The ExecutionEngine doesn't know how to handle a" 1092 " RAUW on a value it has a global mapping for."); 1093 } 1094