1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/Archive.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Host.h" 33 #include "llvm/Support/MutexGuard.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <cmath> 38 #include <cstring> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jit" 42 43 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 44 STATISTIC(NumGlobals , "Number of global vars initialized"); 45 46 // Pin the vtable to this file. 47 void ObjectCache::anchor() {} 48 void ObjectBuffer::anchor() {} 49 void ObjectBufferStream::anchor() {} 50 51 ExecutionEngine *(*ExecutionEngine::JITCtor)( 52 std::unique_ptr<Module> M, 53 std::string *ErrorStr, 54 JITMemoryManager *JMM, 55 bool GVsWithCode, 56 TargetMachine *TM) = nullptr; 57 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 58 std::unique_ptr<Module >M, 59 std::string *ErrorStr, 60 RTDyldMemoryManager *MCJMM, 61 TargetMachine *TM) = nullptr; 62 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 63 std::string *ErrorStr) =nullptr; 64 65 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 66 : EEState(*this), 67 LazyFunctionCreator(nullptr) { 68 CompilingLazily = false; 69 GVCompilationDisabled = false; 70 SymbolSearchingDisabled = false; 71 72 // IR module verification is enabled by default in debug builds, and disabled 73 // by default in release builds. 74 #ifndef NDEBUG 75 VerifyModules = true; 76 #else 77 VerifyModules = false; 78 #endif 79 80 assert(M && "Module is null?"); 81 Modules.push_back(std::move(M)); 82 } 83 84 ExecutionEngine::~ExecutionEngine() { 85 clearAllGlobalMappings(); 86 } 87 88 namespace { 89 /// \brief Helper class which uses a value handler to automatically deletes the 90 /// memory block when the GlobalVariable is destroyed. 91 class GVMemoryBlock : public CallbackVH { 92 GVMemoryBlock(const GlobalVariable *GV) 93 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 94 95 public: 96 /// \brief Returns the address the GlobalVariable should be written into. The 97 /// GVMemoryBlock object prefixes that. 98 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 99 Type *ElTy = GV->getType()->getElementType(); 100 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 101 void *RawMemory = ::operator new( 102 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 103 TD.getPreferredAlignment(GV)) 104 + GVSize); 105 new(RawMemory) GVMemoryBlock(GV); 106 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 107 } 108 109 void deleted() override { 110 // We allocated with operator new and with some extra memory hanging off the 111 // end, so don't just delete this. I'm not sure if this is actually 112 // required. 113 this->~GVMemoryBlock(); 114 ::operator delete(this); 115 } 116 }; 117 } // anonymous namespace 118 119 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 120 return GVMemoryBlock::Create(GV, *getDataLayout()); 121 } 122 123 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 124 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 125 } 126 127 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 128 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 129 } 130 131 bool ExecutionEngine::removeModule(Module *M) { 132 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 133 Module *Found = I->get(); 134 if (Found == M) { 135 I->release(); 136 Modules.erase(I); 137 clearGlobalMappingsFromModule(M); 138 return true; 139 } 140 } 141 return false; 142 } 143 144 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 145 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 146 if (Function *F = Modules[i]->getFunction(FnName)) 147 return F; 148 } 149 return nullptr; 150 } 151 152 153 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 154 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 155 void *OldVal; 156 157 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 158 // GlobalAddressMap. 159 if (I == GlobalAddressMap.end()) 160 OldVal = nullptr; 161 else { 162 OldVal = I->second; 163 GlobalAddressMap.erase(I); 164 } 165 166 GlobalAddressReverseMap.erase(OldVal); 167 return OldVal; 168 } 169 170 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 171 MutexGuard locked(lock); 172 173 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 174 << "\' to [" << Addr << "]\n";); 175 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 176 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 177 CurVal = Addr; 178 179 // If we are using the reverse mapping, add it too. 180 if (!EEState.getGlobalAddressReverseMap().empty()) { 181 AssertingVH<const GlobalValue> &V = 182 EEState.getGlobalAddressReverseMap()[Addr]; 183 assert((!V || !GV) && "GlobalMapping already established!"); 184 V = GV; 185 } 186 } 187 188 void ExecutionEngine::clearAllGlobalMappings() { 189 MutexGuard locked(lock); 190 191 EEState.getGlobalAddressMap().clear(); 192 EEState.getGlobalAddressReverseMap().clear(); 193 } 194 195 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 196 MutexGuard locked(lock); 197 198 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 199 EEState.RemoveMapping(FI); 200 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 201 GI != GE; ++GI) 202 EEState.RemoveMapping(GI); 203 } 204 205 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 206 MutexGuard locked(lock); 207 208 ExecutionEngineState::GlobalAddressMapTy &Map = 209 EEState.getGlobalAddressMap(); 210 211 // Deleting from the mapping? 212 if (!Addr) 213 return EEState.RemoveMapping(GV); 214 215 void *&CurVal = Map[GV]; 216 void *OldVal = CurVal; 217 218 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 219 EEState.getGlobalAddressReverseMap().erase(CurVal); 220 CurVal = Addr; 221 222 // If we are using the reverse mapping, add it too. 223 if (!EEState.getGlobalAddressReverseMap().empty()) { 224 AssertingVH<const GlobalValue> &V = 225 EEState.getGlobalAddressReverseMap()[Addr]; 226 assert((!V || !GV) && "GlobalMapping already established!"); 227 V = GV; 228 } 229 return OldVal; 230 } 231 232 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 233 MutexGuard locked(lock); 234 235 ExecutionEngineState::GlobalAddressMapTy::iterator I = 236 EEState.getGlobalAddressMap().find(GV); 237 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 238 } 239 240 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 241 MutexGuard locked(lock); 242 243 // If we haven't computed the reverse mapping yet, do so first. 244 if (EEState.getGlobalAddressReverseMap().empty()) { 245 for (ExecutionEngineState::GlobalAddressMapTy::iterator 246 I = EEState.getGlobalAddressMap().begin(), 247 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 248 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 249 I->second, I->first)); 250 } 251 252 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 253 EEState.getGlobalAddressReverseMap().find(Addr); 254 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 255 } 256 257 namespace { 258 class ArgvArray { 259 std::unique_ptr<char[]> Array; 260 std::vector<std::unique_ptr<char[]>> Values; 261 public: 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266 }; 267 } // anonymous namespace 268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 Values.clear(); // Free the old contents. 271 Values.reserve(InputArgv.size()); 272 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 273 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 274 275 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 276 Type *SBytePtr = Type::getInt8PtrTy(C); 277 278 for (unsigned i = 0; i != InputArgv.size(); ++i) { 279 unsigned Size = InputArgv[i].size()+1; 280 auto DestOwner = make_unique<char[]>(Size); 281 char *Dest = DestOwner.get(); 282 Values.push_back(std::move(DestOwner)); 283 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 284 285 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 286 Dest[Size-1] = 0; 287 288 // Endian safe: Array[i] = (PointerTy)Dest; 289 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(&Array[i*PtrSize]), 290 SBytePtr); 291 } 292 293 // Null terminate it 294 EE->StoreValueToMemory(PTOGV(nullptr), 295 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 296 SBytePtr); 297 return Array.get(); 298 } 299 300 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 301 bool isDtors) { 302 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 303 GlobalVariable *GV = module.getNamedGlobal(Name); 304 305 // If this global has internal linkage, or if it has a use, then it must be 306 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 307 // this is the case, don't execute any of the global ctors, __main will do 308 // it. 309 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 310 311 // Should be an array of '{ i32, void ()* }' structs. The first value is 312 // the init priority, which we ignore. 313 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 314 if (!InitList) 315 return; 316 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 317 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 318 if (!CS) continue; 319 320 Constant *FP = CS->getOperand(1); 321 if (FP->isNullValue()) 322 continue; // Found a sentinal value, ignore. 323 324 // Strip off constant expression casts. 325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 326 if (CE->isCast()) 327 FP = CE->getOperand(0); 328 329 // Execute the ctor/dtor function! 330 if (Function *F = dyn_cast<Function>(FP)) 331 runFunction(F, std::vector<GenericValue>()); 332 333 // FIXME: It is marginally lame that we just do nothing here if we see an 334 // entry we don't recognize. It might not be unreasonable for the verifier 335 // to not even allow this and just assert here. 336 } 337 } 338 339 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 340 // Execute global ctors/dtors for each module in the program. 341 for (std::unique_ptr<Module> &M : Modules) 342 runStaticConstructorsDestructors(*M, isDtors); 343 } 344 345 #ifndef NDEBUG 346 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 347 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 348 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 349 for (unsigned i = 0; i < PtrSize; ++i) 350 if (*(i + (uint8_t*)Loc)) 351 return false; 352 return true; 353 } 354 #endif 355 356 int ExecutionEngine::runFunctionAsMain(Function *Fn, 357 const std::vector<std::string> &argv, 358 const char * const * envp) { 359 std::vector<GenericValue> GVArgs; 360 GenericValue GVArgc; 361 GVArgc.IntVal = APInt(32, argv.size()); 362 363 // Check main() type 364 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 365 FunctionType *FTy = Fn->getFunctionType(); 366 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 367 368 // Check the argument types. 369 if (NumArgs > 3) 370 report_fatal_error("Invalid number of arguments of main() supplied"); 371 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 372 report_fatal_error("Invalid type for third argument of main() supplied"); 373 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 374 report_fatal_error("Invalid type for second argument of main() supplied"); 375 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 376 report_fatal_error("Invalid type for first argument of main() supplied"); 377 if (!FTy->getReturnType()->isIntegerTy() && 378 !FTy->getReturnType()->isVoidTy()) 379 report_fatal_error("Invalid return type of main() supplied"); 380 381 ArgvArray CArgv; 382 ArgvArray CEnv; 383 if (NumArgs) { 384 GVArgs.push_back(GVArgc); // Arg #0 = argc. 385 if (NumArgs > 1) { 386 // Arg #1 = argv. 387 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 388 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 389 "argv[0] was null after CreateArgv"); 390 if (NumArgs > 2) { 391 std::vector<std::string> EnvVars; 392 for (unsigned i = 0; envp[i]; ++i) 393 EnvVars.push_back(envp[i]); 394 // Arg #2 = envp. 395 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 396 } 397 } 398 } 399 400 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 401 } 402 403 void EngineBuilder::InitEngine() { 404 WhichEngine = EngineKind::Either; 405 ErrorStr = nullptr; 406 OptLevel = CodeGenOpt::Default; 407 MCJMM = nullptr; 408 JMM = nullptr; 409 Options = TargetOptions(); 410 AllocateGVsWithCode = false; 411 RelocModel = Reloc::Default; 412 CMModel = CodeModel::JITDefault; 413 UseMCJIT = false; 414 415 // IR module verification is enabled by default in debug builds, and disabled 416 // by default in release builds. 417 #ifndef NDEBUG 418 VerifyModules = true; 419 #else 420 VerifyModules = false; 421 #endif 422 } 423 424 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 425 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 426 427 // Make sure we can resolve symbols in the program as well. The zero arg 428 // to the function tells DynamicLibrary to load the program, not a library. 429 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 430 return nullptr; 431 432 assert(!(JMM && MCJMM)); 433 434 // If the user specified a memory manager but didn't specify which engine to 435 // create, we assume they only want the JIT, and we fail if they only want 436 // the interpreter. 437 if (JMM || MCJMM) { 438 if (WhichEngine & EngineKind::JIT) 439 WhichEngine = EngineKind::JIT; 440 else { 441 if (ErrorStr) 442 *ErrorStr = "Cannot create an interpreter with a memory manager."; 443 return nullptr; 444 } 445 } 446 447 if (MCJMM && ! UseMCJIT) { 448 if (ErrorStr) 449 *ErrorStr = 450 "Cannot create a legacy JIT with a runtime dyld memory " 451 "manager."; 452 return nullptr; 453 } 454 455 // Unless the interpreter was explicitly selected or the JIT is not linked, 456 // try making a JIT. 457 if ((WhichEngine & EngineKind::JIT) && TheTM) { 458 Triple TT(M->getTargetTriple()); 459 if (!TM->getTarget().hasJIT()) { 460 errs() << "WARNING: This target JIT is not designed for the host" 461 << " you are running. If bad things happen, please choose" 462 << " a different -march switch.\n"; 463 } 464 465 ExecutionEngine *EE = nullptr; 466 if (UseMCJIT && ExecutionEngine::MCJITCtor) 467 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, 468 MCJMM ? MCJMM : JMM, TheTM.release()); 469 else if (ExecutionEngine::JITCtor) 470 EE = ExecutionEngine::JITCtor(std::move(M), ErrorStr, JMM, 471 AllocateGVsWithCode, TheTM.release()); 472 473 if (EE) { 474 EE->setVerifyModules(VerifyModules); 475 return EE; 476 } 477 } 478 479 // If we can't make a JIT and we didn't request one specifically, try making 480 // an interpreter instead. 481 if (WhichEngine & EngineKind::Interpreter) { 482 if (ExecutionEngine::InterpCtor) 483 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 484 if (ErrorStr) 485 *ErrorStr = "Interpreter has not been linked in."; 486 return nullptr; 487 } 488 489 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 490 !ExecutionEngine::MCJITCtor) { 491 if (ErrorStr) 492 *ErrorStr = "JIT has not been linked in."; 493 } 494 495 return nullptr; 496 } 497 498 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 499 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 500 return getPointerToFunction(F); 501 502 MutexGuard locked(lock); 503 if (void *P = EEState.getGlobalAddressMap()[GV]) 504 return P; 505 506 // Global variable might have been added since interpreter started. 507 if (GlobalVariable *GVar = 508 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 509 EmitGlobalVariable(GVar); 510 else 511 llvm_unreachable("Global hasn't had an address allocated yet!"); 512 513 return EEState.getGlobalAddressMap()[GV]; 514 } 515 516 /// \brief Converts a Constant* into a GenericValue, including handling of 517 /// ConstantExpr values. 518 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 519 // If its undefined, return the garbage. 520 if (isa<UndefValue>(C)) { 521 GenericValue Result; 522 switch (C->getType()->getTypeID()) { 523 default: 524 break; 525 case Type::IntegerTyID: 526 case Type::X86_FP80TyID: 527 case Type::FP128TyID: 528 case Type::PPC_FP128TyID: 529 // Although the value is undefined, we still have to construct an APInt 530 // with the correct bit width. 531 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 532 break; 533 case Type::StructTyID: { 534 // if the whole struct is 'undef' just reserve memory for the value. 535 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 536 unsigned int elemNum = STy->getNumElements(); 537 Result.AggregateVal.resize(elemNum); 538 for (unsigned int i = 0; i < elemNum; ++i) { 539 Type *ElemTy = STy->getElementType(i); 540 if (ElemTy->isIntegerTy()) 541 Result.AggregateVal[i].IntVal = 542 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 543 else if (ElemTy->isAggregateType()) { 544 const Constant *ElemUndef = UndefValue::get(ElemTy); 545 Result.AggregateVal[i] = getConstantValue(ElemUndef); 546 } 547 } 548 } 549 } 550 break; 551 case Type::VectorTyID: 552 // if the whole vector is 'undef' just reserve memory for the value. 553 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 554 const Type *ElemTy = VTy->getElementType(); 555 unsigned int elemNum = VTy->getNumElements(); 556 Result.AggregateVal.resize(elemNum); 557 if (ElemTy->isIntegerTy()) 558 for (unsigned int i = 0; i < elemNum; ++i) 559 Result.AggregateVal[i].IntVal = 560 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 561 break; 562 } 563 return Result; 564 } 565 566 // Otherwise, if the value is a ConstantExpr... 567 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 568 Constant *Op0 = CE->getOperand(0); 569 switch (CE->getOpcode()) { 570 case Instruction::GetElementPtr: { 571 // Compute the index 572 GenericValue Result = getConstantValue(Op0); 573 APInt Offset(DL->getPointerSizeInBits(), 0); 574 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 575 576 char* tmp = (char*) Result.PointerVal; 577 Result = PTOGV(tmp + Offset.getSExtValue()); 578 return Result; 579 } 580 case Instruction::Trunc: { 581 GenericValue GV = getConstantValue(Op0); 582 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 583 GV.IntVal = GV.IntVal.trunc(BitWidth); 584 return GV; 585 } 586 case Instruction::ZExt: { 587 GenericValue GV = getConstantValue(Op0); 588 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 589 GV.IntVal = GV.IntVal.zext(BitWidth); 590 return GV; 591 } 592 case Instruction::SExt: { 593 GenericValue GV = getConstantValue(Op0); 594 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 595 GV.IntVal = GV.IntVal.sext(BitWidth); 596 return GV; 597 } 598 case Instruction::FPTrunc: { 599 // FIXME long double 600 GenericValue GV = getConstantValue(Op0); 601 GV.FloatVal = float(GV.DoubleVal); 602 return GV; 603 } 604 case Instruction::FPExt:{ 605 // FIXME long double 606 GenericValue GV = getConstantValue(Op0); 607 GV.DoubleVal = double(GV.FloatVal); 608 return GV; 609 } 610 case Instruction::UIToFP: { 611 GenericValue GV = getConstantValue(Op0); 612 if (CE->getType()->isFloatTy()) 613 GV.FloatVal = float(GV.IntVal.roundToDouble()); 614 else if (CE->getType()->isDoubleTy()) 615 GV.DoubleVal = GV.IntVal.roundToDouble(); 616 else if (CE->getType()->isX86_FP80Ty()) { 617 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 618 (void)apf.convertFromAPInt(GV.IntVal, 619 false, 620 APFloat::rmNearestTiesToEven); 621 GV.IntVal = apf.bitcastToAPInt(); 622 } 623 return GV; 624 } 625 case Instruction::SIToFP: { 626 GenericValue GV = getConstantValue(Op0); 627 if (CE->getType()->isFloatTy()) 628 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 629 else if (CE->getType()->isDoubleTy()) 630 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 631 else if (CE->getType()->isX86_FP80Ty()) { 632 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 633 (void)apf.convertFromAPInt(GV.IntVal, 634 true, 635 APFloat::rmNearestTiesToEven); 636 GV.IntVal = apf.bitcastToAPInt(); 637 } 638 return GV; 639 } 640 case Instruction::FPToUI: // double->APInt conversion handles sign 641 case Instruction::FPToSI: { 642 GenericValue GV = getConstantValue(Op0); 643 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 644 if (Op0->getType()->isFloatTy()) 645 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 646 else if (Op0->getType()->isDoubleTy()) 647 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 648 else if (Op0->getType()->isX86_FP80Ty()) { 649 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 650 uint64_t v; 651 bool ignored; 652 (void)apf.convertToInteger(&v, BitWidth, 653 CE->getOpcode()==Instruction::FPToSI, 654 APFloat::rmTowardZero, &ignored); 655 GV.IntVal = v; // endian? 656 } 657 return GV; 658 } 659 case Instruction::PtrToInt: { 660 GenericValue GV = getConstantValue(Op0); 661 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 662 assert(PtrWidth <= 64 && "Bad pointer width"); 663 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 664 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 665 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 666 return GV; 667 } 668 case Instruction::IntToPtr: { 669 GenericValue GV = getConstantValue(Op0); 670 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 671 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 672 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 673 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 674 return GV; 675 } 676 case Instruction::BitCast: { 677 GenericValue GV = getConstantValue(Op0); 678 Type* DestTy = CE->getType(); 679 switch (Op0->getType()->getTypeID()) { 680 default: llvm_unreachable("Invalid bitcast operand"); 681 case Type::IntegerTyID: 682 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 683 if (DestTy->isFloatTy()) 684 GV.FloatVal = GV.IntVal.bitsToFloat(); 685 else if (DestTy->isDoubleTy()) 686 GV.DoubleVal = GV.IntVal.bitsToDouble(); 687 break; 688 case Type::FloatTyID: 689 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 690 GV.IntVal = APInt::floatToBits(GV.FloatVal); 691 break; 692 case Type::DoubleTyID: 693 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 694 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 695 break; 696 case Type::PointerTyID: 697 assert(DestTy->isPointerTy() && "Invalid bitcast"); 698 break; // getConstantValue(Op0) above already converted it 699 } 700 return GV; 701 } 702 case Instruction::Add: 703 case Instruction::FAdd: 704 case Instruction::Sub: 705 case Instruction::FSub: 706 case Instruction::Mul: 707 case Instruction::FMul: 708 case Instruction::UDiv: 709 case Instruction::SDiv: 710 case Instruction::URem: 711 case Instruction::SRem: 712 case Instruction::And: 713 case Instruction::Or: 714 case Instruction::Xor: { 715 GenericValue LHS = getConstantValue(Op0); 716 GenericValue RHS = getConstantValue(CE->getOperand(1)); 717 GenericValue GV; 718 switch (CE->getOperand(0)->getType()->getTypeID()) { 719 default: llvm_unreachable("Bad add type!"); 720 case Type::IntegerTyID: 721 switch (CE->getOpcode()) { 722 default: llvm_unreachable("Invalid integer opcode"); 723 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 724 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 725 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 726 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 727 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 728 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 729 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 730 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 731 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 732 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 733 } 734 break; 735 case Type::FloatTyID: 736 switch (CE->getOpcode()) { 737 default: llvm_unreachable("Invalid float opcode"); 738 case Instruction::FAdd: 739 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 740 case Instruction::FSub: 741 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 742 case Instruction::FMul: 743 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 744 case Instruction::FDiv: 745 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 746 case Instruction::FRem: 747 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 748 } 749 break; 750 case Type::DoubleTyID: 751 switch (CE->getOpcode()) { 752 default: llvm_unreachable("Invalid double opcode"); 753 case Instruction::FAdd: 754 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 755 case Instruction::FSub: 756 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 757 case Instruction::FMul: 758 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 759 case Instruction::FDiv: 760 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 761 case Instruction::FRem: 762 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 763 } 764 break; 765 case Type::X86_FP80TyID: 766 case Type::PPC_FP128TyID: 767 case Type::FP128TyID: { 768 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 769 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 770 switch (CE->getOpcode()) { 771 default: llvm_unreachable("Invalid long double opcode"); 772 case Instruction::FAdd: 773 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 774 GV.IntVal = apfLHS.bitcastToAPInt(); 775 break; 776 case Instruction::FSub: 777 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 778 APFloat::rmNearestTiesToEven); 779 GV.IntVal = apfLHS.bitcastToAPInt(); 780 break; 781 case Instruction::FMul: 782 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 783 APFloat::rmNearestTiesToEven); 784 GV.IntVal = apfLHS.bitcastToAPInt(); 785 break; 786 case Instruction::FDiv: 787 apfLHS.divide(APFloat(Sem, RHS.IntVal), 788 APFloat::rmNearestTiesToEven); 789 GV.IntVal = apfLHS.bitcastToAPInt(); 790 break; 791 case Instruction::FRem: 792 apfLHS.mod(APFloat(Sem, RHS.IntVal), 793 APFloat::rmNearestTiesToEven); 794 GV.IntVal = apfLHS.bitcastToAPInt(); 795 break; 796 } 797 } 798 break; 799 } 800 return GV; 801 } 802 default: 803 break; 804 } 805 806 SmallString<256> Msg; 807 raw_svector_ostream OS(Msg); 808 OS << "ConstantExpr not handled: " << *CE; 809 report_fatal_error(OS.str()); 810 } 811 812 // Otherwise, we have a simple constant. 813 GenericValue Result; 814 switch (C->getType()->getTypeID()) { 815 case Type::FloatTyID: 816 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 817 break; 818 case Type::DoubleTyID: 819 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 820 break; 821 case Type::X86_FP80TyID: 822 case Type::FP128TyID: 823 case Type::PPC_FP128TyID: 824 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 825 break; 826 case Type::IntegerTyID: 827 Result.IntVal = cast<ConstantInt>(C)->getValue(); 828 break; 829 case Type::PointerTyID: 830 if (isa<ConstantPointerNull>(C)) 831 Result.PointerVal = nullptr; 832 else if (const Function *F = dyn_cast<Function>(C)) 833 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 834 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 835 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 836 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 837 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 838 BA->getBasicBlock()))); 839 else 840 llvm_unreachable("Unknown constant pointer type!"); 841 break; 842 case Type::VectorTyID: { 843 unsigned elemNum; 844 Type* ElemTy; 845 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 846 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 847 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 848 849 if (CDV) { 850 elemNum = CDV->getNumElements(); 851 ElemTy = CDV->getElementType(); 852 } else if (CV || CAZ) { 853 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 854 elemNum = VTy->getNumElements(); 855 ElemTy = VTy->getElementType(); 856 } else { 857 llvm_unreachable("Unknown constant vector type!"); 858 } 859 860 Result.AggregateVal.resize(elemNum); 861 // Check if vector holds floats. 862 if(ElemTy->isFloatTy()) { 863 if (CAZ) { 864 GenericValue floatZero; 865 floatZero.FloatVal = 0.f; 866 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 867 floatZero); 868 break; 869 } 870 if(CV) { 871 for (unsigned i = 0; i < elemNum; ++i) 872 if (!isa<UndefValue>(CV->getOperand(i))) 873 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 874 CV->getOperand(i))->getValueAPF().convertToFloat(); 875 break; 876 } 877 if(CDV) 878 for (unsigned i = 0; i < elemNum; ++i) 879 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 880 881 break; 882 } 883 // Check if vector holds doubles. 884 if (ElemTy->isDoubleTy()) { 885 if (CAZ) { 886 GenericValue doubleZero; 887 doubleZero.DoubleVal = 0.0; 888 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 889 doubleZero); 890 break; 891 } 892 if(CV) { 893 for (unsigned i = 0; i < elemNum; ++i) 894 if (!isa<UndefValue>(CV->getOperand(i))) 895 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 896 CV->getOperand(i))->getValueAPF().convertToDouble(); 897 break; 898 } 899 if(CDV) 900 for (unsigned i = 0; i < elemNum; ++i) 901 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 902 903 break; 904 } 905 // Check if vector holds integers. 906 if (ElemTy->isIntegerTy()) { 907 if (CAZ) { 908 GenericValue intZero; 909 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 910 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 911 intZero); 912 break; 913 } 914 if(CV) { 915 for (unsigned i = 0; i < elemNum; ++i) 916 if (!isa<UndefValue>(CV->getOperand(i))) 917 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 918 CV->getOperand(i))->getValue(); 919 else { 920 Result.AggregateVal[i].IntVal = 921 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 922 } 923 break; 924 } 925 if(CDV) 926 for (unsigned i = 0; i < elemNum; ++i) 927 Result.AggregateVal[i].IntVal = APInt( 928 CDV->getElementType()->getPrimitiveSizeInBits(), 929 CDV->getElementAsInteger(i)); 930 931 break; 932 } 933 llvm_unreachable("Unknown constant pointer type!"); 934 } 935 break; 936 937 default: 938 SmallString<256> Msg; 939 raw_svector_ostream OS(Msg); 940 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 941 report_fatal_error(OS.str()); 942 } 943 944 return Result; 945 } 946 947 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 948 /// with the integer held in IntVal. 949 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 950 unsigned StoreBytes) { 951 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 952 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 953 954 if (sys::IsLittleEndianHost) { 955 // Little-endian host - the source is ordered from LSB to MSB. Order the 956 // destination from LSB to MSB: Do a straight copy. 957 memcpy(Dst, Src, StoreBytes); 958 } else { 959 // Big-endian host - the source is an array of 64 bit words ordered from 960 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 961 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 962 while (StoreBytes > sizeof(uint64_t)) { 963 StoreBytes -= sizeof(uint64_t); 964 // May not be aligned so use memcpy. 965 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 966 Src += sizeof(uint64_t); 967 } 968 969 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 970 } 971 } 972 973 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 974 GenericValue *Ptr, Type *Ty) { 975 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 976 977 switch (Ty->getTypeID()) { 978 default: 979 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 980 break; 981 case Type::IntegerTyID: 982 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 983 break; 984 case Type::FloatTyID: 985 *((float*)Ptr) = Val.FloatVal; 986 break; 987 case Type::DoubleTyID: 988 *((double*)Ptr) = Val.DoubleVal; 989 break; 990 case Type::X86_FP80TyID: 991 memcpy(Ptr, Val.IntVal.getRawData(), 10); 992 break; 993 case Type::PointerTyID: 994 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 995 if (StoreBytes != sizeof(PointerTy)) 996 memset(&(Ptr->PointerVal), 0, StoreBytes); 997 998 *((PointerTy*)Ptr) = Val.PointerVal; 999 break; 1000 case Type::VectorTyID: 1001 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1002 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1003 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1004 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1005 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1006 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1007 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1008 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1009 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1010 } 1011 } 1012 break; 1013 } 1014 1015 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1016 // Host and target are different endian - reverse the stored bytes. 1017 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1018 } 1019 1020 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1021 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1022 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1023 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1024 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1025 const_cast<uint64_t *>(IntVal.getRawData())); 1026 1027 if (sys::IsLittleEndianHost) 1028 // Little-endian host - the destination must be ordered from LSB to MSB. 1029 // The source is ordered from LSB to MSB: Do a straight copy. 1030 memcpy(Dst, Src, LoadBytes); 1031 else { 1032 // Big-endian - the destination is an array of 64 bit words ordered from 1033 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1034 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1035 // a word. 1036 while (LoadBytes > sizeof(uint64_t)) { 1037 LoadBytes -= sizeof(uint64_t); 1038 // May not be aligned so use memcpy. 1039 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1040 Dst += sizeof(uint64_t); 1041 } 1042 1043 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1044 } 1045 } 1046 1047 /// FIXME: document 1048 /// 1049 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1050 GenericValue *Ptr, 1051 Type *Ty) { 1052 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1053 1054 switch (Ty->getTypeID()) { 1055 case Type::IntegerTyID: 1056 // An APInt with all words initially zero. 1057 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1058 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1059 break; 1060 case Type::FloatTyID: 1061 Result.FloatVal = *((float*)Ptr); 1062 break; 1063 case Type::DoubleTyID: 1064 Result.DoubleVal = *((double*)Ptr); 1065 break; 1066 case Type::PointerTyID: 1067 Result.PointerVal = *((PointerTy*)Ptr); 1068 break; 1069 case Type::X86_FP80TyID: { 1070 // This is endian dependent, but it will only work on x86 anyway. 1071 // FIXME: Will not trap if loading a signaling NaN. 1072 uint64_t y[2]; 1073 memcpy(y, Ptr, 10); 1074 Result.IntVal = APInt(80, y); 1075 break; 1076 } 1077 case Type::VectorTyID: { 1078 const VectorType *VT = cast<VectorType>(Ty); 1079 const Type *ElemT = VT->getElementType(); 1080 const unsigned numElems = VT->getNumElements(); 1081 if (ElemT->isFloatTy()) { 1082 Result.AggregateVal.resize(numElems); 1083 for (unsigned i = 0; i < numElems; ++i) 1084 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1085 } 1086 if (ElemT->isDoubleTy()) { 1087 Result.AggregateVal.resize(numElems); 1088 for (unsigned i = 0; i < numElems; ++i) 1089 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1090 } 1091 if (ElemT->isIntegerTy()) { 1092 GenericValue intZero; 1093 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1094 intZero.IntVal = APInt(elemBitWidth, 0); 1095 Result.AggregateVal.resize(numElems, intZero); 1096 for (unsigned i = 0; i < numElems; ++i) 1097 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1098 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1099 } 1100 break; 1101 } 1102 default: 1103 SmallString<256> Msg; 1104 raw_svector_ostream OS(Msg); 1105 OS << "Cannot load value of type " << *Ty << "!"; 1106 report_fatal_error(OS.str()); 1107 } 1108 } 1109 1110 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1111 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1112 DEBUG(Init->dump()); 1113 if (isa<UndefValue>(Init)) 1114 return; 1115 1116 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1117 unsigned ElementSize = 1118 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1119 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1120 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1121 return; 1122 } 1123 1124 if (isa<ConstantAggregateZero>(Init)) { 1125 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1126 return; 1127 } 1128 1129 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1130 unsigned ElementSize = 1131 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1132 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1133 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1134 return; 1135 } 1136 1137 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1138 const StructLayout *SL = 1139 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1140 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1141 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1142 return; 1143 } 1144 1145 if (const ConstantDataSequential *CDS = 1146 dyn_cast<ConstantDataSequential>(Init)) { 1147 // CDS is already laid out in host memory order. 1148 StringRef Data = CDS->getRawDataValues(); 1149 memcpy(Addr, Data.data(), Data.size()); 1150 return; 1151 } 1152 1153 if (Init->getType()->isFirstClassType()) { 1154 GenericValue Val = getConstantValue(Init); 1155 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1156 return; 1157 } 1158 1159 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1160 llvm_unreachable("Unknown constant type to initialize memory with!"); 1161 } 1162 1163 /// EmitGlobals - Emit all of the global variables to memory, storing their 1164 /// addresses into GlobalAddress. This must make sure to copy the contents of 1165 /// their initializers into the memory. 1166 void ExecutionEngine::emitGlobals() { 1167 // Loop over all of the global variables in the program, allocating the memory 1168 // to hold them. If there is more than one module, do a prepass over globals 1169 // to figure out how the different modules should link together. 1170 std::map<std::pair<std::string, Type*>, 1171 const GlobalValue*> LinkedGlobalsMap; 1172 1173 if (Modules.size() != 1) { 1174 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1175 Module &M = *Modules[m]; 1176 for (const auto &GV : M.globals()) { 1177 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1178 GV.hasAppendingLinkage() || !GV.hasName()) 1179 continue;// Ignore external globals and globals with internal linkage. 1180 1181 const GlobalValue *&GVEntry = 1182 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1183 1184 // If this is the first time we've seen this global, it is the canonical 1185 // version. 1186 if (!GVEntry) { 1187 GVEntry = &GV; 1188 continue; 1189 } 1190 1191 // If the existing global is strong, never replace it. 1192 if (GVEntry->hasExternalLinkage()) 1193 continue; 1194 1195 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1196 // symbol. FIXME is this right for common? 1197 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1198 GVEntry = &GV; 1199 } 1200 } 1201 } 1202 1203 std::vector<const GlobalValue*> NonCanonicalGlobals; 1204 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1205 Module &M = *Modules[m]; 1206 for (const auto &GV : M.globals()) { 1207 // In the multi-module case, see what this global maps to. 1208 if (!LinkedGlobalsMap.empty()) { 1209 if (const GlobalValue *GVEntry = 1210 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1211 // If something else is the canonical global, ignore this one. 1212 if (GVEntry != &GV) { 1213 NonCanonicalGlobals.push_back(&GV); 1214 continue; 1215 } 1216 } 1217 } 1218 1219 if (!GV.isDeclaration()) { 1220 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1221 } else { 1222 // External variable reference. Try to use the dynamic loader to 1223 // get a pointer to it. 1224 if (void *SymAddr = 1225 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1226 addGlobalMapping(&GV, SymAddr); 1227 else { 1228 report_fatal_error("Could not resolve external global address: " 1229 +GV.getName()); 1230 } 1231 } 1232 } 1233 1234 // If there are multiple modules, map the non-canonical globals to their 1235 // canonical location. 1236 if (!NonCanonicalGlobals.empty()) { 1237 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1238 const GlobalValue *GV = NonCanonicalGlobals[i]; 1239 const GlobalValue *CGV = 1240 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1241 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1242 assert(Ptr && "Canonical global wasn't codegen'd!"); 1243 addGlobalMapping(GV, Ptr); 1244 } 1245 } 1246 1247 // Now that all of the globals are set up in memory, loop through them all 1248 // and initialize their contents. 1249 for (const auto &GV : M.globals()) { 1250 if (!GV.isDeclaration()) { 1251 if (!LinkedGlobalsMap.empty()) { 1252 if (const GlobalValue *GVEntry = 1253 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1254 if (GVEntry != &GV) // Not the canonical variable. 1255 continue; 1256 } 1257 EmitGlobalVariable(&GV); 1258 } 1259 } 1260 } 1261 } 1262 1263 // EmitGlobalVariable - This method emits the specified global variable to the 1264 // address specified in GlobalAddresses, or allocates new memory if it's not 1265 // already in the map. 1266 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1267 void *GA = getPointerToGlobalIfAvailable(GV); 1268 1269 if (!GA) { 1270 // If it's not already specified, allocate memory for the global. 1271 GA = getMemoryForGV(GV); 1272 1273 // If we failed to allocate memory for this global, return. 1274 if (!GA) return; 1275 1276 addGlobalMapping(GV, GA); 1277 } 1278 1279 // Don't initialize if it's thread local, let the client do it. 1280 if (!GV->isThreadLocal()) 1281 InitializeMemory(GV->getInitializer(), GA); 1282 1283 Type *ElTy = GV->getType()->getElementType(); 1284 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1285 NumInitBytes += (unsigned)GVSize; 1286 ++NumGlobals; 1287 } 1288 1289 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1290 : EE(EE), GlobalAddressMap(this) { 1291 } 1292 1293 sys::Mutex * 1294 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1295 return &EES->EE.lock; 1296 } 1297 1298 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1299 const GlobalValue *Old) { 1300 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1301 EES->GlobalAddressReverseMap.erase(OldVal); 1302 } 1303 1304 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1305 const GlobalValue *, 1306 const GlobalValue *) { 1307 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1308 " RAUW on a value it has a global mapping for."); 1309 } 1310