1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 using namespace llvm; 28 29 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 30 STATISTIC(NumGlobals , "Number of global vars initialized"); 31 32 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 33 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 34 35 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 36 LazyCompilationDisabled = false; 37 Modules.push_back(P); 38 assert(P && "ModuleProvider is null?"); 39 } 40 41 ExecutionEngine::ExecutionEngine(Module *M) { 42 LazyCompilationDisabled = false; 43 assert(M && "Module is null?"); 44 Modules.push_back(new ExistingModuleProvider(M)); 45 } 46 47 ExecutionEngine::~ExecutionEngine() { 48 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 49 delete Modules[i]; 50 } 51 52 /// FindFunctionNamed - Search all of the active modules to find the one that 53 /// defines FnName. This is very slow operation and shouldn't be used for 54 /// general code. 55 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 56 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 57 if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) 58 return F; 59 } 60 return 0; 61 } 62 63 64 /// addGlobalMapping - Tell the execution engine that the specified global is 65 /// at the specified location. This is used internally as functions are JIT'd 66 /// and as global variables are laid out in memory. It can and should also be 67 /// used by clients of the EE that want to have an LLVM global overlay 68 /// existing data in memory. 69 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 70 MutexGuard locked(lock); 71 72 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 73 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 74 CurVal = Addr; 75 76 // If we are using the reverse mapping, add it too 77 if (!state.getGlobalAddressReverseMap(locked).empty()) { 78 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 79 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 80 V = GV; 81 } 82 } 83 84 /// clearAllGlobalMappings - Clear all global mappings and start over again 85 /// use in dynamic compilation scenarios when you want to move globals 86 void ExecutionEngine::clearAllGlobalMappings() { 87 MutexGuard locked(lock); 88 89 state.getGlobalAddressMap(locked).clear(); 90 state.getGlobalAddressReverseMap(locked).clear(); 91 } 92 93 /// updateGlobalMapping - Replace an existing mapping for GV with a new 94 /// address. This updates both maps as required. If "Addr" is null, the 95 /// entry for the global is removed from the mappings. 96 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 97 MutexGuard locked(lock); 98 99 // Deleting from the mapping? 100 if (Addr == 0) { 101 state.getGlobalAddressMap(locked).erase(GV); 102 if (!state.getGlobalAddressReverseMap(locked).empty()) 103 state.getGlobalAddressReverseMap(locked).erase(Addr); 104 return; 105 } 106 107 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 108 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 109 state.getGlobalAddressReverseMap(locked).erase(CurVal); 110 CurVal = Addr; 111 112 // If we are using the reverse mapping, add it too 113 if (!state.getGlobalAddressReverseMap(locked).empty()) { 114 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 115 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 116 V = GV; 117 } 118 } 119 120 /// getPointerToGlobalIfAvailable - This returns the address of the specified 121 /// global value if it is has already been codegen'd, otherwise it returns null. 122 /// 123 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 124 MutexGuard locked(lock); 125 126 std::map<const GlobalValue*, void*>::iterator I = 127 state.getGlobalAddressMap(locked).find(GV); 128 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 129 } 130 131 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 132 /// at the specified address. 133 /// 134 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 135 MutexGuard locked(lock); 136 137 // If we haven't computed the reverse mapping yet, do so first. 138 if (state.getGlobalAddressReverseMap(locked).empty()) { 139 for (std::map<const GlobalValue*, void *>::iterator 140 I = state.getGlobalAddressMap(locked).begin(), 141 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 142 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 143 I->first)); 144 } 145 146 std::map<void *, const GlobalValue*>::iterator I = 147 state.getGlobalAddressReverseMap(locked).find(Addr); 148 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 149 } 150 151 // CreateArgv - Turn a vector of strings into a nice argv style array of 152 // pointers to null terminated strings. 153 // 154 static void *CreateArgv(ExecutionEngine *EE, 155 const std::vector<std::string> &InputArgv) { 156 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 157 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 158 159 DOUT << "ARGV = " << (void*)Result << "\n"; 160 const Type *SBytePtr = PointerType::get(Type::SByteTy); 161 162 for (unsigned i = 0; i != InputArgv.size(); ++i) { 163 unsigned Size = InputArgv[i].size()+1; 164 char *Dest = new char[Size]; 165 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 166 167 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 168 Dest[Size-1] = 0; 169 170 // Endian safe: Result[i] = (PointerTy)Dest; 171 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 172 SBytePtr); 173 } 174 175 // Null terminate it 176 EE->StoreValueToMemory(PTOGV(0), 177 (GenericValue*)(Result+InputArgv.size()*PtrSize), 178 SBytePtr); 179 return Result; 180 } 181 182 183 /// runStaticConstructorsDestructors - This method is used to execute all of 184 /// the static constructors or destructors for a program, depending on the 185 /// value of isDtors. 186 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 187 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 188 189 // Execute global ctors/dtors for each module in the program. 190 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 191 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 192 193 // If this global has internal linkage, or if it has a use, then it must be 194 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 195 // this is the case, don't execute any of the global ctors, __main will do 196 // it. 197 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; 198 199 // Should be an array of '{ int, void ()* }' structs. The first value is 200 // the init priority, which we ignore. 201 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 202 if (!InitList) continue; 203 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 204 if (ConstantStruct *CS = 205 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 206 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 207 208 Constant *FP = CS->getOperand(1); 209 if (FP->isNullValue()) 210 break; // Found a null terminator, exit. 211 212 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 213 if (CE->isCast()) 214 FP = CE->getOperand(0); 215 if (Function *F = dyn_cast<Function>(FP)) { 216 // Execute the ctor/dtor function! 217 runFunction(F, std::vector<GenericValue>()); 218 } 219 } 220 } 221 } 222 223 /// runFunctionAsMain - This is a helper function which wraps runFunction to 224 /// handle the common task of starting up main with the specified argc, argv, 225 /// and envp parameters. 226 int ExecutionEngine::runFunctionAsMain(Function *Fn, 227 const std::vector<std::string> &argv, 228 const char * const * envp) { 229 std::vector<GenericValue> GVArgs; 230 GenericValue GVArgc; 231 GVArgc.IntVal = argv.size(); 232 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 233 if (NumArgs) { 234 GVArgs.push_back(GVArgc); // Arg #0 = argc. 235 if (NumArgs > 1) { 236 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 237 assert(((char **)GVTOP(GVArgs[1]))[0] && 238 "argv[0] was null after CreateArgv"); 239 if (NumArgs > 2) { 240 std::vector<std::string> EnvVars; 241 for (unsigned i = 0; envp[i]; ++i) 242 EnvVars.push_back(envp[i]); 243 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 244 } 245 } 246 } 247 return runFunction(Fn, GVArgs).IntVal; 248 } 249 250 /// If possible, create a JIT, unless the caller specifically requests an 251 /// Interpreter or there's an error. If even an Interpreter cannot be created, 252 /// NULL is returned. 253 /// 254 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 255 bool ForceInterpreter) { 256 ExecutionEngine *EE = 0; 257 258 // Unless the interpreter was explicitly selected, try making a JIT. 259 if (!ForceInterpreter && JITCtor) 260 EE = JITCtor(MP); 261 262 // If we can't make a JIT, make an interpreter instead. 263 if (EE == 0 && InterpCtor) 264 EE = InterpCtor(MP); 265 266 if (EE) { 267 // Make sure we can resolve symbols in the program as well. The zero arg 268 // to the function tells DynamicLibrary to load the program, not a library. 269 try { 270 sys::DynamicLibrary::LoadLibraryPermanently(0); 271 } catch (...) { 272 } 273 } 274 275 return EE; 276 } 277 278 /// getPointerToGlobal - This returns the address of the specified global 279 /// value. This may involve code generation if it's a function. 280 /// 281 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 282 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 283 return getPointerToFunction(F); 284 285 MutexGuard locked(lock); 286 void *p = state.getGlobalAddressMap(locked)[GV]; 287 if (p) 288 return p; 289 290 // Global variable might have been added since interpreter started. 291 if (GlobalVariable *GVar = 292 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 293 EmitGlobalVariable(GVar); 294 else 295 assert("Global hasn't had an address allocated yet!"); 296 return state.getGlobalAddressMap(locked)[GV]; 297 } 298 299 /// This function converts a Constant* into a GenericValue. The interesting 300 /// part is if C is a ConstantExpr. 301 /// @brief Get a GenericValue for a Constnat* 302 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 303 // Declare the result as garbage. 304 GenericValue Result; 305 306 // If its undefined, return the garbage. 307 if (isa<UndefValue>(C)) return Result; 308 309 // If the value is a ConstantExpr 310 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 311 switch (CE->getOpcode()) { 312 case Instruction::GetElementPtr: { 313 // Compute the index 314 Result = getConstantValue(CE->getOperand(0)); 315 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 316 uint64_t Offset = 317 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 318 319 if (getTargetData()->getPointerSize() == 4) 320 Result.IntVal += Offset; 321 else 322 Result.LongVal += Offset; 323 return Result; 324 } 325 case Instruction::Trunc: 326 case Instruction::ZExt: 327 case Instruction::SExt: 328 case Instruction::FPTrunc: 329 case Instruction::FPExt: 330 case Instruction::UIToFP: 331 case Instruction::SIToFP: 332 case Instruction::FPToUI: 333 case Instruction::FPToSI: 334 break; 335 case Instruction::PtrToInt: { 336 Constant *Op = CE->getOperand(0); 337 GenericValue GV = getConstantValue(Op); 338 return GV; 339 } 340 case Instruction::BitCast: { 341 // Bit casts are no-ops but we can only return the GV of the operand if 342 // they are the same basic type (pointer->pointer, packed->packed, etc.) 343 Constant *Op = CE->getOperand(0); 344 GenericValue GV = getConstantValue(Op); 345 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 346 return GV; 347 break; 348 } 349 case Instruction::IntToPtr: { 350 // IntToPtr casts are just so special. Cast to intptr_t first. 351 Constant *Op = CE->getOperand(0); 352 GenericValue GV = getConstantValue(Op); 353 switch (Op->getType()->getTypeID()) { 354 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 355 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 356 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 357 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 358 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 359 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 360 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 361 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 362 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 363 default: assert(0 && "Unknown integral type!"); 364 } 365 break; 366 } 367 case Instruction::Add: 368 switch (CE->getOperand(0)->getType()->getTypeID()) { 369 default: assert(0 && "Bad add type!"); abort(); 370 case Type::LongTyID: 371 case Type::ULongTyID: 372 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 373 getConstantValue(CE->getOperand(1)).LongVal; 374 break; 375 case Type::IntTyID: 376 case Type::UIntTyID: 377 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 378 getConstantValue(CE->getOperand(1)).IntVal; 379 break; 380 case Type::ShortTyID: 381 case Type::UShortTyID: 382 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 383 getConstantValue(CE->getOperand(1)).ShortVal; 384 break; 385 case Type::SByteTyID: 386 case Type::UByteTyID: 387 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 388 getConstantValue(CE->getOperand(1)).SByteVal; 389 break; 390 case Type::FloatTyID: 391 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 392 getConstantValue(CE->getOperand(1)).FloatVal; 393 break; 394 case Type::DoubleTyID: 395 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 396 getConstantValue(CE->getOperand(1)).DoubleVal; 397 break; 398 } 399 return Result; 400 default: 401 break; 402 } 403 cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 404 abort(); 405 } 406 407 switch (C->getType()->getTypeID()) { 408 #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ 409 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break 410 GET_CONST_VAL(Bool , bool , ConstantBool, getValue); 411 GET_CONST_VAL(UByte , unsigned char , ConstantInt, getZExtValue); 412 GET_CONST_VAL(SByte , signed char , ConstantInt, getSExtValue); 413 GET_CONST_VAL(UShort , unsigned short, ConstantInt, getZExtValue); 414 GET_CONST_VAL(Short , signed short , ConstantInt, getSExtValue); 415 GET_CONST_VAL(UInt , unsigned int , ConstantInt, getZExtValue); 416 GET_CONST_VAL(Int , signed int , ConstantInt, getSExtValue); 417 GET_CONST_VAL(ULong , uint64_t , ConstantInt, getZExtValue); 418 GET_CONST_VAL(Long , int64_t , ConstantInt, getSExtValue); 419 GET_CONST_VAL(Float , float , ConstantFP, getValue); 420 GET_CONST_VAL(Double , double , ConstantFP, getValue); 421 #undef GET_CONST_VAL 422 case Type::PointerTyID: 423 if (isa<ConstantPointerNull>(C)) 424 Result.PointerVal = 0; 425 else if (const Function *F = dyn_cast<Function>(C)) 426 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 427 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 428 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 429 else 430 assert(0 && "Unknown constant pointer type!"); 431 break; 432 default: 433 cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 434 abort(); 435 } 436 return Result; 437 } 438 439 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 440 /// is the address of the memory at which to store Val, cast to GenericValue *. 441 /// It is not a pointer to a GenericValue containing the address at which to 442 /// store Val. 443 /// 444 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 445 const Type *Ty) { 446 if (getTargetData()->isLittleEndian()) { 447 switch (Ty->getTypeID()) { 448 case Type::BoolTyID: 449 case Type::UByteTyID: 450 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 451 case Type::UShortTyID: 452 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 453 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 454 break; 455 Store4BytesLittleEndian: 456 case Type::FloatTyID: 457 case Type::UIntTyID: 458 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 459 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 460 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 461 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 462 break; 463 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 464 goto Store4BytesLittleEndian; 465 case Type::DoubleTyID: 466 case Type::ULongTyID: 467 case Type::LongTyID: 468 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 469 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 470 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 471 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 472 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 473 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 474 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 475 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 476 break; 477 default: 478 cerr << "Cannot store value of type " << *Ty << "!\n"; 479 } 480 } else { 481 switch (Ty->getTypeID()) { 482 case Type::BoolTyID: 483 case Type::UByteTyID: 484 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 485 case Type::UShortTyID: 486 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 487 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 488 break; 489 Store4BytesBigEndian: 490 case Type::FloatTyID: 491 case Type::UIntTyID: 492 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 493 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 494 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 495 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 496 break; 497 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 498 goto Store4BytesBigEndian; 499 case Type::DoubleTyID: 500 case Type::ULongTyID: 501 case Type::LongTyID: 502 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 503 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 504 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 505 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 506 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 507 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 508 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 509 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 510 break; 511 default: 512 cerr << "Cannot store value of type " << *Ty << "!\n"; 513 } 514 } 515 } 516 517 /// FIXME: document 518 /// 519 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 520 const Type *Ty) { 521 GenericValue Result; 522 if (getTargetData()->isLittleEndian()) { 523 switch (Ty->getTypeID()) { 524 case Type::BoolTyID: 525 case Type::UByteTyID: 526 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 527 case Type::UShortTyID: 528 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 529 ((unsigned)Ptr->Untyped[1] << 8); 530 break; 531 Load4BytesLittleEndian: 532 case Type::FloatTyID: 533 case Type::UIntTyID: 534 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 535 ((unsigned)Ptr->Untyped[1] << 8) | 536 ((unsigned)Ptr->Untyped[2] << 16) | 537 ((unsigned)Ptr->Untyped[3] << 24); 538 break; 539 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 540 goto Load4BytesLittleEndian; 541 case Type::DoubleTyID: 542 case Type::ULongTyID: 543 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 544 ((uint64_t)Ptr->Untyped[1] << 8) | 545 ((uint64_t)Ptr->Untyped[2] << 16) | 546 ((uint64_t)Ptr->Untyped[3] << 24) | 547 ((uint64_t)Ptr->Untyped[4] << 32) | 548 ((uint64_t)Ptr->Untyped[5] << 40) | 549 ((uint64_t)Ptr->Untyped[6] << 48) | 550 ((uint64_t)Ptr->Untyped[7] << 56); 551 break; 552 default: 553 cerr << "Cannot load value of type " << *Ty << "!\n"; 554 abort(); 555 } 556 } else { 557 switch (Ty->getTypeID()) { 558 case Type::BoolTyID: 559 case Type::UByteTyID: 560 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 561 case Type::UShortTyID: 562 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 563 ((unsigned)Ptr->Untyped[0] << 8); 564 break; 565 Load4BytesBigEndian: 566 case Type::FloatTyID: 567 case Type::UIntTyID: 568 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 569 ((unsigned)Ptr->Untyped[2] << 8) | 570 ((unsigned)Ptr->Untyped[1] << 16) | 571 ((unsigned)Ptr->Untyped[0] << 24); 572 break; 573 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) 574 goto Load4BytesBigEndian; 575 case Type::DoubleTyID: 576 case Type::ULongTyID: 577 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 578 ((uint64_t)Ptr->Untyped[6] << 8) | 579 ((uint64_t)Ptr->Untyped[5] << 16) | 580 ((uint64_t)Ptr->Untyped[4] << 24) | 581 ((uint64_t)Ptr->Untyped[3] << 32) | 582 ((uint64_t)Ptr->Untyped[2] << 40) | 583 ((uint64_t)Ptr->Untyped[1] << 48) | 584 ((uint64_t)Ptr->Untyped[0] << 56); 585 break; 586 default: 587 cerr << "Cannot load value of type " << *Ty << "!\n"; 588 abort(); 589 } 590 } 591 return Result; 592 } 593 594 // InitializeMemory - Recursive function to apply a Constant value into the 595 // specified memory location... 596 // 597 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 598 if (isa<UndefValue>(Init)) { 599 return; 600 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 601 unsigned ElementSize = 602 getTargetData()->getTypeSize(CP->getType()->getElementType()); 603 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 604 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 605 return; 606 } else if (Init->getType()->isFirstClassType()) { 607 GenericValue Val = getConstantValue(Init); 608 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 609 return; 610 } else if (isa<ConstantAggregateZero>(Init)) { 611 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 612 return; 613 } 614 615 switch (Init->getType()->getTypeID()) { 616 case Type::ArrayTyID: { 617 const ConstantArray *CPA = cast<ConstantArray>(Init); 618 unsigned ElementSize = 619 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 620 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 621 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 622 return; 623 } 624 625 case Type::StructTyID: { 626 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 627 const StructLayout *SL = 628 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 629 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 630 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 631 return; 632 } 633 634 default: 635 cerr << "Bad Type: " << *Init->getType() << "\n"; 636 assert(0 && "Unknown constant type to initialize memory with!"); 637 } 638 } 639 640 /// EmitGlobals - Emit all of the global variables to memory, storing their 641 /// addresses into GlobalAddress. This must make sure to copy the contents of 642 /// their initializers into the memory. 643 /// 644 void ExecutionEngine::emitGlobals() { 645 const TargetData *TD = getTargetData(); 646 647 // Loop over all of the global variables in the program, allocating the memory 648 // to hold them. If there is more than one module, do a prepass over globals 649 // to figure out how the different modules should link together. 650 // 651 std::map<std::pair<std::string, const Type*>, 652 const GlobalValue*> LinkedGlobalsMap; 653 654 if (Modules.size() != 1) { 655 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 656 Module &M = *Modules[m]->getModule(); 657 for (Module::const_global_iterator I = M.global_begin(), 658 E = M.global_end(); I != E; ++I) { 659 const GlobalValue *GV = I; 660 if (GV->hasInternalLinkage() || GV->isExternal() || 661 GV->hasAppendingLinkage() || !GV->hasName()) 662 continue;// Ignore external globals and globals with internal linkage. 663 664 const GlobalValue *&GVEntry = 665 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 666 667 // If this is the first time we've seen this global, it is the canonical 668 // version. 669 if (!GVEntry) { 670 GVEntry = GV; 671 continue; 672 } 673 674 // If the existing global is strong, never replace it. 675 if (GVEntry->hasExternalLinkage() || 676 GVEntry->hasDLLImportLinkage() || 677 GVEntry->hasDLLExportLinkage()) 678 continue; 679 680 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 681 // symbol. 682 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 683 GVEntry = GV; 684 } 685 } 686 } 687 688 std::vector<const GlobalValue*> NonCanonicalGlobals; 689 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 690 Module &M = *Modules[m]->getModule(); 691 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 692 I != E; ++I) { 693 // In the multi-module case, see what this global maps to. 694 if (!LinkedGlobalsMap.empty()) { 695 if (const GlobalValue *GVEntry = 696 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 697 // If something else is the canonical global, ignore this one. 698 if (GVEntry != &*I) { 699 NonCanonicalGlobals.push_back(I); 700 continue; 701 } 702 } 703 } 704 705 if (!I->isExternal()) { 706 // Get the type of the global. 707 const Type *Ty = I->getType()->getElementType(); 708 709 // Allocate some memory for it! 710 unsigned Size = TD->getTypeSize(Ty); 711 addGlobalMapping(I, new char[Size]); 712 } else { 713 // External variable reference. Try to use the dynamic loader to 714 // get a pointer to it. 715 if (void *SymAddr = 716 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 717 addGlobalMapping(I, SymAddr); 718 else { 719 cerr << "Could not resolve external global address: " 720 << I->getName() << "\n"; 721 abort(); 722 } 723 } 724 } 725 726 // If there are multiple modules, map the non-canonical globals to their 727 // canonical location. 728 if (!NonCanonicalGlobals.empty()) { 729 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 730 const GlobalValue *GV = NonCanonicalGlobals[i]; 731 const GlobalValue *CGV = 732 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 733 void *Ptr = getPointerToGlobalIfAvailable(CGV); 734 assert(Ptr && "Canonical global wasn't codegen'd!"); 735 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 736 } 737 } 738 739 // Now that all of the globals are set up in memory, loop through them all and 740 // initialize their contents. 741 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 742 I != E; ++I) { 743 if (!I->isExternal()) { 744 if (!LinkedGlobalsMap.empty()) { 745 if (const GlobalValue *GVEntry = 746 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 747 if (GVEntry != &*I) // Not the canonical variable. 748 continue; 749 } 750 EmitGlobalVariable(I); 751 } 752 } 753 } 754 } 755 756 // EmitGlobalVariable - This method emits the specified global variable to the 757 // address specified in GlobalAddresses, or allocates new memory if it's not 758 // already in the map. 759 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 760 void *GA = getPointerToGlobalIfAvailable(GV); 761 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 762 763 const Type *ElTy = GV->getType()->getElementType(); 764 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 765 if (GA == 0) { 766 // If it's not already specified, allocate memory for the global. 767 GA = new char[GVSize]; 768 addGlobalMapping(GV, GA); 769 } 770 771 InitializeMemory(GV->getInitializer(), GA); 772 NumInitBytes += (unsigned)GVSize; 773 ++NumGlobals; 774 } 775