1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MutexGuard.h" 26 #include "llvm/Support/ValueHandle.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/System/DynamicLibrary.h" 29 #include "llvm/System/Host.h" 30 #include "llvm/Target/TargetData.h" 31 #include <cmath> 32 #include <cstring> 33 using namespace llvm; 34 35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 36 STATISTIC(NumGlobals , "Number of global vars initialized"); 37 38 ExecutionEngine *(*ExecutionEngine::JITCtor)( 39 Module *M, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode, 44 CodeModel::Model CMM, 45 StringRef MArch, 46 StringRef MCPU, 47 const SmallVectorImpl<std::string>& MAttrs) = 0; 48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 49 std::string *ErrorStr) = 0; 50 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 51 52 53 ExecutionEngine::ExecutionEngine(Module *M) 54 : EEState(*this), 55 LazyFunctionCreator(0) { 56 CompilingLazily = false; 57 GVCompilationDisabled = false; 58 SymbolSearchingDisabled = false; 59 Modules.push_back(M); 60 assert(M && "Module is null?"); 61 } 62 63 ExecutionEngine::~ExecutionEngine() { 64 clearAllGlobalMappings(); 65 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 66 delete Modules[i]; 67 } 68 69 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 70 const Type *ElTy = GV->getType()->getElementType(); 71 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 72 return new char[GVSize]; 73 } 74 75 /// removeModule - Remove a Module from the list of modules. 76 bool ExecutionEngine::removeModule(Module *M) { 77 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 78 E = Modules.end(); I != E; ++I) { 79 Module *Found = *I; 80 if (Found == M) { 81 Modules.erase(I); 82 clearGlobalMappingsFromModule(M); 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// FindFunctionNamed - Search all of the active modules to find the one that 90 /// defines FnName. This is very slow operation and shouldn't be used for 91 /// general code. 92 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 93 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 94 if (Function *F = Modules[i]->getFunction(FnName)) 95 return F; 96 } 97 return 0; 98 } 99 100 101 void *ExecutionEngineState::RemoveMapping( 102 const MutexGuard &, const GlobalValue *ToUnmap) { 103 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 104 void *OldVal; 105 if (I == GlobalAddressMap.end()) 106 OldVal = 0; 107 else { 108 OldVal = I->second; 109 GlobalAddressMap.erase(I); 110 } 111 112 GlobalAddressReverseMap.erase(OldVal); 113 return OldVal; 114 } 115 116 /// addGlobalMapping - Tell the execution engine that the specified global is 117 /// at the specified location. This is used internally as functions are JIT'd 118 /// and as global variables are laid out in memory. It can and should also be 119 /// used by clients of the EE that want to have an LLVM global overlay 120 /// existing data in memory. 121 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 122 MutexGuard locked(lock); 123 124 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 125 << "\' to [" << Addr << "]\n";); 126 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 127 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 128 CurVal = Addr; 129 130 // If we are using the reverse mapping, add it too 131 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 132 AssertingVH<const GlobalValue> &V = 133 EEState.getGlobalAddressReverseMap(locked)[Addr]; 134 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 135 V = GV; 136 } 137 } 138 139 /// clearAllGlobalMappings - Clear all global mappings and start over again 140 /// use in dynamic compilation scenarios when you want to move globals 141 void ExecutionEngine::clearAllGlobalMappings() { 142 MutexGuard locked(lock); 143 144 EEState.getGlobalAddressMap(locked).clear(); 145 EEState.getGlobalAddressReverseMap(locked).clear(); 146 } 147 148 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 149 /// particular module, because it has been removed from the JIT. 150 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 151 MutexGuard locked(lock); 152 153 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 154 EEState.RemoveMapping(locked, FI); 155 } 156 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 157 GI != GE; ++GI) { 158 EEState.RemoveMapping(locked, GI); 159 } 160 } 161 162 /// updateGlobalMapping - Replace an existing mapping for GV with a new 163 /// address. This updates both maps as required. If "Addr" is null, the 164 /// entry for the global is removed from the mappings. 165 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 166 MutexGuard locked(lock); 167 168 ExecutionEngineState::GlobalAddressMapTy &Map = 169 EEState.getGlobalAddressMap(locked); 170 171 // Deleting from the mapping? 172 if (Addr == 0) { 173 return EEState.RemoveMapping(locked, GV); 174 } 175 176 void *&CurVal = Map[GV]; 177 void *OldVal = CurVal; 178 179 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 180 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 181 CurVal = Addr; 182 183 // If we are using the reverse mapping, add it too 184 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 185 AssertingVH<const GlobalValue> &V = 186 EEState.getGlobalAddressReverseMap(locked)[Addr]; 187 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 188 V = GV; 189 } 190 return OldVal; 191 } 192 193 /// getPointerToGlobalIfAvailable - This returns the address of the specified 194 /// global value if it is has already been codegen'd, otherwise it returns null. 195 /// 196 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 197 MutexGuard locked(lock); 198 199 ExecutionEngineState::GlobalAddressMapTy::iterator I = 200 EEState.getGlobalAddressMap(locked).find(GV); 201 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 202 } 203 204 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 205 /// at the specified address. 206 /// 207 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 208 MutexGuard locked(lock); 209 210 // If we haven't computed the reverse mapping yet, do so first. 211 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 212 for (ExecutionEngineState::GlobalAddressMapTy::iterator 213 I = EEState.getGlobalAddressMap(locked).begin(), 214 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 215 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 216 I->first)); 217 } 218 219 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 220 EEState.getGlobalAddressReverseMap(locked).find(Addr); 221 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 222 } 223 224 namespace { 225 class ArgvArray { 226 char *Array; 227 std::vector<char*> Values; 228 public: 229 ArgvArray() : Array(NULL) {} 230 ~ArgvArray() { clear(); } 231 void clear() { 232 delete[] Array; 233 Array = NULL; 234 for (size_t I = 0, E = Values.size(); I != E; ++I) { 235 delete[] Values[I]; 236 } 237 Values.clear(); 238 } 239 /// Turn a vector of strings into a nice argv style array of pointers to null 240 /// terminated strings. 241 void *reset(LLVMContext &C, ExecutionEngine *EE, 242 const std::vector<std::string> &InputArgv); 243 }; 244 } // anonymous namespace 245 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 246 const std::vector<std::string> &InputArgv) { 247 clear(); // Free the old contents. 248 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 249 Array = new char[(InputArgv.size()+1)*PtrSize]; 250 251 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 252 const Type *SBytePtr = Type::getInt8PtrTy(C); 253 254 for (unsigned i = 0; i != InputArgv.size(); ++i) { 255 unsigned Size = InputArgv[i].size()+1; 256 char *Dest = new char[Size]; 257 Values.push_back(Dest); 258 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 259 260 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 261 Dest[Size-1] = 0; 262 263 // Endian safe: Array[i] = (PointerTy)Dest; 264 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 265 SBytePtr); 266 } 267 268 // Null terminate it 269 EE->StoreValueToMemory(PTOGV(0), 270 (GenericValue*)(Array+InputArgv.size()*PtrSize), 271 SBytePtr); 272 return Array; 273 } 274 275 276 /// runStaticConstructorsDestructors - This method is used to execute all of 277 /// the static constructors or destructors for a module, depending on the 278 /// value of isDtors. 279 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 280 bool isDtors) { 281 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 282 283 // Execute global ctors/dtors for each module in the program. 284 285 GlobalVariable *GV = module->getNamedGlobal(Name); 286 287 // If this global has internal linkage, or if it has a use, then it must be 288 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 289 // this is the case, don't execute any of the global ctors, __main will do 290 // it. 291 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 292 293 // Should be an array of '{ int, void ()* }' structs. The first value is 294 // the init priority, which we ignore. 295 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 296 if (!InitList) return; 297 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 298 if (ConstantStruct *CS = 299 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 300 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 301 302 Constant *FP = CS->getOperand(1); 303 if (FP->isNullValue()) 304 break; // Found a null terminator, exit. 305 306 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 307 if (CE->isCast()) 308 FP = CE->getOperand(0); 309 if (Function *F = dyn_cast<Function>(FP)) { 310 // Execute the ctor/dtor function! 311 runFunction(F, std::vector<GenericValue>()); 312 } 313 } 314 } 315 316 /// runStaticConstructorsDestructors - This method is used to execute all of 317 /// the static constructors or destructors for a program, depending on the 318 /// value of isDtors. 319 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 320 // Execute global ctors/dtors for each module in the program. 321 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 322 runStaticConstructorsDestructors(Modules[m], isDtors); 323 } 324 325 #ifndef NDEBUG 326 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 327 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 328 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 329 for (unsigned i = 0; i < PtrSize; ++i) 330 if (*(i + (uint8_t*)Loc)) 331 return false; 332 return true; 333 } 334 #endif 335 336 /// runFunctionAsMain - This is a helper function which wraps runFunction to 337 /// handle the common task of starting up main with the specified argc, argv, 338 /// and envp parameters. 339 int ExecutionEngine::runFunctionAsMain(Function *Fn, 340 const std::vector<std::string> &argv, 341 const char * const * envp) { 342 std::vector<GenericValue> GVArgs; 343 GenericValue GVArgc; 344 GVArgc.IntVal = APInt(32, argv.size()); 345 346 // Check main() type 347 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 348 const FunctionType *FTy = Fn->getFunctionType(); 349 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 350 switch (NumArgs) { 351 case 3: 352 if (FTy->getParamType(2) != PPInt8Ty) { 353 llvm_report_error("Invalid type for third argument of main() supplied"); 354 } 355 // FALLS THROUGH 356 case 2: 357 if (FTy->getParamType(1) != PPInt8Ty) { 358 llvm_report_error("Invalid type for second argument of main() supplied"); 359 } 360 // FALLS THROUGH 361 case 1: 362 if (!FTy->getParamType(0)->isIntegerTy(32)) { 363 llvm_report_error("Invalid type for first argument of main() supplied"); 364 } 365 // FALLS THROUGH 366 case 0: 367 if (!FTy->getReturnType()->isIntegerTy() && 368 !FTy->getReturnType()->isVoidTy()) { 369 llvm_report_error("Invalid return type of main() supplied"); 370 } 371 break; 372 default: 373 llvm_report_error("Invalid number of arguments of main() supplied"); 374 } 375 376 ArgvArray CArgv; 377 ArgvArray CEnv; 378 if (NumArgs) { 379 GVArgs.push_back(GVArgc); // Arg #0 = argc. 380 if (NumArgs > 1) { 381 // Arg #1 = argv. 382 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 383 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 384 "argv[0] was null after CreateArgv"); 385 if (NumArgs > 2) { 386 std::vector<std::string> EnvVars; 387 for (unsigned i = 0; envp[i]; ++i) 388 EnvVars.push_back(envp[i]); 389 // Arg #2 = envp. 390 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 391 } 392 } 393 } 394 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 395 } 396 397 /// If possible, create a JIT, unless the caller specifically requests an 398 /// Interpreter or there's an error. If even an Interpreter cannot be created, 399 /// NULL is returned. 400 /// 401 ExecutionEngine *ExecutionEngine::create(Module *M, 402 bool ForceInterpreter, 403 std::string *ErrorStr, 404 CodeGenOpt::Level OptLevel, 405 bool GVsWithCode) { 406 return EngineBuilder(M) 407 .setEngineKind(ForceInterpreter 408 ? EngineKind::Interpreter 409 : EngineKind::JIT) 410 .setErrorStr(ErrorStr) 411 .setOptLevel(OptLevel) 412 .setAllocateGVsWithCode(GVsWithCode) 413 .create(); 414 } 415 416 ExecutionEngine *EngineBuilder::create() { 417 // Make sure we can resolve symbols in the program as well. The zero arg 418 // to the function tells DynamicLibrary to load the program, not a library. 419 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 420 return 0; 421 422 // If the user specified a memory manager but didn't specify which engine to 423 // create, we assume they only want the JIT, and we fail if they only want 424 // the interpreter. 425 if (JMM) { 426 if (WhichEngine & EngineKind::JIT) 427 WhichEngine = EngineKind::JIT; 428 else { 429 if (ErrorStr) 430 *ErrorStr = "Cannot create an interpreter with a memory manager."; 431 return 0; 432 } 433 } 434 435 // Unless the interpreter was explicitly selected or the JIT is not linked, 436 // try making a JIT. 437 if (WhichEngine & EngineKind::JIT) { 438 if (ExecutionEngine::JITCtor) { 439 ExecutionEngine *EE = 440 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 441 AllocateGVsWithCode, CMModel, 442 MArch, MCPU, MAttrs); 443 if (EE) return EE; 444 } 445 } 446 447 // If we can't make a JIT and we didn't request one specifically, try making 448 // an interpreter instead. 449 if (WhichEngine & EngineKind::Interpreter) { 450 if (ExecutionEngine::InterpCtor) 451 return ExecutionEngine::InterpCtor(M, ErrorStr); 452 if (ErrorStr) 453 *ErrorStr = "Interpreter has not been linked in."; 454 return 0; 455 } 456 457 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 458 if (ErrorStr) 459 *ErrorStr = "JIT has not been linked in."; 460 } 461 return 0; 462 } 463 464 /// getPointerToGlobal - This returns the address of the specified global 465 /// value. This may involve code generation if it's a function. 466 /// 467 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 468 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 469 return getPointerToFunction(F); 470 471 MutexGuard locked(lock); 472 void *p = EEState.getGlobalAddressMap(locked)[GV]; 473 if (p) 474 return p; 475 476 // Global variable might have been added since interpreter started. 477 if (GlobalVariable *GVar = 478 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 479 EmitGlobalVariable(GVar); 480 else 481 llvm_unreachable("Global hasn't had an address allocated yet!"); 482 return EEState.getGlobalAddressMap(locked)[GV]; 483 } 484 485 /// This function converts a Constant* into a GenericValue. The interesting 486 /// part is if C is a ConstantExpr. 487 /// @brief Get a GenericValue for a Constant* 488 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 489 // If its undefined, return the garbage. 490 if (isa<UndefValue>(C)) { 491 GenericValue Result; 492 switch (C->getType()->getTypeID()) { 493 case Type::IntegerTyID: 494 case Type::X86_FP80TyID: 495 case Type::FP128TyID: 496 case Type::PPC_FP128TyID: 497 // Although the value is undefined, we still have to construct an APInt 498 // with the correct bit width. 499 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 500 break; 501 default: 502 break; 503 } 504 return Result; 505 } 506 507 // If the value is a ConstantExpr 508 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 509 Constant *Op0 = CE->getOperand(0); 510 switch (CE->getOpcode()) { 511 case Instruction::GetElementPtr: { 512 // Compute the index 513 GenericValue Result = getConstantValue(Op0); 514 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 515 uint64_t Offset = 516 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 517 518 char* tmp = (char*) Result.PointerVal; 519 Result = PTOGV(tmp + Offset); 520 return Result; 521 } 522 case Instruction::Trunc: { 523 GenericValue GV = getConstantValue(Op0); 524 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 525 GV.IntVal = GV.IntVal.trunc(BitWidth); 526 return GV; 527 } 528 case Instruction::ZExt: { 529 GenericValue GV = getConstantValue(Op0); 530 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 531 GV.IntVal = GV.IntVal.zext(BitWidth); 532 return GV; 533 } 534 case Instruction::SExt: { 535 GenericValue GV = getConstantValue(Op0); 536 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 537 GV.IntVal = GV.IntVal.sext(BitWidth); 538 return GV; 539 } 540 case Instruction::FPTrunc: { 541 // FIXME long double 542 GenericValue GV = getConstantValue(Op0); 543 GV.FloatVal = float(GV.DoubleVal); 544 return GV; 545 } 546 case Instruction::FPExt:{ 547 // FIXME long double 548 GenericValue GV = getConstantValue(Op0); 549 GV.DoubleVal = double(GV.FloatVal); 550 return GV; 551 } 552 case Instruction::UIToFP: { 553 GenericValue GV = getConstantValue(Op0); 554 if (CE->getType()->isFloatTy()) 555 GV.FloatVal = float(GV.IntVal.roundToDouble()); 556 else if (CE->getType()->isDoubleTy()) 557 GV.DoubleVal = GV.IntVal.roundToDouble(); 558 else if (CE->getType()->isX86_FP80Ty()) { 559 const uint64_t zero[] = {0, 0}; 560 APFloat apf = APFloat(APInt(80, 2, zero)); 561 (void)apf.convertFromAPInt(GV.IntVal, 562 false, 563 APFloat::rmNearestTiesToEven); 564 GV.IntVal = apf.bitcastToAPInt(); 565 } 566 return GV; 567 } 568 case Instruction::SIToFP: { 569 GenericValue GV = getConstantValue(Op0); 570 if (CE->getType()->isFloatTy()) 571 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 572 else if (CE->getType()->isDoubleTy()) 573 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 574 else if (CE->getType()->isX86_FP80Ty()) { 575 const uint64_t zero[] = { 0, 0}; 576 APFloat apf = APFloat(APInt(80, 2, zero)); 577 (void)apf.convertFromAPInt(GV.IntVal, 578 true, 579 APFloat::rmNearestTiesToEven); 580 GV.IntVal = apf.bitcastToAPInt(); 581 } 582 return GV; 583 } 584 case Instruction::FPToUI: // double->APInt conversion handles sign 585 case Instruction::FPToSI: { 586 GenericValue GV = getConstantValue(Op0); 587 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 588 if (Op0->getType()->isFloatTy()) 589 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 590 else if (Op0->getType()->isDoubleTy()) 591 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 592 else if (Op0->getType()->isX86_FP80Ty()) { 593 APFloat apf = APFloat(GV.IntVal); 594 uint64_t v; 595 bool ignored; 596 (void)apf.convertToInteger(&v, BitWidth, 597 CE->getOpcode()==Instruction::FPToSI, 598 APFloat::rmTowardZero, &ignored); 599 GV.IntVal = v; // endian? 600 } 601 return GV; 602 } 603 case Instruction::PtrToInt: { 604 GenericValue GV = getConstantValue(Op0); 605 uint32_t PtrWidth = TD->getPointerSizeInBits(); 606 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 607 return GV; 608 } 609 case Instruction::IntToPtr: { 610 GenericValue GV = getConstantValue(Op0); 611 uint32_t PtrWidth = TD->getPointerSizeInBits(); 612 if (PtrWidth != GV.IntVal.getBitWidth()) 613 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 614 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 615 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 616 return GV; 617 } 618 case Instruction::BitCast: { 619 GenericValue GV = getConstantValue(Op0); 620 const Type* DestTy = CE->getType(); 621 switch (Op0->getType()->getTypeID()) { 622 default: llvm_unreachable("Invalid bitcast operand"); 623 case Type::IntegerTyID: 624 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 625 if (DestTy->isFloatTy()) 626 GV.FloatVal = GV.IntVal.bitsToFloat(); 627 else if (DestTy->isDoubleTy()) 628 GV.DoubleVal = GV.IntVal.bitsToDouble(); 629 break; 630 case Type::FloatTyID: 631 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 632 GV.IntVal.floatToBits(GV.FloatVal); 633 break; 634 case Type::DoubleTyID: 635 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 636 GV.IntVal.doubleToBits(GV.DoubleVal); 637 break; 638 case Type::PointerTyID: 639 assert(DestTy->isPointerTy() && "Invalid bitcast"); 640 break; // getConstantValue(Op0) above already converted it 641 } 642 return GV; 643 } 644 case Instruction::Add: 645 case Instruction::FAdd: 646 case Instruction::Sub: 647 case Instruction::FSub: 648 case Instruction::Mul: 649 case Instruction::FMul: 650 case Instruction::UDiv: 651 case Instruction::SDiv: 652 case Instruction::URem: 653 case Instruction::SRem: 654 case Instruction::And: 655 case Instruction::Or: 656 case Instruction::Xor: { 657 GenericValue LHS = getConstantValue(Op0); 658 GenericValue RHS = getConstantValue(CE->getOperand(1)); 659 GenericValue GV; 660 switch (CE->getOperand(0)->getType()->getTypeID()) { 661 default: llvm_unreachable("Bad add type!"); 662 case Type::IntegerTyID: 663 switch (CE->getOpcode()) { 664 default: llvm_unreachable("Invalid integer opcode"); 665 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 666 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 667 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 668 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 669 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 670 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 671 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 672 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 673 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 674 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 675 } 676 break; 677 case Type::FloatTyID: 678 switch (CE->getOpcode()) { 679 default: llvm_unreachable("Invalid float opcode"); 680 case Instruction::FAdd: 681 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 682 case Instruction::FSub: 683 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 684 case Instruction::FMul: 685 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 686 case Instruction::FDiv: 687 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 688 case Instruction::FRem: 689 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 690 } 691 break; 692 case Type::DoubleTyID: 693 switch (CE->getOpcode()) { 694 default: llvm_unreachable("Invalid double opcode"); 695 case Instruction::FAdd: 696 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 697 case Instruction::FSub: 698 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 699 case Instruction::FMul: 700 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 701 case Instruction::FDiv: 702 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 703 case Instruction::FRem: 704 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 705 } 706 break; 707 case Type::X86_FP80TyID: 708 case Type::PPC_FP128TyID: 709 case Type::FP128TyID: { 710 APFloat apfLHS = APFloat(LHS.IntVal); 711 switch (CE->getOpcode()) { 712 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 713 case Instruction::FAdd: 714 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 715 GV.IntVal = apfLHS.bitcastToAPInt(); 716 break; 717 case Instruction::FSub: 718 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 719 GV.IntVal = apfLHS.bitcastToAPInt(); 720 break; 721 case Instruction::FMul: 722 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 723 GV.IntVal = apfLHS.bitcastToAPInt(); 724 break; 725 case Instruction::FDiv: 726 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 727 GV.IntVal = apfLHS.bitcastToAPInt(); 728 break; 729 case Instruction::FRem: 730 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 731 GV.IntVal = apfLHS.bitcastToAPInt(); 732 break; 733 } 734 } 735 break; 736 } 737 return GV; 738 } 739 default: 740 break; 741 } 742 std::string msg; 743 raw_string_ostream Msg(msg); 744 Msg << "ConstantExpr not handled: " << *CE; 745 llvm_report_error(Msg.str()); 746 } 747 748 GenericValue Result; 749 switch (C->getType()->getTypeID()) { 750 case Type::FloatTyID: 751 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 752 break; 753 case Type::DoubleTyID: 754 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 755 break; 756 case Type::X86_FP80TyID: 757 case Type::FP128TyID: 758 case Type::PPC_FP128TyID: 759 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 760 break; 761 case Type::IntegerTyID: 762 Result.IntVal = cast<ConstantInt>(C)->getValue(); 763 break; 764 case Type::PointerTyID: 765 if (isa<ConstantPointerNull>(C)) 766 Result.PointerVal = 0; 767 else if (const Function *F = dyn_cast<Function>(C)) 768 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 769 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 770 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 771 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 772 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 773 BA->getBasicBlock()))); 774 else 775 llvm_unreachable("Unknown constant pointer type!"); 776 break; 777 default: 778 std::string msg; 779 raw_string_ostream Msg(msg); 780 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 781 llvm_report_error(Msg.str()); 782 } 783 return Result; 784 } 785 786 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 787 /// with the integer held in IntVal. 788 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 789 unsigned StoreBytes) { 790 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 791 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 792 793 if (sys::isLittleEndianHost()) 794 // Little-endian host - the source is ordered from LSB to MSB. Order the 795 // destination from LSB to MSB: Do a straight copy. 796 memcpy(Dst, Src, StoreBytes); 797 else { 798 // Big-endian host - the source is an array of 64 bit words ordered from 799 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 800 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 801 while (StoreBytes > sizeof(uint64_t)) { 802 StoreBytes -= sizeof(uint64_t); 803 // May not be aligned so use memcpy. 804 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 805 Src += sizeof(uint64_t); 806 } 807 808 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 809 } 810 } 811 812 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 813 /// is the address of the memory at which to store Val, cast to GenericValue *. 814 /// It is not a pointer to a GenericValue containing the address at which to 815 /// store Val. 816 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 817 GenericValue *Ptr, const Type *Ty) { 818 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 819 820 switch (Ty->getTypeID()) { 821 case Type::IntegerTyID: 822 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 823 break; 824 case Type::FloatTyID: 825 *((float*)Ptr) = Val.FloatVal; 826 break; 827 case Type::DoubleTyID: 828 *((double*)Ptr) = Val.DoubleVal; 829 break; 830 case Type::X86_FP80TyID: 831 memcpy(Ptr, Val.IntVal.getRawData(), 10); 832 break; 833 case Type::PointerTyID: 834 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 835 if (StoreBytes != sizeof(PointerTy)) 836 memset(Ptr, 0, StoreBytes); 837 838 *((PointerTy*)Ptr) = Val.PointerVal; 839 break; 840 default: 841 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 842 } 843 844 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 845 // Host and target are different endian - reverse the stored bytes. 846 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 847 } 848 849 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 850 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 851 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 852 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 853 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 854 855 if (sys::isLittleEndianHost()) 856 // Little-endian host - the destination must be ordered from LSB to MSB. 857 // The source is ordered from LSB to MSB: Do a straight copy. 858 memcpy(Dst, Src, LoadBytes); 859 else { 860 // Big-endian - the destination is an array of 64 bit words ordered from 861 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 862 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 863 // a word. 864 while (LoadBytes > sizeof(uint64_t)) { 865 LoadBytes -= sizeof(uint64_t); 866 // May not be aligned so use memcpy. 867 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 868 Dst += sizeof(uint64_t); 869 } 870 871 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 872 } 873 } 874 875 /// FIXME: document 876 /// 877 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 878 GenericValue *Ptr, 879 const Type *Ty) { 880 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 881 882 switch (Ty->getTypeID()) { 883 case Type::IntegerTyID: 884 // An APInt with all words initially zero. 885 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 886 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 887 break; 888 case Type::FloatTyID: 889 Result.FloatVal = *((float*)Ptr); 890 break; 891 case Type::DoubleTyID: 892 Result.DoubleVal = *((double*)Ptr); 893 break; 894 case Type::PointerTyID: 895 Result.PointerVal = *((PointerTy*)Ptr); 896 break; 897 case Type::X86_FP80TyID: { 898 // This is endian dependent, but it will only work on x86 anyway. 899 // FIXME: Will not trap if loading a signaling NaN. 900 uint64_t y[2]; 901 memcpy(y, Ptr, 10); 902 Result.IntVal = APInt(80, 2, y); 903 break; 904 } 905 default: 906 std::string msg; 907 raw_string_ostream Msg(msg); 908 Msg << "Cannot load value of type " << *Ty << "!"; 909 llvm_report_error(Msg.str()); 910 } 911 } 912 913 // InitializeMemory - Recursive function to apply a Constant value into the 914 // specified memory location... 915 // 916 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 917 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 918 DEBUG(Init->dump()); 919 if (isa<UndefValue>(Init)) { 920 return; 921 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 922 unsigned ElementSize = 923 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 924 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 925 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 926 return; 927 } else if (isa<ConstantAggregateZero>(Init)) { 928 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 929 return; 930 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 931 unsigned ElementSize = 932 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 933 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 934 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 935 return; 936 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 937 const StructLayout *SL = 938 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 939 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 940 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 941 return; 942 } else if (Init->getType()->isFirstClassType()) { 943 GenericValue Val = getConstantValue(Init); 944 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 945 return; 946 } 947 948 dbgs() << "Bad Type: " << *Init->getType() << "\n"; 949 llvm_unreachable("Unknown constant type to initialize memory with!"); 950 } 951 952 /// EmitGlobals - Emit all of the global variables to memory, storing their 953 /// addresses into GlobalAddress. This must make sure to copy the contents of 954 /// their initializers into the memory. 955 /// 956 void ExecutionEngine::emitGlobals() { 957 958 // Loop over all of the global variables in the program, allocating the memory 959 // to hold them. If there is more than one module, do a prepass over globals 960 // to figure out how the different modules should link together. 961 // 962 std::map<std::pair<std::string, const Type*>, 963 const GlobalValue*> LinkedGlobalsMap; 964 965 if (Modules.size() != 1) { 966 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 967 Module &M = *Modules[m]; 968 for (Module::const_global_iterator I = M.global_begin(), 969 E = M.global_end(); I != E; ++I) { 970 const GlobalValue *GV = I; 971 if (GV->hasLocalLinkage() || GV->isDeclaration() || 972 GV->hasAppendingLinkage() || !GV->hasName()) 973 continue;// Ignore external globals and globals with internal linkage. 974 975 const GlobalValue *&GVEntry = 976 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 977 978 // If this is the first time we've seen this global, it is the canonical 979 // version. 980 if (!GVEntry) { 981 GVEntry = GV; 982 continue; 983 } 984 985 // If the existing global is strong, never replace it. 986 if (GVEntry->hasExternalLinkage() || 987 GVEntry->hasDLLImportLinkage() || 988 GVEntry->hasDLLExportLinkage()) 989 continue; 990 991 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 992 // symbol. FIXME is this right for common? 993 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 994 GVEntry = GV; 995 } 996 } 997 } 998 999 std::vector<const GlobalValue*> NonCanonicalGlobals; 1000 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1001 Module &M = *Modules[m]; 1002 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1003 I != E; ++I) { 1004 // In the multi-module case, see what this global maps to. 1005 if (!LinkedGlobalsMap.empty()) { 1006 if (const GlobalValue *GVEntry = 1007 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1008 // If something else is the canonical global, ignore this one. 1009 if (GVEntry != &*I) { 1010 NonCanonicalGlobals.push_back(I); 1011 continue; 1012 } 1013 } 1014 } 1015 1016 if (!I->isDeclaration()) { 1017 addGlobalMapping(I, getMemoryForGV(I)); 1018 } else { 1019 // External variable reference. Try to use the dynamic loader to 1020 // get a pointer to it. 1021 if (void *SymAddr = 1022 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1023 addGlobalMapping(I, SymAddr); 1024 else { 1025 llvm_report_error("Could not resolve external global address: " 1026 +I->getName()); 1027 } 1028 } 1029 } 1030 1031 // If there are multiple modules, map the non-canonical globals to their 1032 // canonical location. 1033 if (!NonCanonicalGlobals.empty()) { 1034 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1035 const GlobalValue *GV = NonCanonicalGlobals[i]; 1036 const GlobalValue *CGV = 1037 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1038 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1039 assert(Ptr && "Canonical global wasn't codegen'd!"); 1040 addGlobalMapping(GV, Ptr); 1041 } 1042 } 1043 1044 // Now that all of the globals are set up in memory, loop through them all 1045 // and initialize their contents. 1046 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1047 I != E; ++I) { 1048 if (!I->isDeclaration()) { 1049 if (!LinkedGlobalsMap.empty()) { 1050 if (const GlobalValue *GVEntry = 1051 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1052 if (GVEntry != &*I) // Not the canonical variable. 1053 continue; 1054 } 1055 EmitGlobalVariable(I); 1056 } 1057 } 1058 } 1059 } 1060 1061 // EmitGlobalVariable - This method emits the specified global variable to the 1062 // address specified in GlobalAddresses, or allocates new memory if it's not 1063 // already in the map. 1064 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1065 void *GA = getPointerToGlobalIfAvailable(GV); 1066 1067 if (GA == 0) { 1068 // If it's not already specified, allocate memory for the global. 1069 GA = getMemoryForGV(GV); 1070 addGlobalMapping(GV, GA); 1071 } 1072 1073 // Don't initialize if it's thread local, let the client do it. 1074 if (!GV->isThreadLocal()) 1075 InitializeMemory(GV->getInitializer(), GA); 1076 1077 const Type *ElTy = GV->getType()->getElementType(); 1078 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1079 NumInitBytes += (unsigned)GVSize; 1080 ++NumGlobals; 1081 } 1082 1083 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1084 : EE(EE), GlobalAddressMap(this) { 1085 } 1086 1087 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1088 ExecutionEngineState *EES) { 1089 return &EES->EE.lock; 1090 } 1091 void ExecutionEngineState::AddressMapConfig::onDelete( 1092 ExecutionEngineState *EES, const GlobalValue *Old) { 1093 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1094 EES->GlobalAddressReverseMap.erase(OldVal); 1095 } 1096 1097 void ExecutionEngineState::AddressMapConfig::onRAUW( 1098 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1099 assert(false && "The ExecutionEngine doesn't know how to handle a" 1100 " RAUW on a value it has a global mapping for."); 1101 } 1102