1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MutexGuard.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/DataLayout.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cmath> 36 #include <cstring> 37 using namespace llvm; 38 39 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 40 STATISTIC(NumGlobals , "Number of global vars initialized"); 41 42 ExecutionEngine *(*ExecutionEngine::JITCtor)( 43 Module *M, 44 std::string *ErrorStr, 45 JITMemoryManager *JMM, 46 bool GVsWithCode, 47 TargetMachine *TM) = 0; 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 Module *M, 50 std::string *ErrorStr, 51 JITMemoryManager *JMM, 52 bool GVsWithCode, 53 TargetMachine *TM) = 0; 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 55 std::string *ErrorStr) = 0; 56 57 ExecutionEngine::ExecutionEngine(Module *M) 58 : EEState(*this), 59 LazyFunctionCreator(0), 60 ExceptionTableRegister(0), 61 ExceptionTableDeregister(0) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 Modules.push_back(M); 66 assert(M && "Module is null?"); 67 } 68 69 ExecutionEngine::~ExecutionEngine() { 70 clearAllGlobalMappings(); 71 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 72 delete Modules[i]; 73 } 74 75 void ExecutionEngine::DeregisterAllTables() { 76 if (ExceptionTableDeregister) { 77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 79 for (; it != ite; ++it) 80 ExceptionTableDeregister(it->second); 81 AllExceptionTables.clear(); 82 } 83 } 84 85 namespace { 86 /// \brief Helper class which uses a value handler to automatically deletes the 87 /// memory block when the GlobalVariable is destroyed. 88 class GVMemoryBlock : public CallbackVH { 89 GVMemoryBlock(const GlobalVariable *GV) 90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 91 92 public: 93 /// \brief Returns the address the GlobalVariable should be written into. The 94 /// GVMemoryBlock object prefixes that. 95 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 96 Type *ElTy = GV->getType()->getElementType(); 97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 98 void *RawMemory = ::operator new( 99 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 100 TD.getPreferredAlignment(GV)) 101 + GVSize); 102 new(RawMemory) GVMemoryBlock(GV); 103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 104 } 105 106 virtual void deleted() { 107 // We allocated with operator new and with some extra memory hanging off the 108 // end, so don't just delete this. I'm not sure if this is actually 109 // required. 110 this->~GVMemoryBlock(); 111 ::operator delete(this); 112 } 113 }; 114 } // anonymous namespace 115 116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 117 return GVMemoryBlock::Create(GV, *getDataLayout()); 118 } 119 120 bool ExecutionEngine::removeModule(Module *M) { 121 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 122 E = Modules.end(); I != E; ++I) { 123 Module *Found = *I; 124 if (Found == M) { 125 Modules.erase(I); 126 clearGlobalMappingsFromModule(M); 127 return true; 128 } 129 } 130 return false; 131 } 132 133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 135 if (Function *F = Modules[i]->getFunction(FnName)) 136 return F; 137 } 138 return 0; 139 } 140 141 142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 143 const GlobalValue *ToUnmap) { 144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 145 void *OldVal; 146 147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 148 // GlobalAddressMap. 149 if (I == GlobalAddressMap.end()) 150 OldVal = 0; 151 else { 152 OldVal = I->second; 153 GlobalAddressMap.erase(I); 154 } 155 156 GlobalAddressReverseMap.erase(OldVal); 157 return OldVal; 158 } 159 160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 161 MutexGuard locked(lock); 162 163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 164 << "\' to [" << Addr << "]\n";); 165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 167 CurVal = Addr; 168 169 // If we are using the reverse mapping, add it too. 170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 171 AssertingVH<const GlobalValue> &V = 172 EEState.getGlobalAddressReverseMap(locked)[Addr]; 173 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 174 V = GV; 175 } 176 } 177 178 void ExecutionEngine::clearAllGlobalMappings() { 179 MutexGuard locked(lock); 180 181 EEState.getGlobalAddressMap(locked).clear(); 182 EEState.getGlobalAddressReverseMap(locked).clear(); 183 } 184 185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 186 MutexGuard locked(lock); 187 188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 189 EEState.RemoveMapping(locked, FI); 190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 191 GI != GE; ++GI) 192 EEState.RemoveMapping(locked, GI); 193 } 194 195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 196 MutexGuard locked(lock); 197 198 ExecutionEngineState::GlobalAddressMapTy &Map = 199 EEState.getGlobalAddressMap(locked); 200 201 // Deleting from the mapping? 202 if (Addr == 0) 203 return EEState.RemoveMapping(locked, GV); 204 205 void *&CurVal = Map[GV]; 206 void *OldVal = CurVal; 207 208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too. 213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 214 AssertingVH<const GlobalValue> &V = 215 EEState.getGlobalAddressReverseMap(locked)[Addr]; 216 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 217 V = GV; 218 } 219 return OldVal; 220 } 221 222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 223 MutexGuard locked(lock); 224 225 ExecutionEngineState::GlobalAddressMapTy::iterator I = 226 EEState.getGlobalAddressMap(locked).find(GV); 227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 228 } 229 230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 231 MutexGuard locked(lock); 232 233 // If we haven't computed the reverse mapping yet, do so first. 234 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 235 for (ExecutionEngineState::GlobalAddressMapTy::iterator 236 I = EEState.getGlobalAddressMap(locked).begin(), 237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 239 I->second, I->first)); 240 } 241 242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 243 EEState.getGlobalAddressReverseMap(locked).find(Addr); 244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 245 } 246 247 namespace { 248 class ArgvArray { 249 char *Array; 250 std::vector<char*> Values; 251 public: 252 ArgvArray() : Array(NULL) {} 253 ~ArgvArray() { clear(); } 254 void clear() { 255 delete[] Array; 256 Array = NULL; 257 for (size_t I = 0, E = Values.size(); I != E; ++I) { 258 delete[] Values[I]; 259 } 260 Values.clear(); 261 } 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266 }; 267 } // anonymous namespace 268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 clear(); // Free the old contents. 271 unsigned PtrSize = EE->getDataLayout()->getPointerSize(0); 272 Array = new char[(InputArgv.size()+1)*PtrSize]; 273 274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 275 Type *SBytePtr = Type::getInt8PtrTy(C); 276 277 for (unsigned i = 0; i != InputArgv.size(); ++i) { 278 unsigned Size = InputArgv[i].size()+1; 279 char *Dest = new char[Size]; 280 Values.push_back(Dest); 281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 282 283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 284 Dest[Size-1] = 0; 285 286 // Endian safe: Array[i] = (PointerTy)Dest; 287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 288 SBytePtr); 289 } 290 291 // Null terminate it 292 EE->StoreValueToMemory(PTOGV(0), 293 (GenericValue*)(Array+InputArgv.size()*PtrSize), 294 SBytePtr); 295 return Array; 296 } 297 298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 299 bool isDtors) { 300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 301 GlobalVariable *GV = module->getNamedGlobal(Name); 302 303 // If this global has internal linkage, or if it has a use, then it must be 304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 305 // this is the case, don't execute any of the global ctors, __main will do 306 // it. 307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 308 309 // Should be an array of '{ i32, void ()* }' structs. The first value is 310 // the init priority, which we ignore. 311 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 312 if (InitList == 0) 313 return; 314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 315 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 316 if (CS == 0) continue; 317 318 Constant *FP = CS->getOperand(1); 319 if (FP->isNullValue()) 320 continue; // Found a sentinal value, ignore. 321 322 // Strip off constant expression casts. 323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 324 if (CE->isCast()) 325 FP = CE->getOperand(0); 326 327 // Execute the ctor/dtor function! 328 if (Function *F = dyn_cast<Function>(FP)) 329 runFunction(F, std::vector<GenericValue>()); 330 331 // FIXME: It is marginally lame that we just do nothing here if we see an 332 // entry we don't recognize. It might not be unreasonable for the verifier 333 // to not even allow this and just assert here. 334 } 335 } 336 337 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 338 // Execute global ctors/dtors for each module in the program. 339 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 340 runStaticConstructorsDestructors(Modules[i], isDtors); 341 } 342 343 #ifndef NDEBUG 344 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 345 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 346 unsigned PtrSize = EE->getDataLayout()->getPointerSize(0); 347 for (unsigned i = 0; i < PtrSize; ++i) 348 if (*(i + (uint8_t*)Loc)) 349 return false; 350 return true; 351 } 352 #endif 353 354 int ExecutionEngine::runFunctionAsMain(Function *Fn, 355 const std::vector<std::string> &argv, 356 const char * const * envp) { 357 std::vector<GenericValue> GVArgs; 358 GenericValue GVArgc; 359 GVArgc.IntVal = APInt(32, argv.size()); 360 361 // Check main() type 362 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 363 FunctionType *FTy = Fn->getFunctionType(); 364 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 365 366 // Check the argument types. 367 if (NumArgs > 3) 368 report_fatal_error("Invalid number of arguments of main() supplied"); 369 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 370 report_fatal_error("Invalid type for third argument of main() supplied"); 371 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 372 report_fatal_error("Invalid type for second argument of main() supplied"); 373 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 374 report_fatal_error("Invalid type for first argument of main() supplied"); 375 if (!FTy->getReturnType()->isIntegerTy() && 376 !FTy->getReturnType()->isVoidTy()) 377 report_fatal_error("Invalid return type of main() supplied"); 378 379 ArgvArray CArgv; 380 ArgvArray CEnv; 381 if (NumArgs) { 382 GVArgs.push_back(GVArgc); // Arg #0 = argc. 383 if (NumArgs > 1) { 384 // Arg #1 = argv. 385 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 386 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 387 "argv[0] was null after CreateArgv"); 388 if (NumArgs > 2) { 389 std::vector<std::string> EnvVars; 390 for (unsigned i = 0; envp[i]; ++i) 391 EnvVars.push_back(envp[i]); 392 // Arg #2 = envp. 393 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 394 } 395 } 396 } 397 398 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 399 } 400 401 ExecutionEngine *ExecutionEngine::create(Module *M, 402 bool ForceInterpreter, 403 std::string *ErrorStr, 404 CodeGenOpt::Level OptLevel, 405 bool GVsWithCode) { 406 EngineBuilder EB = EngineBuilder(M) 407 .setEngineKind(ForceInterpreter 408 ? EngineKind::Interpreter 409 : EngineKind::JIT) 410 .setErrorStr(ErrorStr) 411 .setOptLevel(OptLevel) 412 .setAllocateGVsWithCode(GVsWithCode); 413 414 return EB.create(); 415 } 416 417 /// createJIT - This is the factory method for creating a JIT for the current 418 /// machine, it does not fall back to the interpreter. This takes ownership 419 /// of the module. 420 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 421 std::string *ErrorStr, 422 JITMemoryManager *JMM, 423 CodeGenOpt::Level OL, 424 bool GVsWithCode, 425 Reloc::Model RM, 426 CodeModel::Model CMM) { 427 if (ExecutionEngine::JITCtor == 0) { 428 if (ErrorStr) 429 *ErrorStr = "JIT has not been linked in."; 430 return 0; 431 } 432 433 // Use the defaults for extra parameters. Users can use EngineBuilder to 434 // set them. 435 EngineBuilder EB(M); 436 EB.setEngineKind(EngineKind::JIT); 437 EB.setErrorStr(ErrorStr); 438 EB.setRelocationModel(RM); 439 EB.setCodeModel(CMM); 440 EB.setAllocateGVsWithCode(GVsWithCode); 441 EB.setOptLevel(OL); 442 EB.setJITMemoryManager(JMM); 443 444 // TODO: permit custom TargetOptions here 445 TargetMachine *TM = EB.selectTarget(); 446 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 447 448 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 449 } 450 451 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 452 OwningPtr<TargetMachine> TheTM(TM); // Take ownership. 453 454 // Make sure we can resolve symbols in the program as well. The zero arg 455 // to the function tells DynamicLibrary to load the program, not a library. 456 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 457 return 0; 458 459 // If the user specified a memory manager but didn't specify which engine to 460 // create, we assume they only want the JIT, and we fail if they only want 461 // the interpreter. 462 if (JMM) { 463 if (WhichEngine & EngineKind::JIT) 464 WhichEngine = EngineKind::JIT; 465 else { 466 if (ErrorStr) 467 *ErrorStr = "Cannot create an interpreter with a memory manager."; 468 return 0; 469 } 470 } 471 472 // Unless the interpreter was explicitly selected or the JIT is not linked, 473 // try making a JIT. 474 if ((WhichEngine & EngineKind::JIT) && TheTM) { 475 Triple TT(M->getTargetTriple()); 476 if (!TM->getTarget().hasJIT()) { 477 errs() << "WARNING: This target JIT is not designed for the host" 478 << " you are running. If bad things happen, please choose" 479 << " a different -march switch.\n"; 480 } 481 482 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 483 ExecutionEngine *EE = 484 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, 485 AllocateGVsWithCode, TheTM.take()); 486 if (EE) return EE; 487 } else if (ExecutionEngine::JITCtor) { 488 ExecutionEngine *EE = 489 ExecutionEngine::JITCtor(M, ErrorStr, JMM, 490 AllocateGVsWithCode, TheTM.take()); 491 if (EE) return EE; 492 } 493 } 494 495 // If we can't make a JIT and we didn't request one specifically, try making 496 // an interpreter instead. 497 if (WhichEngine & EngineKind::Interpreter) { 498 if (ExecutionEngine::InterpCtor) 499 return ExecutionEngine::InterpCtor(M, ErrorStr); 500 if (ErrorStr) 501 *ErrorStr = "Interpreter has not been linked in."; 502 return 0; 503 } 504 505 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 && 506 ExecutionEngine::MCJITCtor == 0) { 507 if (ErrorStr) 508 *ErrorStr = "JIT has not been linked in."; 509 } 510 511 return 0; 512 } 513 514 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 515 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 516 return getPointerToFunction(F); 517 518 MutexGuard locked(lock); 519 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 520 return P; 521 522 // Global variable might have been added since interpreter started. 523 if (GlobalVariable *GVar = 524 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 525 EmitGlobalVariable(GVar); 526 else 527 llvm_unreachable("Global hasn't had an address allocated yet!"); 528 529 return EEState.getGlobalAddressMap(locked)[GV]; 530 } 531 532 /// \brief Converts a Constant* into a GenericValue, including handling of 533 /// ConstantExpr values. 534 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 535 // If its undefined, return the garbage. 536 if (isa<UndefValue>(C)) { 537 GenericValue Result; 538 switch (C->getType()->getTypeID()) { 539 case Type::IntegerTyID: 540 case Type::X86_FP80TyID: 541 case Type::FP128TyID: 542 case Type::PPC_FP128TyID: 543 // Although the value is undefined, we still have to construct an APInt 544 // with the correct bit width. 545 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 546 break; 547 default: 548 break; 549 } 550 return Result; 551 } 552 553 // Otherwise, if the value is a ConstantExpr... 554 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 555 Constant *Op0 = CE->getOperand(0); 556 switch (CE->getOpcode()) { 557 case Instruction::GetElementPtr: { 558 // Compute the index 559 GenericValue Result = getConstantValue(Op0); 560 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 561 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices); 562 563 char* tmp = (char*) Result.PointerVal; 564 Result = PTOGV(tmp + Offset); 565 return Result; 566 } 567 case Instruction::Trunc: { 568 GenericValue GV = getConstantValue(Op0); 569 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 570 GV.IntVal = GV.IntVal.trunc(BitWidth); 571 return GV; 572 } 573 case Instruction::ZExt: { 574 GenericValue GV = getConstantValue(Op0); 575 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 576 GV.IntVal = GV.IntVal.zext(BitWidth); 577 return GV; 578 } 579 case Instruction::SExt: { 580 GenericValue GV = getConstantValue(Op0); 581 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 582 GV.IntVal = GV.IntVal.sext(BitWidth); 583 return GV; 584 } 585 case Instruction::FPTrunc: { 586 // FIXME long double 587 GenericValue GV = getConstantValue(Op0); 588 GV.FloatVal = float(GV.DoubleVal); 589 return GV; 590 } 591 case Instruction::FPExt:{ 592 // FIXME long double 593 GenericValue GV = getConstantValue(Op0); 594 GV.DoubleVal = double(GV.FloatVal); 595 return GV; 596 } 597 case Instruction::UIToFP: { 598 GenericValue GV = getConstantValue(Op0); 599 if (CE->getType()->isFloatTy()) 600 GV.FloatVal = float(GV.IntVal.roundToDouble()); 601 else if (CE->getType()->isDoubleTy()) 602 GV.DoubleVal = GV.IntVal.roundToDouble(); 603 else if (CE->getType()->isX86_FP80Ty()) { 604 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 605 (void)apf.convertFromAPInt(GV.IntVal, 606 false, 607 APFloat::rmNearestTiesToEven); 608 GV.IntVal = apf.bitcastToAPInt(); 609 } 610 return GV; 611 } 612 case Instruction::SIToFP: { 613 GenericValue GV = getConstantValue(Op0); 614 if (CE->getType()->isFloatTy()) 615 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 616 else if (CE->getType()->isDoubleTy()) 617 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 618 else if (CE->getType()->isX86_FP80Ty()) { 619 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 620 (void)apf.convertFromAPInt(GV.IntVal, 621 true, 622 APFloat::rmNearestTiesToEven); 623 GV.IntVal = apf.bitcastToAPInt(); 624 } 625 return GV; 626 } 627 case Instruction::FPToUI: // double->APInt conversion handles sign 628 case Instruction::FPToSI: { 629 GenericValue GV = getConstantValue(Op0); 630 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 631 if (Op0->getType()->isFloatTy()) 632 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 633 else if (Op0->getType()->isDoubleTy()) 634 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 635 else if (Op0->getType()->isX86_FP80Ty()) { 636 APFloat apf = APFloat(GV.IntVal); 637 uint64_t v; 638 bool ignored; 639 (void)apf.convertToInteger(&v, BitWidth, 640 CE->getOpcode()==Instruction::FPToSI, 641 APFloat::rmTowardZero, &ignored); 642 GV.IntVal = v; // endian? 643 } 644 return GV; 645 } 646 case Instruction::PtrToInt: { 647 GenericValue GV = getConstantValue(Op0); 648 assert(CE->getOperand(1)->getType()->isPointerTy() && 649 "Must be a pointer type!"); 650 uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getOperand(1)->getType()); 651 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 652 return GV; 653 } 654 case Instruction::IntToPtr: { 655 GenericValue GV = getConstantValue(Op0); 656 assert(CE->getOperand(1)->getType()->isPointerTy() && 657 "Must be a pointer type!"); 658 uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType()); 659 if (PtrWidth != GV.IntVal.getBitWidth()) 660 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 661 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 662 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 663 return GV; 664 } 665 case Instruction::BitCast: { 666 GenericValue GV = getConstantValue(Op0); 667 Type* DestTy = CE->getType(); 668 switch (Op0->getType()->getTypeID()) { 669 default: llvm_unreachable("Invalid bitcast operand"); 670 case Type::IntegerTyID: 671 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 672 if (DestTy->isFloatTy()) 673 GV.FloatVal = GV.IntVal.bitsToFloat(); 674 else if (DestTy->isDoubleTy()) 675 GV.DoubleVal = GV.IntVal.bitsToDouble(); 676 break; 677 case Type::FloatTyID: 678 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 679 GV.IntVal = APInt::floatToBits(GV.FloatVal); 680 break; 681 case Type::DoubleTyID: 682 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 683 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 684 break; 685 case Type::PointerTyID: 686 assert(DestTy->isPointerTy() && "Invalid bitcast"); 687 break; // getConstantValue(Op0) above already converted it 688 } 689 return GV; 690 } 691 case Instruction::Add: 692 case Instruction::FAdd: 693 case Instruction::Sub: 694 case Instruction::FSub: 695 case Instruction::Mul: 696 case Instruction::FMul: 697 case Instruction::UDiv: 698 case Instruction::SDiv: 699 case Instruction::URem: 700 case Instruction::SRem: 701 case Instruction::And: 702 case Instruction::Or: 703 case Instruction::Xor: { 704 GenericValue LHS = getConstantValue(Op0); 705 GenericValue RHS = getConstantValue(CE->getOperand(1)); 706 GenericValue GV; 707 switch (CE->getOperand(0)->getType()->getTypeID()) { 708 default: llvm_unreachable("Bad add type!"); 709 case Type::IntegerTyID: 710 switch (CE->getOpcode()) { 711 default: llvm_unreachable("Invalid integer opcode"); 712 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 713 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 714 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 715 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 716 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 717 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 718 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 719 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 720 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 721 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 722 } 723 break; 724 case Type::FloatTyID: 725 switch (CE->getOpcode()) { 726 default: llvm_unreachable("Invalid float opcode"); 727 case Instruction::FAdd: 728 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 729 case Instruction::FSub: 730 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 731 case Instruction::FMul: 732 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 733 case Instruction::FDiv: 734 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 735 case Instruction::FRem: 736 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 737 } 738 break; 739 case Type::DoubleTyID: 740 switch (CE->getOpcode()) { 741 default: llvm_unreachable("Invalid double opcode"); 742 case Instruction::FAdd: 743 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 744 case Instruction::FSub: 745 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 746 case Instruction::FMul: 747 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 748 case Instruction::FDiv: 749 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 750 case Instruction::FRem: 751 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 752 } 753 break; 754 case Type::X86_FP80TyID: 755 case Type::PPC_FP128TyID: 756 case Type::FP128TyID: { 757 APFloat apfLHS = APFloat(LHS.IntVal); 758 switch (CE->getOpcode()) { 759 default: llvm_unreachable("Invalid long double opcode"); 760 case Instruction::FAdd: 761 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 762 GV.IntVal = apfLHS.bitcastToAPInt(); 763 break; 764 case Instruction::FSub: 765 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 766 GV.IntVal = apfLHS.bitcastToAPInt(); 767 break; 768 case Instruction::FMul: 769 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 770 GV.IntVal = apfLHS.bitcastToAPInt(); 771 break; 772 case Instruction::FDiv: 773 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 774 GV.IntVal = apfLHS.bitcastToAPInt(); 775 break; 776 case Instruction::FRem: 777 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 778 GV.IntVal = apfLHS.bitcastToAPInt(); 779 break; 780 } 781 } 782 break; 783 } 784 return GV; 785 } 786 default: 787 break; 788 } 789 790 SmallString<256> Msg; 791 raw_svector_ostream OS(Msg); 792 OS << "ConstantExpr not handled: " << *CE; 793 report_fatal_error(OS.str()); 794 } 795 796 // Otherwise, we have a simple constant. 797 GenericValue Result; 798 switch (C->getType()->getTypeID()) { 799 case Type::FloatTyID: 800 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 801 break; 802 case Type::DoubleTyID: 803 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 804 break; 805 case Type::X86_FP80TyID: 806 case Type::FP128TyID: 807 case Type::PPC_FP128TyID: 808 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 809 break; 810 case Type::IntegerTyID: 811 Result.IntVal = cast<ConstantInt>(C)->getValue(); 812 break; 813 case Type::PointerTyID: 814 if (isa<ConstantPointerNull>(C)) 815 Result.PointerVal = 0; 816 else if (const Function *F = dyn_cast<Function>(C)) 817 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 818 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 819 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 820 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 821 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 822 BA->getBasicBlock()))); 823 else 824 llvm_unreachable("Unknown constant pointer type!"); 825 break; 826 default: 827 SmallString<256> Msg; 828 raw_svector_ostream OS(Msg); 829 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 830 report_fatal_error(OS.str()); 831 } 832 833 return Result; 834 } 835 836 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 837 /// with the integer held in IntVal. 838 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 839 unsigned StoreBytes) { 840 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 841 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 842 843 if (sys::isLittleEndianHost()) { 844 // Little-endian host - the source is ordered from LSB to MSB. Order the 845 // destination from LSB to MSB: Do a straight copy. 846 memcpy(Dst, Src, StoreBytes); 847 } else { 848 // Big-endian host - the source is an array of 64 bit words ordered from 849 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 850 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 851 while (StoreBytes > sizeof(uint64_t)) { 852 StoreBytes -= sizeof(uint64_t); 853 // May not be aligned so use memcpy. 854 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 855 Src += sizeof(uint64_t); 856 } 857 858 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 859 } 860 } 861 862 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 863 GenericValue *Ptr, Type *Ty) { 864 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 865 866 switch (Ty->getTypeID()) { 867 case Type::IntegerTyID: 868 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 869 break; 870 case Type::FloatTyID: 871 *((float*)Ptr) = Val.FloatVal; 872 break; 873 case Type::DoubleTyID: 874 *((double*)Ptr) = Val.DoubleVal; 875 break; 876 case Type::X86_FP80TyID: 877 memcpy(Ptr, Val.IntVal.getRawData(), 10); 878 break; 879 case Type::PointerTyID: 880 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 881 if (StoreBytes != sizeof(PointerTy)) 882 memset(&(Ptr->PointerVal), 0, StoreBytes); 883 884 *((PointerTy*)Ptr) = Val.PointerVal; 885 break; 886 default: 887 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 888 } 889 890 if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian()) 891 // Host and target are different endian - reverse the stored bytes. 892 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 893 } 894 895 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 896 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 897 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 898 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 899 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 900 901 if (sys::isLittleEndianHost()) 902 // Little-endian host - the destination must be ordered from LSB to MSB. 903 // The source is ordered from LSB to MSB: Do a straight copy. 904 memcpy(Dst, Src, LoadBytes); 905 else { 906 // Big-endian - the destination is an array of 64 bit words ordered from 907 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 908 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 909 // a word. 910 while (LoadBytes > sizeof(uint64_t)) { 911 LoadBytes -= sizeof(uint64_t); 912 // May not be aligned so use memcpy. 913 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 914 Dst += sizeof(uint64_t); 915 } 916 917 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 918 } 919 } 920 921 /// FIXME: document 922 /// 923 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 924 GenericValue *Ptr, 925 Type *Ty) { 926 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 927 928 switch (Ty->getTypeID()) { 929 case Type::IntegerTyID: 930 // An APInt with all words initially zero. 931 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 932 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 933 break; 934 case Type::FloatTyID: 935 Result.FloatVal = *((float*)Ptr); 936 break; 937 case Type::DoubleTyID: 938 Result.DoubleVal = *((double*)Ptr); 939 break; 940 case Type::PointerTyID: 941 Result.PointerVal = *((PointerTy*)Ptr); 942 break; 943 case Type::X86_FP80TyID: { 944 // This is endian dependent, but it will only work on x86 anyway. 945 // FIXME: Will not trap if loading a signaling NaN. 946 uint64_t y[2]; 947 memcpy(y, Ptr, 10); 948 Result.IntVal = APInt(80, y); 949 break; 950 } 951 default: 952 SmallString<256> Msg; 953 raw_svector_ostream OS(Msg); 954 OS << "Cannot load value of type " << *Ty << "!"; 955 report_fatal_error(OS.str()); 956 } 957 } 958 959 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 960 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 961 DEBUG(Init->dump()); 962 if (isa<UndefValue>(Init)) 963 return; 964 965 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 966 unsigned ElementSize = 967 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 968 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 969 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 970 return; 971 } 972 973 if (isa<ConstantAggregateZero>(Init)) { 974 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 975 return; 976 } 977 978 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 979 unsigned ElementSize = 980 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 981 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 982 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 983 return; 984 } 985 986 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 987 const StructLayout *SL = 988 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 989 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 990 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 991 return; 992 } 993 994 if (const ConstantDataSequential *CDS = 995 dyn_cast<ConstantDataSequential>(Init)) { 996 // CDS is already laid out in host memory order. 997 StringRef Data = CDS->getRawDataValues(); 998 memcpy(Addr, Data.data(), Data.size()); 999 return; 1000 } 1001 1002 if (Init->getType()->isFirstClassType()) { 1003 GenericValue Val = getConstantValue(Init); 1004 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1005 return; 1006 } 1007 1008 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1009 llvm_unreachable("Unknown constant type to initialize memory with!"); 1010 } 1011 1012 /// EmitGlobals - Emit all of the global variables to memory, storing their 1013 /// addresses into GlobalAddress. This must make sure to copy the contents of 1014 /// their initializers into the memory. 1015 void ExecutionEngine::emitGlobals() { 1016 // Loop over all of the global variables in the program, allocating the memory 1017 // to hold them. If there is more than one module, do a prepass over globals 1018 // to figure out how the different modules should link together. 1019 std::map<std::pair<std::string, Type*>, 1020 const GlobalValue*> LinkedGlobalsMap; 1021 1022 if (Modules.size() != 1) { 1023 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1024 Module &M = *Modules[m]; 1025 for (Module::const_global_iterator I = M.global_begin(), 1026 E = M.global_end(); I != E; ++I) { 1027 const GlobalValue *GV = I; 1028 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1029 GV->hasAppendingLinkage() || !GV->hasName()) 1030 continue;// Ignore external globals and globals with internal linkage. 1031 1032 const GlobalValue *&GVEntry = 1033 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1034 1035 // If this is the first time we've seen this global, it is the canonical 1036 // version. 1037 if (!GVEntry) { 1038 GVEntry = GV; 1039 continue; 1040 } 1041 1042 // If the existing global is strong, never replace it. 1043 if (GVEntry->hasExternalLinkage() || 1044 GVEntry->hasDLLImportLinkage() || 1045 GVEntry->hasDLLExportLinkage()) 1046 continue; 1047 1048 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1049 // symbol. FIXME is this right for common? 1050 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1051 GVEntry = GV; 1052 } 1053 } 1054 } 1055 1056 std::vector<const GlobalValue*> NonCanonicalGlobals; 1057 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1058 Module &M = *Modules[m]; 1059 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1060 I != E; ++I) { 1061 // In the multi-module case, see what this global maps to. 1062 if (!LinkedGlobalsMap.empty()) { 1063 if (const GlobalValue *GVEntry = 1064 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1065 // If something else is the canonical global, ignore this one. 1066 if (GVEntry != &*I) { 1067 NonCanonicalGlobals.push_back(I); 1068 continue; 1069 } 1070 } 1071 } 1072 1073 if (!I->isDeclaration()) { 1074 addGlobalMapping(I, getMemoryForGV(I)); 1075 } else { 1076 // External variable reference. Try to use the dynamic loader to 1077 // get a pointer to it. 1078 if (void *SymAddr = 1079 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1080 addGlobalMapping(I, SymAddr); 1081 else { 1082 report_fatal_error("Could not resolve external global address: " 1083 +I->getName()); 1084 } 1085 } 1086 } 1087 1088 // If there are multiple modules, map the non-canonical globals to their 1089 // canonical location. 1090 if (!NonCanonicalGlobals.empty()) { 1091 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1092 const GlobalValue *GV = NonCanonicalGlobals[i]; 1093 const GlobalValue *CGV = 1094 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1095 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1096 assert(Ptr && "Canonical global wasn't codegen'd!"); 1097 addGlobalMapping(GV, Ptr); 1098 } 1099 } 1100 1101 // Now that all of the globals are set up in memory, loop through them all 1102 // and initialize their contents. 1103 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1104 I != E; ++I) { 1105 if (!I->isDeclaration()) { 1106 if (!LinkedGlobalsMap.empty()) { 1107 if (const GlobalValue *GVEntry = 1108 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1109 if (GVEntry != &*I) // Not the canonical variable. 1110 continue; 1111 } 1112 EmitGlobalVariable(I); 1113 } 1114 } 1115 } 1116 } 1117 1118 // EmitGlobalVariable - This method emits the specified global variable to the 1119 // address specified in GlobalAddresses, or allocates new memory if it's not 1120 // already in the map. 1121 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1122 void *GA = getPointerToGlobalIfAvailable(GV); 1123 1124 if (GA == 0) { 1125 // If it's not already specified, allocate memory for the global. 1126 GA = getMemoryForGV(GV); 1127 addGlobalMapping(GV, GA); 1128 } 1129 1130 // Don't initialize if it's thread local, let the client do it. 1131 if (!GV->isThreadLocal()) 1132 InitializeMemory(GV->getInitializer(), GA); 1133 1134 Type *ElTy = GV->getType()->getElementType(); 1135 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1136 NumInitBytes += (unsigned)GVSize; 1137 ++NumGlobals; 1138 } 1139 1140 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1141 : EE(EE), GlobalAddressMap(this) { 1142 } 1143 1144 sys::Mutex * 1145 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1146 return &EES->EE.lock; 1147 } 1148 1149 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1150 const GlobalValue *Old) { 1151 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1152 EES->GlobalAddressReverseMap.erase(OldVal); 1153 } 1154 1155 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1156 const GlobalValue *, 1157 const GlobalValue *) { 1158 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1159 " RAUW on a value it has a global mapping for."); 1160 } 1161