1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/Archive.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Host.h" 33 #include "llvm/Support/MutexGuard.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <cmath> 38 #include <cstring> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jit" 42 43 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 44 STATISTIC(NumGlobals , "Number of global vars initialized"); 45 46 // Pin the vtable to this file. 47 void ObjectCache::anchor() {} 48 void ObjectBuffer::anchor() {} 49 void ObjectBufferStream::anchor() {} 50 51 ExecutionEngine *(*ExecutionEngine::JITCtor)( 52 Module *M, 53 std::string *ErrorStr, 54 JITMemoryManager *JMM, 55 bool GVsWithCode, 56 TargetMachine *TM) = nullptr; 57 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 58 Module *M, 59 std::string *ErrorStr, 60 RTDyldMemoryManager *MCJMM, 61 TargetMachine *TM) = nullptr; 62 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 63 std::string *ErrorStr) =nullptr; 64 65 ExecutionEngine::ExecutionEngine(Module *M) 66 : EEState(*this), 67 LazyFunctionCreator(nullptr) { 68 CompilingLazily = false; 69 GVCompilationDisabled = false; 70 SymbolSearchingDisabled = false; 71 72 // IR module verification is enabled by default in debug builds, and disabled 73 // by default in release builds. 74 #ifndef NDEBUG 75 VerifyModules = true; 76 #else 77 VerifyModules = false; 78 #endif 79 80 Modules.push_back(M); 81 assert(M && "Module is null?"); 82 } 83 84 ExecutionEngine::~ExecutionEngine() { 85 clearAllGlobalMappings(); 86 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 87 delete Modules[i]; 88 } 89 90 namespace { 91 /// \brief Helper class which uses a value handler to automatically deletes the 92 /// memory block when the GlobalVariable is destroyed. 93 class GVMemoryBlock : public CallbackVH { 94 GVMemoryBlock(const GlobalVariable *GV) 95 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 96 97 public: 98 /// \brief Returns the address the GlobalVariable should be written into. The 99 /// GVMemoryBlock object prefixes that. 100 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 101 Type *ElTy = GV->getType()->getElementType(); 102 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 103 void *RawMemory = ::operator new( 104 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 105 TD.getPreferredAlignment(GV)) 106 + GVSize); 107 new(RawMemory) GVMemoryBlock(GV); 108 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 109 } 110 111 void deleted() override { 112 // We allocated with operator new and with some extra memory hanging off the 113 // end, so don't just delete this. I'm not sure if this is actually 114 // required. 115 this->~GVMemoryBlock(); 116 ::operator delete(this); 117 } 118 }; 119 } // anonymous namespace 120 121 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 122 return GVMemoryBlock::Create(GV, *getDataLayout()); 123 } 124 125 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 126 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 127 } 128 129 void ExecutionEngine::addArchive(std::unique_ptr<object::Archive> A) { 130 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 131 } 132 133 bool ExecutionEngine::removeModule(Module *M) { 134 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 135 E = Modules.end(); I != E; ++I) { 136 Module *Found = *I; 137 if (Found == M) { 138 Modules.erase(I); 139 clearGlobalMappingsFromModule(M); 140 return true; 141 } 142 } 143 return false; 144 } 145 146 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 147 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 148 if (Function *F = Modules[i]->getFunction(FnName)) 149 return F; 150 } 151 return nullptr; 152 } 153 154 155 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 156 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 157 void *OldVal; 158 159 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 160 // GlobalAddressMap. 161 if (I == GlobalAddressMap.end()) 162 OldVal = nullptr; 163 else { 164 OldVal = I->second; 165 GlobalAddressMap.erase(I); 166 } 167 168 GlobalAddressReverseMap.erase(OldVal); 169 return OldVal; 170 } 171 172 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 173 MutexGuard locked(lock); 174 175 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 176 << "\' to [" << Addr << "]\n";); 177 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 178 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 179 CurVal = Addr; 180 181 // If we are using the reverse mapping, add it too. 182 if (!EEState.getGlobalAddressReverseMap().empty()) { 183 AssertingVH<const GlobalValue> &V = 184 EEState.getGlobalAddressReverseMap()[Addr]; 185 assert((!V || !GV) && "GlobalMapping already established!"); 186 V = GV; 187 } 188 } 189 190 void ExecutionEngine::clearAllGlobalMappings() { 191 MutexGuard locked(lock); 192 193 EEState.getGlobalAddressMap().clear(); 194 EEState.getGlobalAddressReverseMap().clear(); 195 } 196 197 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 198 MutexGuard locked(lock); 199 200 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 201 EEState.RemoveMapping(FI); 202 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 203 GI != GE; ++GI) 204 EEState.RemoveMapping(GI); 205 } 206 207 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 208 MutexGuard locked(lock); 209 210 ExecutionEngineState::GlobalAddressMapTy &Map = 211 EEState.getGlobalAddressMap(); 212 213 // Deleting from the mapping? 214 if (!Addr) 215 return EEState.RemoveMapping(GV); 216 217 void *&CurVal = Map[GV]; 218 void *OldVal = CurVal; 219 220 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 221 EEState.getGlobalAddressReverseMap().erase(CurVal); 222 CurVal = Addr; 223 224 // If we are using the reverse mapping, add it too. 225 if (!EEState.getGlobalAddressReverseMap().empty()) { 226 AssertingVH<const GlobalValue> &V = 227 EEState.getGlobalAddressReverseMap()[Addr]; 228 assert((!V || !GV) && "GlobalMapping already established!"); 229 V = GV; 230 } 231 return OldVal; 232 } 233 234 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 235 MutexGuard locked(lock); 236 237 ExecutionEngineState::GlobalAddressMapTy::iterator I = 238 EEState.getGlobalAddressMap().find(GV); 239 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 240 } 241 242 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 243 MutexGuard locked(lock); 244 245 // If we haven't computed the reverse mapping yet, do so first. 246 if (EEState.getGlobalAddressReverseMap().empty()) { 247 for (ExecutionEngineState::GlobalAddressMapTy::iterator 248 I = EEState.getGlobalAddressMap().begin(), 249 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 250 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 251 I->second, I->first)); 252 } 253 254 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 255 EEState.getGlobalAddressReverseMap().find(Addr); 256 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 257 } 258 259 namespace { 260 class ArgvArray { 261 char *Array; 262 std::vector<char*> Values; 263 public: 264 ArgvArray() : Array(nullptr) {} 265 ~ArgvArray() { clear(); } 266 void clear() { 267 delete[] Array; 268 Array = nullptr; 269 for (size_t I = 0, E = Values.size(); I != E; ++I) { 270 delete[] Values[I]; 271 } 272 Values.clear(); 273 } 274 /// Turn a vector of strings into a nice argv style array of pointers to null 275 /// terminated strings. 276 void *reset(LLVMContext &C, ExecutionEngine *EE, 277 const std::vector<std::string> &InputArgv); 278 }; 279 } // anonymous namespace 280 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 281 const std::vector<std::string> &InputArgv) { 282 clear(); // Free the old contents. 283 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 284 Array = new char[(InputArgv.size()+1)*PtrSize]; 285 286 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 287 Type *SBytePtr = Type::getInt8PtrTy(C); 288 289 for (unsigned i = 0; i != InputArgv.size(); ++i) { 290 unsigned Size = InputArgv[i].size()+1; 291 char *Dest = new char[Size]; 292 Values.push_back(Dest); 293 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 294 295 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 296 Dest[Size-1] = 0; 297 298 // Endian safe: Array[i] = (PointerTy)Dest; 299 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 300 SBytePtr); 301 } 302 303 // Null terminate it 304 EE->StoreValueToMemory(PTOGV(nullptr), 305 (GenericValue*)(Array+InputArgv.size()*PtrSize), 306 SBytePtr); 307 return Array; 308 } 309 310 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 311 bool isDtors) { 312 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 313 GlobalVariable *GV = module->getNamedGlobal(Name); 314 315 // If this global has internal linkage, or if it has a use, then it must be 316 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 317 // this is the case, don't execute any of the global ctors, __main will do 318 // it. 319 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 320 321 // Should be an array of '{ i32, void ()* }' structs. The first value is 322 // the init priority, which we ignore. 323 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 324 if (!InitList) 325 return; 326 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 327 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 328 if (!CS) continue; 329 330 Constant *FP = CS->getOperand(1); 331 if (FP->isNullValue()) 332 continue; // Found a sentinal value, ignore. 333 334 // Strip off constant expression casts. 335 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 336 if (CE->isCast()) 337 FP = CE->getOperand(0); 338 339 // Execute the ctor/dtor function! 340 if (Function *F = dyn_cast<Function>(FP)) 341 runFunction(F, std::vector<GenericValue>()); 342 343 // FIXME: It is marginally lame that we just do nothing here if we see an 344 // entry we don't recognize. It might not be unreasonable for the verifier 345 // to not even allow this and just assert here. 346 } 347 } 348 349 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 350 // Execute global ctors/dtors for each module in the program. 351 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 352 runStaticConstructorsDestructors(Modules[i], isDtors); 353 } 354 355 #ifndef NDEBUG 356 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 357 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 358 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 359 for (unsigned i = 0; i < PtrSize; ++i) 360 if (*(i + (uint8_t*)Loc)) 361 return false; 362 return true; 363 } 364 #endif 365 366 int ExecutionEngine::runFunctionAsMain(Function *Fn, 367 const std::vector<std::string> &argv, 368 const char * const * envp) { 369 std::vector<GenericValue> GVArgs; 370 GenericValue GVArgc; 371 GVArgc.IntVal = APInt(32, argv.size()); 372 373 // Check main() type 374 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 375 FunctionType *FTy = Fn->getFunctionType(); 376 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 377 378 // Check the argument types. 379 if (NumArgs > 3) 380 report_fatal_error("Invalid number of arguments of main() supplied"); 381 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 382 report_fatal_error("Invalid type for third argument of main() supplied"); 383 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 384 report_fatal_error("Invalid type for second argument of main() supplied"); 385 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 386 report_fatal_error("Invalid type for first argument of main() supplied"); 387 if (!FTy->getReturnType()->isIntegerTy() && 388 !FTy->getReturnType()->isVoidTy()) 389 report_fatal_error("Invalid return type of main() supplied"); 390 391 ArgvArray CArgv; 392 ArgvArray CEnv; 393 if (NumArgs) { 394 GVArgs.push_back(GVArgc); // Arg #0 = argc. 395 if (NumArgs > 1) { 396 // Arg #1 = argv. 397 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 398 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 399 "argv[0] was null after CreateArgv"); 400 if (NumArgs > 2) { 401 std::vector<std::string> EnvVars; 402 for (unsigned i = 0; envp[i]; ++i) 403 EnvVars.push_back(envp[i]); 404 // Arg #2 = envp. 405 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 406 } 407 } 408 } 409 410 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 411 } 412 413 void EngineBuilder::InitEngine() { 414 WhichEngine = EngineKind::Either; 415 ErrorStr = nullptr; 416 OptLevel = CodeGenOpt::Default; 417 MCJMM = nullptr; 418 JMM = nullptr; 419 Options = TargetOptions(); 420 AllocateGVsWithCode = false; 421 RelocModel = Reloc::Default; 422 CMModel = CodeModel::JITDefault; 423 UseMCJIT = false; 424 425 // IR module verification is enabled by default in debug builds, and disabled 426 // by default in release builds. 427 #ifndef NDEBUG 428 VerifyModules = true; 429 #else 430 VerifyModules = false; 431 #endif 432 } 433 434 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 435 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 436 437 // Make sure we can resolve symbols in the program as well. The zero arg 438 // to the function tells DynamicLibrary to load the program, not a library. 439 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 440 return nullptr; 441 442 assert(!(JMM && MCJMM)); 443 444 // If the user specified a memory manager but didn't specify which engine to 445 // create, we assume they only want the JIT, and we fail if they only want 446 // the interpreter. 447 if (JMM || MCJMM) { 448 if (WhichEngine & EngineKind::JIT) 449 WhichEngine = EngineKind::JIT; 450 else { 451 if (ErrorStr) 452 *ErrorStr = "Cannot create an interpreter with a memory manager."; 453 return nullptr; 454 } 455 } 456 457 if (MCJMM && ! UseMCJIT) { 458 if (ErrorStr) 459 *ErrorStr = 460 "Cannot create a legacy JIT with a runtime dyld memory " 461 "manager."; 462 return nullptr; 463 } 464 465 // Unless the interpreter was explicitly selected or the JIT is not linked, 466 // try making a JIT. 467 if ((WhichEngine & EngineKind::JIT) && TheTM) { 468 Triple TT(M->getTargetTriple()); 469 if (!TM->getTarget().hasJIT()) { 470 errs() << "WARNING: This target JIT is not designed for the host" 471 << " you are running. If bad things happen, please choose" 472 << " a different -march switch.\n"; 473 } 474 475 ExecutionEngine *EE = nullptr; 476 if (UseMCJIT && ExecutionEngine::MCJITCtor) 477 EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 478 TheTM.release()); 479 else if (ExecutionEngine::JITCtor) 480 EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM, 481 AllocateGVsWithCode, TheTM.release()); 482 483 if (EE) { 484 EE->setVerifyModules(VerifyModules); 485 return EE; 486 } 487 } 488 489 // If we can't make a JIT and we didn't request one specifically, try making 490 // an interpreter instead. 491 if (WhichEngine & EngineKind::Interpreter) { 492 if (ExecutionEngine::InterpCtor) 493 return ExecutionEngine::InterpCtor(M, ErrorStr); 494 if (ErrorStr) 495 *ErrorStr = "Interpreter has not been linked in."; 496 return nullptr; 497 } 498 499 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 500 !ExecutionEngine::MCJITCtor) { 501 if (ErrorStr) 502 *ErrorStr = "JIT has not been linked in."; 503 } 504 505 return nullptr; 506 } 507 508 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 509 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 510 return getPointerToFunction(F); 511 512 MutexGuard locked(lock); 513 if (void *P = EEState.getGlobalAddressMap()[GV]) 514 return P; 515 516 // Global variable might have been added since interpreter started. 517 if (GlobalVariable *GVar = 518 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 519 EmitGlobalVariable(GVar); 520 else 521 llvm_unreachable("Global hasn't had an address allocated yet!"); 522 523 return EEState.getGlobalAddressMap()[GV]; 524 } 525 526 /// \brief Converts a Constant* into a GenericValue, including handling of 527 /// ConstantExpr values. 528 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 529 // If its undefined, return the garbage. 530 if (isa<UndefValue>(C)) { 531 GenericValue Result; 532 switch (C->getType()->getTypeID()) { 533 default: 534 break; 535 case Type::IntegerTyID: 536 case Type::X86_FP80TyID: 537 case Type::FP128TyID: 538 case Type::PPC_FP128TyID: 539 // Although the value is undefined, we still have to construct an APInt 540 // with the correct bit width. 541 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 542 break; 543 case Type::StructTyID: { 544 // if the whole struct is 'undef' just reserve memory for the value. 545 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 546 unsigned int elemNum = STy->getNumElements(); 547 Result.AggregateVal.resize(elemNum); 548 for (unsigned int i = 0; i < elemNum; ++i) { 549 Type *ElemTy = STy->getElementType(i); 550 if (ElemTy->isIntegerTy()) 551 Result.AggregateVal[i].IntVal = 552 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 553 else if (ElemTy->isAggregateType()) { 554 const Constant *ElemUndef = UndefValue::get(ElemTy); 555 Result.AggregateVal[i] = getConstantValue(ElemUndef); 556 } 557 } 558 } 559 } 560 break; 561 case Type::VectorTyID: 562 // if the whole vector is 'undef' just reserve memory for the value. 563 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 564 const Type *ElemTy = VTy->getElementType(); 565 unsigned int elemNum = VTy->getNumElements(); 566 Result.AggregateVal.resize(elemNum); 567 if (ElemTy->isIntegerTy()) 568 for (unsigned int i = 0; i < elemNum; ++i) 569 Result.AggregateVal[i].IntVal = 570 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 571 break; 572 } 573 return Result; 574 } 575 576 // Otherwise, if the value is a ConstantExpr... 577 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 578 Constant *Op0 = CE->getOperand(0); 579 switch (CE->getOpcode()) { 580 case Instruction::GetElementPtr: { 581 // Compute the index 582 GenericValue Result = getConstantValue(Op0); 583 APInt Offset(DL->getPointerSizeInBits(), 0); 584 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 585 586 char* tmp = (char*) Result.PointerVal; 587 Result = PTOGV(tmp + Offset.getSExtValue()); 588 return Result; 589 } 590 case Instruction::Trunc: { 591 GenericValue GV = getConstantValue(Op0); 592 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 593 GV.IntVal = GV.IntVal.trunc(BitWidth); 594 return GV; 595 } 596 case Instruction::ZExt: { 597 GenericValue GV = getConstantValue(Op0); 598 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 599 GV.IntVal = GV.IntVal.zext(BitWidth); 600 return GV; 601 } 602 case Instruction::SExt: { 603 GenericValue GV = getConstantValue(Op0); 604 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 605 GV.IntVal = GV.IntVal.sext(BitWidth); 606 return GV; 607 } 608 case Instruction::FPTrunc: { 609 // FIXME long double 610 GenericValue GV = getConstantValue(Op0); 611 GV.FloatVal = float(GV.DoubleVal); 612 return GV; 613 } 614 case Instruction::FPExt:{ 615 // FIXME long double 616 GenericValue GV = getConstantValue(Op0); 617 GV.DoubleVal = double(GV.FloatVal); 618 return GV; 619 } 620 case Instruction::UIToFP: { 621 GenericValue GV = getConstantValue(Op0); 622 if (CE->getType()->isFloatTy()) 623 GV.FloatVal = float(GV.IntVal.roundToDouble()); 624 else if (CE->getType()->isDoubleTy()) 625 GV.DoubleVal = GV.IntVal.roundToDouble(); 626 else if (CE->getType()->isX86_FP80Ty()) { 627 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 628 (void)apf.convertFromAPInt(GV.IntVal, 629 false, 630 APFloat::rmNearestTiesToEven); 631 GV.IntVal = apf.bitcastToAPInt(); 632 } 633 return GV; 634 } 635 case Instruction::SIToFP: { 636 GenericValue GV = getConstantValue(Op0); 637 if (CE->getType()->isFloatTy()) 638 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 639 else if (CE->getType()->isDoubleTy()) 640 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 641 else if (CE->getType()->isX86_FP80Ty()) { 642 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 643 (void)apf.convertFromAPInt(GV.IntVal, 644 true, 645 APFloat::rmNearestTiesToEven); 646 GV.IntVal = apf.bitcastToAPInt(); 647 } 648 return GV; 649 } 650 case Instruction::FPToUI: // double->APInt conversion handles sign 651 case Instruction::FPToSI: { 652 GenericValue GV = getConstantValue(Op0); 653 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 654 if (Op0->getType()->isFloatTy()) 655 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 656 else if (Op0->getType()->isDoubleTy()) 657 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 658 else if (Op0->getType()->isX86_FP80Ty()) { 659 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 660 uint64_t v; 661 bool ignored; 662 (void)apf.convertToInteger(&v, BitWidth, 663 CE->getOpcode()==Instruction::FPToSI, 664 APFloat::rmTowardZero, &ignored); 665 GV.IntVal = v; // endian? 666 } 667 return GV; 668 } 669 case Instruction::PtrToInt: { 670 GenericValue GV = getConstantValue(Op0); 671 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 672 assert(PtrWidth <= 64 && "Bad pointer width"); 673 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 674 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 675 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 676 return GV; 677 } 678 case Instruction::IntToPtr: { 679 GenericValue GV = getConstantValue(Op0); 680 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 681 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 682 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 683 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 684 return GV; 685 } 686 case Instruction::BitCast: { 687 GenericValue GV = getConstantValue(Op0); 688 Type* DestTy = CE->getType(); 689 switch (Op0->getType()->getTypeID()) { 690 default: llvm_unreachable("Invalid bitcast operand"); 691 case Type::IntegerTyID: 692 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 693 if (DestTy->isFloatTy()) 694 GV.FloatVal = GV.IntVal.bitsToFloat(); 695 else if (DestTy->isDoubleTy()) 696 GV.DoubleVal = GV.IntVal.bitsToDouble(); 697 break; 698 case Type::FloatTyID: 699 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 700 GV.IntVal = APInt::floatToBits(GV.FloatVal); 701 break; 702 case Type::DoubleTyID: 703 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 704 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 705 break; 706 case Type::PointerTyID: 707 assert(DestTy->isPointerTy() && "Invalid bitcast"); 708 break; // getConstantValue(Op0) above already converted it 709 } 710 return GV; 711 } 712 case Instruction::Add: 713 case Instruction::FAdd: 714 case Instruction::Sub: 715 case Instruction::FSub: 716 case Instruction::Mul: 717 case Instruction::FMul: 718 case Instruction::UDiv: 719 case Instruction::SDiv: 720 case Instruction::URem: 721 case Instruction::SRem: 722 case Instruction::And: 723 case Instruction::Or: 724 case Instruction::Xor: { 725 GenericValue LHS = getConstantValue(Op0); 726 GenericValue RHS = getConstantValue(CE->getOperand(1)); 727 GenericValue GV; 728 switch (CE->getOperand(0)->getType()->getTypeID()) { 729 default: llvm_unreachable("Bad add type!"); 730 case Type::IntegerTyID: 731 switch (CE->getOpcode()) { 732 default: llvm_unreachable("Invalid integer opcode"); 733 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 734 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 735 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 736 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 737 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 738 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 739 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 740 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 741 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 742 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 743 } 744 break; 745 case Type::FloatTyID: 746 switch (CE->getOpcode()) { 747 default: llvm_unreachable("Invalid float opcode"); 748 case Instruction::FAdd: 749 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 750 case Instruction::FSub: 751 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 752 case Instruction::FMul: 753 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 754 case Instruction::FDiv: 755 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 756 case Instruction::FRem: 757 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 758 } 759 break; 760 case Type::DoubleTyID: 761 switch (CE->getOpcode()) { 762 default: llvm_unreachable("Invalid double opcode"); 763 case Instruction::FAdd: 764 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 765 case Instruction::FSub: 766 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 767 case Instruction::FMul: 768 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 769 case Instruction::FDiv: 770 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 771 case Instruction::FRem: 772 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 773 } 774 break; 775 case Type::X86_FP80TyID: 776 case Type::PPC_FP128TyID: 777 case Type::FP128TyID: { 778 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 779 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 780 switch (CE->getOpcode()) { 781 default: llvm_unreachable("Invalid long double opcode"); 782 case Instruction::FAdd: 783 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 784 GV.IntVal = apfLHS.bitcastToAPInt(); 785 break; 786 case Instruction::FSub: 787 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 788 APFloat::rmNearestTiesToEven); 789 GV.IntVal = apfLHS.bitcastToAPInt(); 790 break; 791 case Instruction::FMul: 792 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 793 APFloat::rmNearestTiesToEven); 794 GV.IntVal = apfLHS.bitcastToAPInt(); 795 break; 796 case Instruction::FDiv: 797 apfLHS.divide(APFloat(Sem, RHS.IntVal), 798 APFloat::rmNearestTiesToEven); 799 GV.IntVal = apfLHS.bitcastToAPInt(); 800 break; 801 case Instruction::FRem: 802 apfLHS.mod(APFloat(Sem, RHS.IntVal), 803 APFloat::rmNearestTiesToEven); 804 GV.IntVal = apfLHS.bitcastToAPInt(); 805 break; 806 } 807 } 808 break; 809 } 810 return GV; 811 } 812 default: 813 break; 814 } 815 816 SmallString<256> Msg; 817 raw_svector_ostream OS(Msg); 818 OS << "ConstantExpr not handled: " << *CE; 819 report_fatal_error(OS.str()); 820 } 821 822 // Otherwise, we have a simple constant. 823 GenericValue Result; 824 switch (C->getType()->getTypeID()) { 825 case Type::FloatTyID: 826 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 827 break; 828 case Type::DoubleTyID: 829 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 830 break; 831 case Type::X86_FP80TyID: 832 case Type::FP128TyID: 833 case Type::PPC_FP128TyID: 834 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 835 break; 836 case Type::IntegerTyID: 837 Result.IntVal = cast<ConstantInt>(C)->getValue(); 838 break; 839 case Type::PointerTyID: 840 if (isa<ConstantPointerNull>(C)) 841 Result.PointerVal = nullptr; 842 else if (const Function *F = dyn_cast<Function>(C)) 843 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 844 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 845 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 846 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 847 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 848 BA->getBasicBlock()))); 849 else 850 llvm_unreachable("Unknown constant pointer type!"); 851 break; 852 case Type::VectorTyID: { 853 unsigned elemNum; 854 Type* ElemTy; 855 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 856 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 857 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 858 859 if (CDV) { 860 elemNum = CDV->getNumElements(); 861 ElemTy = CDV->getElementType(); 862 } else if (CV || CAZ) { 863 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 864 elemNum = VTy->getNumElements(); 865 ElemTy = VTy->getElementType(); 866 } else { 867 llvm_unreachable("Unknown constant vector type!"); 868 } 869 870 Result.AggregateVal.resize(elemNum); 871 // Check if vector holds floats. 872 if(ElemTy->isFloatTy()) { 873 if (CAZ) { 874 GenericValue floatZero; 875 floatZero.FloatVal = 0.f; 876 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 877 floatZero); 878 break; 879 } 880 if(CV) { 881 for (unsigned i = 0; i < elemNum; ++i) 882 if (!isa<UndefValue>(CV->getOperand(i))) 883 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 884 CV->getOperand(i))->getValueAPF().convertToFloat(); 885 break; 886 } 887 if(CDV) 888 for (unsigned i = 0; i < elemNum; ++i) 889 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 890 891 break; 892 } 893 // Check if vector holds doubles. 894 if (ElemTy->isDoubleTy()) { 895 if (CAZ) { 896 GenericValue doubleZero; 897 doubleZero.DoubleVal = 0.0; 898 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 899 doubleZero); 900 break; 901 } 902 if(CV) { 903 for (unsigned i = 0; i < elemNum; ++i) 904 if (!isa<UndefValue>(CV->getOperand(i))) 905 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 906 CV->getOperand(i))->getValueAPF().convertToDouble(); 907 break; 908 } 909 if(CDV) 910 for (unsigned i = 0; i < elemNum; ++i) 911 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 912 913 break; 914 } 915 // Check if vector holds integers. 916 if (ElemTy->isIntegerTy()) { 917 if (CAZ) { 918 GenericValue intZero; 919 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 920 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 921 intZero); 922 break; 923 } 924 if(CV) { 925 for (unsigned i = 0; i < elemNum; ++i) 926 if (!isa<UndefValue>(CV->getOperand(i))) 927 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 928 CV->getOperand(i))->getValue(); 929 else { 930 Result.AggregateVal[i].IntVal = 931 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 932 } 933 break; 934 } 935 if(CDV) 936 for (unsigned i = 0; i < elemNum; ++i) 937 Result.AggregateVal[i].IntVal = APInt( 938 CDV->getElementType()->getPrimitiveSizeInBits(), 939 CDV->getElementAsInteger(i)); 940 941 break; 942 } 943 llvm_unreachable("Unknown constant pointer type!"); 944 } 945 break; 946 947 default: 948 SmallString<256> Msg; 949 raw_svector_ostream OS(Msg); 950 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 951 report_fatal_error(OS.str()); 952 } 953 954 return Result; 955 } 956 957 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 958 /// with the integer held in IntVal. 959 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 960 unsigned StoreBytes) { 961 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 962 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 963 964 if (sys::IsLittleEndianHost) { 965 // Little-endian host - the source is ordered from LSB to MSB. Order the 966 // destination from LSB to MSB: Do a straight copy. 967 memcpy(Dst, Src, StoreBytes); 968 } else { 969 // Big-endian host - the source is an array of 64 bit words ordered from 970 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 971 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 972 while (StoreBytes > sizeof(uint64_t)) { 973 StoreBytes -= sizeof(uint64_t); 974 // May not be aligned so use memcpy. 975 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 976 Src += sizeof(uint64_t); 977 } 978 979 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 980 } 981 } 982 983 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 984 GenericValue *Ptr, Type *Ty) { 985 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 986 987 switch (Ty->getTypeID()) { 988 default: 989 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 990 break; 991 case Type::IntegerTyID: 992 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 993 break; 994 case Type::FloatTyID: 995 *((float*)Ptr) = Val.FloatVal; 996 break; 997 case Type::DoubleTyID: 998 *((double*)Ptr) = Val.DoubleVal; 999 break; 1000 case Type::X86_FP80TyID: 1001 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1002 break; 1003 case Type::PointerTyID: 1004 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1005 if (StoreBytes != sizeof(PointerTy)) 1006 memset(&(Ptr->PointerVal), 0, StoreBytes); 1007 1008 *((PointerTy*)Ptr) = Val.PointerVal; 1009 break; 1010 case Type::VectorTyID: 1011 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1012 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1013 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1014 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1015 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1016 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1017 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1018 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1019 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1020 } 1021 } 1022 break; 1023 } 1024 1025 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1026 // Host and target are different endian - reverse the stored bytes. 1027 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1028 } 1029 1030 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1031 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1032 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1033 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1034 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1035 const_cast<uint64_t *>(IntVal.getRawData())); 1036 1037 if (sys::IsLittleEndianHost) 1038 // Little-endian host - the destination must be ordered from LSB to MSB. 1039 // The source is ordered from LSB to MSB: Do a straight copy. 1040 memcpy(Dst, Src, LoadBytes); 1041 else { 1042 // Big-endian - the destination is an array of 64 bit words ordered from 1043 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1044 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1045 // a word. 1046 while (LoadBytes > sizeof(uint64_t)) { 1047 LoadBytes -= sizeof(uint64_t); 1048 // May not be aligned so use memcpy. 1049 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1050 Dst += sizeof(uint64_t); 1051 } 1052 1053 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1054 } 1055 } 1056 1057 /// FIXME: document 1058 /// 1059 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1060 GenericValue *Ptr, 1061 Type *Ty) { 1062 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1063 1064 switch (Ty->getTypeID()) { 1065 case Type::IntegerTyID: 1066 // An APInt with all words initially zero. 1067 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1068 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1069 break; 1070 case Type::FloatTyID: 1071 Result.FloatVal = *((float*)Ptr); 1072 break; 1073 case Type::DoubleTyID: 1074 Result.DoubleVal = *((double*)Ptr); 1075 break; 1076 case Type::PointerTyID: 1077 Result.PointerVal = *((PointerTy*)Ptr); 1078 break; 1079 case Type::X86_FP80TyID: { 1080 // This is endian dependent, but it will only work on x86 anyway. 1081 // FIXME: Will not trap if loading a signaling NaN. 1082 uint64_t y[2]; 1083 memcpy(y, Ptr, 10); 1084 Result.IntVal = APInt(80, y); 1085 break; 1086 } 1087 case Type::VectorTyID: { 1088 const VectorType *VT = cast<VectorType>(Ty); 1089 const Type *ElemT = VT->getElementType(); 1090 const unsigned numElems = VT->getNumElements(); 1091 if (ElemT->isFloatTy()) { 1092 Result.AggregateVal.resize(numElems); 1093 for (unsigned i = 0; i < numElems; ++i) 1094 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1095 } 1096 if (ElemT->isDoubleTy()) { 1097 Result.AggregateVal.resize(numElems); 1098 for (unsigned i = 0; i < numElems; ++i) 1099 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1100 } 1101 if (ElemT->isIntegerTy()) { 1102 GenericValue intZero; 1103 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1104 intZero.IntVal = APInt(elemBitWidth, 0); 1105 Result.AggregateVal.resize(numElems, intZero); 1106 for (unsigned i = 0; i < numElems; ++i) 1107 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1108 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1109 } 1110 break; 1111 } 1112 default: 1113 SmallString<256> Msg; 1114 raw_svector_ostream OS(Msg); 1115 OS << "Cannot load value of type " << *Ty << "!"; 1116 report_fatal_error(OS.str()); 1117 } 1118 } 1119 1120 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1121 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1122 DEBUG(Init->dump()); 1123 if (isa<UndefValue>(Init)) 1124 return; 1125 1126 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1127 unsigned ElementSize = 1128 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1129 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1130 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1131 return; 1132 } 1133 1134 if (isa<ConstantAggregateZero>(Init)) { 1135 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1136 return; 1137 } 1138 1139 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1140 unsigned ElementSize = 1141 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1142 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1143 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1144 return; 1145 } 1146 1147 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1148 const StructLayout *SL = 1149 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1150 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1151 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1152 return; 1153 } 1154 1155 if (const ConstantDataSequential *CDS = 1156 dyn_cast<ConstantDataSequential>(Init)) { 1157 // CDS is already laid out in host memory order. 1158 StringRef Data = CDS->getRawDataValues(); 1159 memcpy(Addr, Data.data(), Data.size()); 1160 return; 1161 } 1162 1163 if (Init->getType()->isFirstClassType()) { 1164 GenericValue Val = getConstantValue(Init); 1165 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1166 return; 1167 } 1168 1169 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1170 llvm_unreachable("Unknown constant type to initialize memory with!"); 1171 } 1172 1173 /// EmitGlobals - Emit all of the global variables to memory, storing their 1174 /// addresses into GlobalAddress. This must make sure to copy the contents of 1175 /// their initializers into the memory. 1176 void ExecutionEngine::emitGlobals() { 1177 // Loop over all of the global variables in the program, allocating the memory 1178 // to hold them. If there is more than one module, do a prepass over globals 1179 // to figure out how the different modules should link together. 1180 std::map<std::pair<std::string, Type*>, 1181 const GlobalValue*> LinkedGlobalsMap; 1182 1183 if (Modules.size() != 1) { 1184 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1185 Module &M = *Modules[m]; 1186 for (const auto &GV : M.globals()) { 1187 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1188 GV.hasAppendingLinkage() || !GV.hasName()) 1189 continue;// Ignore external globals and globals with internal linkage. 1190 1191 const GlobalValue *&GVEntry = 1192 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1193 1194 // If this is the first time we've seen this global, it is the canonical 1195 // version. 1196 if (!GVEntry) { 1197 GVEntry = &GV; 1198 continue; 1199 } 1200 1201 // If the existing global is strong, never replace it. 1202 if (GVEntry->hasExternalLinkage()) 1203 continue; 1204 1205 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1206 // symbol. FIXME is this right for common? 1207 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1208 GVEntry = &GV; 1209 } 1210 } 1211 } 1212 1213 std::vector<const GlobalValue*> NonCanonicalGlobals; 1214 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1215 Module &M = *Modules[m]; 1216 for (const auto &GV : M.globals()) { 1217 // In the multi-module case, see what this global maps to. 1218 if (!LinkedGlobalsMap.empty()) { 1219 if (const GlobalValue *GVEntry = 1220 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1221 // If something else is the canonical global, ignore this one. 1222 if (GVEntry != &GV) { 1223 NonCanonicalGlobals.push_back(&GV); 1224 continue; 1225 } 1226 } 1227 } 1228 1229 if (!GV.isDeclaration()) { 1230 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1231 } else { 1232 // External variable reference. Try to use the dynamic loader to 1233 // get a pointer to it. 1234 if (void *SymAddr = 1235 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1236 addGlobalMapping(&GV, SymAddr); 1237 else { 1238 report_fatal_error("Could not resolve external global address: " 1239 +GV.getName()); 1240 } 1241 } 1242 } 1243 1244 // If there are multiple modules, map the non-canonical globals to their 1245 // canonical location. 1246 if (!NonCanonicalGlobals.empty()) { 1247 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1248 const GlobalValue *GV = NonCanonicalGlobals[i]; 1249 const GlobalValue *CGV = 1250 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1251 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1252 assert(Ptr && "Canonical global wasn't codegen'd!"); 1253 addGlobalMapping(GV, Ptr); 1254 } 1255 } 1256 1257 // Now that all of the globals are set up in memory, loop through them all 1258 // and initialize their contents. 1259 for (const auto &GV : M.globals()) { 1260 if (!GV.isDeclaration()) { 1261 if (!LinkedGlobalsMap.empty()) { 1262 if (const GlobalValue *GVEntry = 1263 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1264 if (GVEntry != &GV) // Not the canonical variable. 1265 continue; 1266 } 1267 EmitGlobalVariable(&GV); 1268 } 1269 } 1270 } 1271 } 1272 1273 // EmitGlobalVariable - This method emits the specified global variable to the 1274 // address specified in GlobalAddresses, or allocates new memory if it's not 1275 // already in the map. 1276 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1277 void *GA = getPointerToGlobalIfAvailable(GV); 1278 1279 if (!GA) { 1280 // If it's not already specified, allocate memory for the global. 1281 GA = getMemoryForGV(GV); 1282 1283 // If we failed to allocate memory for this global, return. 1284 if (!GA) return; 1285 1286 addGlobalMapping(GV, GA); 1287 } 1288 1289 // Don't initialize if it's thread local, let the client do it. 1290 if (!GV->isThreadLocal()) 1291 InitializeMemory(GV->getInitializer(), GA); 1292 1293 Type *ElTy = GV->getType()->getElementType(); 1294 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1295 NumInitBytes += (unsigned)GVSize; 1296 ++NumGlobals; 1297 } 1298 1299 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1300 : EE(EE), GlobalAddressMap(this) { 1301 } 1302 1303 sys::Mutex * 1304 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1305 return &EES->EE.lock; 1306 } 1307 1308 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1309 const GlobalValue *Old) { 1310 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1311 EES->GlobalAddressReverseMap.erase(OldVal); 1312 } 1313 1314 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1315 const GlobalValue *, 1316 const GlobalValue *) { 1317 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1318 " RAUW on a value it has a global mapping for."); 1319 } 1320