1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <math.h> 28 using namespace llvm; 29 30 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 31 STATISTIC(NumGlobals , "Number of global vars initialized"); 32 33 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 34 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 35 36 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 37 LazyCompilationDisabled = false; 38 Modules.push_back(P); 39 assert(P && "ModuleProvider is null?"); 40 } 41 42 ExecutionEngine::ExecutionEngine(Module *M) { 43 LazyCompilationDisabled = false; 44 assert(M && "Module is null?"); 45 Modules.push_back(new ExistingModuleProvider(M)); 46 } 47 48 ExecutionEngine::~ExecutionEngine() { 49 clearAllGlobalMappings(); 50 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 51 delete Modules[i]; 52 } 53 54 /// FindFunctionNamed - Search all of the active modules to find the one that 55 /// defines FnName. This is very slow operation and shouldn't be used for 56 /// general code. 57 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 58 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 59 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 60 return F; 61 } 62 return 0; 63 } 64 65 66 /// addGlobalMapping - Tell the execution engine that the specified global is 67 /// at the specified location. This is used internally as functions are JIT'd 68 /// and as global variables are laid out in memory. It can and should also be 69 /// used by clients of the EE that want to have an LLVM global overlay 70 /// existing data in memory. 71 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 72 MutexGuard locked(lock); 73 74 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 75 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 76 CurVal = Addr; 77 78 // If we are using the reverse mapping, add it too 79 if (!state.getGlobalAddressReverseMap(locked).empty()) { 80 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 81 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 82 V = GV; 83 } 84 } 85 86 /// clearAllGlobalMappings - Clear all global mappings and start over again 87 /// use in dynamic compilation scenarios when you want to move globals 88 void ExecutionEngine::clearAllGlobalMappings() { 89 MutexGuard locked(lock); 90 91 state.getGlobalAddressMap(locked).clear(); 92 state.getGlobalAddressReverseMap(locked).clear(); 93 } 94 95 /// updateGlobalMapping - Replace an existing mapping for GV with a new 96 /// address. This updates both maps as required. If "Addr" is null, the 97 /// entry for the global is removed from the mappings. 98 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 99 MutexGuard locked(lock); 100 101 // Deleting from the mapping? 102 if (Addr == 0) { 103 state.getGlobalAddressMap(locked).erase(GV); 104 if (!state.getGlobalAddressReverseMap(locked).empty()) 105 state.getGlobalAddressReverseMap(locked).erase(Addr); 106 return; 107 } 108 109 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 110 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 111 state.getGlobalAddressReverseMap(locked).erase(CurVal); 112 CurVal = Addr; 113 114 // If we are using the reverse mapping, add it too 115 if (!state.getGlobalAddressReverseMap(locked).empty()) { 116 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 117 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 118 V = GV; 119 } 120 } 121 122 /// getPointerToGlobalIfAvailable - This returns the address of the specified 123 /// global value if it is has already been codegen'd, otherwise it returns null. 124 /// 125 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 126 MutexGuard locked(lock); 127 128 std::map<const GlobalValue*, void*>::iterator I = 129 state.getGlobalAddressMap(locked).find(GV); 130 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 131 } 132 133 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 134 /// at the specified address. 135 /// 136 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 137 MutexGuard locked(lock); 138 139 // If we haven't computed the reverse mapping yet, do so first. 140 if (state.getGlobalAddressReverseMap(locked).empty()) { 141 for (std::map<const GlobalValue*, void *>::iterator 142 I = state.getGlobalAddressMap(locked).begin(), 143 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 144 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 145 I->first)); 146 } 147 148 std::map<void *, const GlobalValue*>::iterator I = 149 state.getGlobalAddressReverseMap(locked).find(Addr); 150 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 151 } 152 153 // CreateArgv - Turn a vector of strings into a nice argv style array of 154 // pointers to null terminated strings. 155 // 156 static void *CreateArgv(ExecutionEngine *EE, 157 const std::vector<std::string> &InputArgv) { 158 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 159 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 160 161 DOUT << "ARGV = " << (void*)Result << "\n"; 162 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 163 164 for (unsigned i = 0; i != InputArgv.size(); ++i) { 165 unsigned Size = InputArgv[i].size()+1; 166 char *Dest = new char[Size]; 167 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 168 169 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 170 Dest[Size-1] = 0; 171 172 // Endian safe: Result[i] = (PointerTy)Dest; 173 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 174 SBytePtr); 175 } 176 177 // Null terminate it 178 EE->StoreValueToMemory(PTOGV(0), 179 (GenericValue*)(Result+InputArgv.size()*PtrSize), 180 SBytePtr); 181 return Result; 182 } 183 184 185 /// runStaticConstructorsDestructors - This method is used to execute all of 186 /// the static constructors or destructors for a program, depending on the 187 /// value of isDtors. 188 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 189 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 190 191 // Execute global ctors/dtors for each module in the program. 192 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 193 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 194 195 // If this global has internal linkage, or if it has a use, then it must be 196 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 197 // this is the case, don't execute any of the global ctors, __main will do 198 // it. 199 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 200 201 // Should be an array of '{ int, void ()* }' structs. The first value is 202 // the init priority, which we ignore. 203 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 204 if (!InitList) continue; 205 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 206 if (ConstantStruct *CS = 207 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 208 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 209 210 Constant *FP = CS->getOperand(1); 211 if (FP->isNullValue()) 212 break; // Found a null terminator, exit. 213 214 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 215 if (CE->isCast()) 216 FP = CE->getOperand(0); 217 if (Function *F = dyn_cast<Function>(FP)) { 218 // Execute the ctor/dtor function! 219 runFunction(F, std::vector<GenericValue>()); 220 } 221 } 222 } 223 } 224 225 /// runFunctionAsMain - This is a helper function which wraps runFunction to 226 /// handle the common task of starting up main with the specified argc, argv, 227 /// and envp parameters. 228 int ExecutionEngine::runFunctionAsMain(Function *Fn, 229 const std::vector<std::string> &argv, 230 const char * const * envp) { 231 std::vector<GenericValue> GVArgs; 232 GenericValue GVArgc; 233 GVArgc.IntVal = APInt(32, argv.size()); 234 235 // Check main() type 236 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 237 const FunctionType *FTy = Fn->getFunctionType(); 238 const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); 239 switch (NumArgs) { 240 case 3: 241 if (FTy->getParamType(2) != PPInt8Ty) { 242 cerr << "Invalid type for third argument of main() supplied\n"; 243 abort(); 244 } 245 // FALLS THROUGH 246 case 2: 247 if (FTy->getParamType(1) != PPInt8Ty) { 248 cerr << "Invalid type for second argument of main() supplied\n"; 249 abort(); 250 } 251 // FALLS THROUGH 252 case 1: 253 if (FTy->getParamType(0) != Type::Int32Ty) { 254 cerr << "Invalid type for first argument of main() supplied\n"; 255 abort(); 256 } 257 // FALLS THROUGH 258 case 0: 259 if (FTy->getReturnType() != Type::Int32Ty && 260 FTy->getReturnType() != Type::VoidTy) { 261 cerr << "Invalid return type of main() supplied\n"; 262 abort(); 263 } 264 break; 265 default: 266 cerr << "Invalid number of arguments of main() supplied\n"; 267 abort(); 268 } 269 270 if (NumArgs) { 271 GVArgs.push_back(GVArgc); // Arg #0 = argc. 272 if (NumArgs > 1) { 273 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 274 assert(((char **)GVTOP(GVArgs[1]))[0] && 275 "argv[0] was null after CreateArgv"); 276 if (NumArgs > 2) { 277 std::vector<std::string> EnvVars; 278 for (unsigned i = 0; envp[i]; ++i) 279 EnvVars.push_back(envp[i]); 280 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 281 } 282 } 283 } 284 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 285 } 286 287 /// If possible, create a JIT, unless the caller specifically requests an 288 /// Interpreter or there's an error. If even an Interpreter cannot be created, 289 /// NULL is returned. 290 /// 291 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 292 bool ForceInterpreter, 293 std::string *ErrorStr) { 294 ExecutionEngine *EE = 0; 295 296 // Unless the interpreter was explicitly selected, try making a JIT. 297 if (!ForceInterpreter && JITCtor) 298 EE = JITCtor(MP, ErrorStr); 299 300 // If we can't make a JIT, make an interpreter instead. 301 if (EE == 0 && InterpCtor) 302 EE = InterpCtor(MP, ErrorStr); 303 304 if (EE) { 305 // Make sure we can resolve symbols in the program as well. The zero arg 306 // to the function tells DynamicLibrary to load the program, not a library. 307 try { 308 sys::DynamicLibrary::LoadLibraryPermanently(0); 309 } catch (...) { 310 } 311 } 312 313 return EE; 314 } 315 316 /// getPointerToGlobal - This returns the address of the specified global 317 /// value. This may involve code generation if it's a function. 318 /// 319 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 320 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 321 return getPointerToFunction(F); 322 323 MutexGuard locked(lock); 324 void *p = state.getGlobalAddressMap(locked)[GV]; 325 if (p) 326 return p; 327 328 // Global variable might have been added since interpreter started. 329 if (GlobalVariable *GVar = 330 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 331 EmitGlobalVariable(GVar); 332 else 333 assert(0 && "Global hasn't had an address allocated yet!"); 334 return state.getGlobalAddressMap(locked)[GV]; 335 } 336 337 /// This function converts a Constant* into a GenericValue. The interesting 338 /// part is if C is a ConstantExpr. 339 /// @brief Get a GenericValue for a Constnat* 340 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 341 // If its undefined, return the garbage. 342 if (isa<UndefValue>(C)) 343 return GenericValue(); 344 345 // If the value is a ConstantExpr 346 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 347 Constant *Op0 = CE->getOperand(0); 348 switch (CE->getOpcode()) { 349 case Instruction::GetElementPtr: { 350 // Compute the index 351 GenericValue Result = getConstantValue(Op0); 352 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 353 uint64_t Offset = 354 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 355 356 char* tmp = (char*) Result.PointerVal; 357 Result = PTOGV(tmp + Offset); 358 return Result; 359 } 360 case Instruction::Trunc: { 361 GenericValue GV = getConstantValue(Op0); 362 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 363 GV.IntVal = GV.IntVal.trunc(BitWidth); 364 return GV; 365 } 366 case Instruction::ZExt: { 367 GenericValue GV = getConstantValue(Op0); 368 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 369 GV.IntVal = GV.IntVal.zext(BitWidth); 370 return GV; 371 } 372 case Instruction::SExt: { 373 GenericValue GV = getConstantValue(Op0); 374 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 375 GV.IntVal = GV.IntVal.sext(BitWidth); 376 return GV; 377 } 378 case Instruction::FPTrunc: { 379 GenericValue GV = getConstantValue(Op0); 380 GV.FloatVal = float(GV.DoubleVal); 381 return GV; 382 } 383 case Instruction::FPExt:{ 384 GenericValue GV = getConstantValue(Op0); 385 GV.DoubleVal = double(GV.FloatVal); 386 return GV; 387 } 388 case Instruction::UIToFP: { 389 GenericValue GV = getConstantValue(Op0); 390 if (CE->getType() == Type::FloatTy) 391 GV.FloatVal = float(GV.IntVal.roundToDouble()); 392 else 393 GV.DoubleVal = GV.IntVal.roundToDouble(); 394 return GV; 395 } 396 case Instruction::SIToFP: { 397 GenericValue GV = getConstantValue(Op0); 398 if (CE->getType() == Type::FloatTy) 399 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 400 else 401 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 402 return GV; 403 } 404 case Instruction::FPToUI: // double->APInt conversion handles sign 405 case Instruction::FPToSI: { 406 GenericValue GV = getConstantValue(Op0); 407 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 408 if (Op0->getType() == Type::FloatTy) 409 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 410 else 411 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 412 return GV; 413 } 414 case Instruction::PtrToInt: { 415 GenericValue GV = getConstantValue(Op0); 416 uint32_t PtrWidth = TD->getPointerSizeInBits(); 417 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 418 return GV; 419 } 420 case Instruction::IntToPtr: { 421 GenericValue GV = getConstantValue(Op0); 422 uint32_t PtrWidth = TD->getPointerSizeInBits(); 423 if (PtrWidth != GV.IntVal.getBitWidth()) 424 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 425 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 426 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 427 return GV; 428 } 429 case Instruction::BitCast: { 430 GenericValue GV = getConstantValue(Op0); 431 const Type* DestTy = CE->getType(); 432 switch (Op0->getType()->getTypeID()) { 433 default: assert(0 && "Invalid bitcast operand"); 434 case Type::IntegerTyID: 435 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 436 if (DestTy == Type::FloatTy) 437 GV.FloatVal = GV.IntVal.bitsToFloat(); 438 else if (DestTy == Type::DoubleTy) 439 GV.DoubleVal = GV.IntVal.bitsToDouble(); 440 break; 441 case Type::FloatTyID: 442 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 443 GV.IntVal.floatToBits(GV.FloatVal); 444 break; 445 case Type::DoubleTyID: 446 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 447 GV.IntVal.doubleToBits(GV.DoubleVal); 448 break; 449 case Type::PointerTyID: 450 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 451 break; // getConstantValue(Op0) above already converted it 452 } 453 return GV; 454 } 455 case Instruction::Add: 456 case Instruction::Sub: 457 case Instruction::Mul: 458 case Instruction::UDiv: 459 case Instruction::SDiv: 460 case Instruction::URem: 461 case Instruction::SRem: 462 case Instruction::And: 463 case Instruction::Or: 464 case Instruction::Xor: { 465 GenericValue LHS = getConstantValue(Op0); 466 GenericValue RHS = getConstantValue(CE->getOperand(1)); 467 GenericValue GV; 468 switch (CE->getOperand(0)->getType()->getTypeID()) { 469 default: assert(0 && "Bad add type!"); abort(); 470 case Type::IntegerTyID: 471 switch (CE->getOpcode()) { 472 default: assert(0 && "Invalid integer opcode"); 473 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 474 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 475 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 476 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 477 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 478 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 479 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 480 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 481 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 482 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 483 } 484 break; 485 case Type::FloatTyID: 486 switch (CE->getOpcode()) { 487 default: assert(0 && "Invalid float opcode"); abort(); 488 case Instruction::Add: 489 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 490 case Instruction::Sub: 491 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 492 case Instruction::Mul: 493 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 494 case Instruction::FDiv: 495 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 496 case Instruction::FRem: 497 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 498 } 499 break; 500 case Type::DoubleTyID: 501 switch (CE->getOpcode()) { 502 default: assert(0 && "Invalid double opcode"); abort(); 503 case Instruction::Add: 504 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 505 case Instruction::Sub: 506 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 507 case Instruction::Mul: 508 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 509 case Instruction::FDiv: 510 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 511 case Instruction::FRem: 512 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 513 } 514 break; 515 } 516 return GV; 517 } 518 default: 519 break; 520 } 521 cerr << "ConstantExpr not handled: " << *CE << "\n"; 522 abort(); 523 } 524 525 GenericValue Result; 526 switch (C->getType()->getTypeID()) { 527 case Type::FloatTyID: 528 Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); 529 break; 530 case Type::DoubleTyID: 531 Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); 532 break; 533 case Type::IntegerTyID: 534 Result.IntVal = cast<ConstantInt>(C)->getValue(); 535 break; 536 case Type::PointerTyID: 537 if (isa<ConstantPointerNull>(C)) 538 Result.PointerVal = 0; 539 else if (const Function *F = dyn_cast<Function>(C)) 540 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 541 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 542 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 543 else 544 assert(0 && "Unknown constant pointer type!"); 545 break; 546 default: 547 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 548 abort(); 549 } 550 return Result; 551 } 552 553 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 554 /// is the address of the memory at which to store Val, cast to GenericValue *. 555 /// It is not a pointer to a GenericValue containing the address at which to 556 /// store Val. 557 /// 558 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 559 const Type *Ty) { 560 switch (Ty->getTypeID()) { 561 case Type::IntegerTyID: { 562 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 563 GenericValue TmpVal = Val; 564 if (BitWidth <= 8) 565 *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); 566 else if (BitWidth <= 16) { 567 *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); 568 } else if (BitWidth <= 32) { 569 *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); 570 } else if (BitWidth <= 64) { 571 *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); 572 } else { 573 uint64_t *Dest = (uint64_t*)Ptr; 574 const uint64_t *Src = Val.IntVal.getRawData(); 575 for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) 576 Dest[i] = Src[i]; 577 } 578 break; 579 } 580 case Type::FloatTyID: 581 *((float*)Ptr) = Val.FloatVal; 582 break; 583 case Type::DoubleTyID: 584 *((double*)Ptr) = Val.DoubleVal; 585 break; 586 case Type::PointerTyID: 587 *((PointerTy*)Ptr) = Val.PointerVal; 588 break; 589 default: 590 cerr << "Cannot store value of type " << *Ty << "!\n"; 591 } 592 } 593 594 /// FIXME: document 595 /// 596 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 597 GenericValue *Ptr, 598 const Type *Ty) { 599 switch (Ty->getTypeID()) { 600 case Type::IntegerTyID: { 601 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 602 if (BitWidth <= 8) 603 Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); 604 else if (BitWidth <= 16) { 605 Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); 606 } else if (BitWidth <= 32) { 607 Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); 608 } else if (BitWidth <= 64) { 609 Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); 610 } else 611 Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr); 612 break; 613 } 614 case Type::FloatTyID: 615 Result.FloatVal = *((float*)Ptr); 616 break; 617 case Type::DoubleTyID: 618 Result.DoubleVal = *((double*)Ptr); 619 break; 620 case Type::PointerTyID: 621 Result.PointerVal = *((PointerTy*)Ptr); 622 break; 623 default: 624 cerr << "Cannot load value of type " << *Ty << "!\n"; 625 abort(); 626 } 627 } 628 629 // InitializeMemory - Recursive function to apply a Constant value into the 630 // specified memory location... 631 // 632 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 633 if (isa<UndefValue>(Init)) { 634 return; 635 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 636 unsigned ElementSize = 637 getTargetData()->getTypeSize(CP->getType()->getElementType()); 638 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 639 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 640 return; 641 } else if (Init->getType()->isFirstClassType()) { 642 GenericValue Val = getConstantValue(Init); 643 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 644 return; 645 } else if (isa<ConstantAggregateZero>(Init)) { 646 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 647 return; 648 } 649 650 switch (Init->getType()->getTypeID()) { 651 case Type::ArrayTyID: { 652 const ConstantArray *CPA = cast<ConstantArray>(Init); 653 unsigned ElementSize = 654 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 655 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 656 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 657 return; 658 } 659 660 case Type::StructTyID: { 661 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 662 const StructLayout *SL = 663 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 664 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 665 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 666 return; 667 } 668 669 default: 670 cerr << "Bad Type: " << *Init->getType() << "\n"; 671 assert(0 && "Unknown constant type to initialize memory with!"); 672 } 673 } 674 675 /// EmitGlobals - Emit all of the global variables to memory, storing their 676 /// addresses into GlobalAddress. This must make sure to copy the contents of 677 /// their initializers into the memory. 678 /// 679 void ExecutionEngine::emitGlobals() { 680 const TargetData *TD = getTargetData(); 681 682 // Loop over all of the global variables in the program, allocating the memory 683 // to hold them. If there is more than one module, do a prepass over globals 684 // to figure out how the different modules should link together. 685 // 686 std::map<std::pair<std::string, const Type*>, 687 const GlobalValue*> LinkedGlobalsMap; 688 689 if (Modules.size() != 1) { 690 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 691 Module &M = *Modules[m]->getModule(); 692 for (Module::const_global_iterator I = M.global_begin(), 693 E = M.global_end(); I != E; ++I) { 694 const GlobalValue *GV = I; 695 if (GV->hasInternalLinkage() || GV->isDeclaration() || 696 GV->hasAppendingLinkage() || !GV->hasName()) 697 continue;// Ignore external globals and globals with internal linkage. 698 699 const GlobalValue *&GVEntry = 700 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 701 702 // If this is the first time we've seen this global, it is the canonical 703 // version. 704 if (!GVEntry) { 705 GVEntry = GV; 706 continue; 707 } 708 709 // If the existing global is strong, never replace it. 710 if (GVEntry->hasExternalLinkage() || 711 GVEntry->hasDLLImportLinkage() || 712 GVEntry->hasDLLExportLinkage()) 713 continue; 714 715 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 716 // symbol. 717 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 718 GVEntry = GV; 719 } 720 } 721 } 722 723 std::vector<const GlobalValue*> NonCanonicalGlobals; 724 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 725 Module &M = *Modules[m]->getModule(); 726 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 727 I != E; ++I) { 728 // In the multi-module case, see what this global maps to. 729 if (!LinkedGlobalsMap.empty()) { 730 if (const GlobalValue *GVEntry = 731 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 732 // If something else is the canonical global, ignore this one. 733 if (GVEntry != &*I) { 734 NonCanonicalGlobals.push_back(I); 735 continue; 736 } 737 } 738 } 739 740 if (!I->isDeclaration()) { 741 // Get the type of the global. 742 const Type *Ty = I->getType()->getElementType(); 743 744 // Allocate some memory for it! 745 unsigned Size = TD->getTypeSize(Ty); 746 addGlobalMapping(I, new char[Size]); 747 } else { 748 // External variable reference. Try to use the dynamic loader to 749 // get a pointer to it. 750 if (void *SymAddr = 751 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 752 addGlobalMapping(I, SymAddr); 753 else { 754 cerr << "Could not resolve external global address: " 755 << I->getName() << "\n"; 756 abort(); 757 } 758 } 759 } 760 761 // If there are multiple modules, map the non-canonical globals to their 762 // canonical location. 763 if (!NonCanonicalGlobals.empty()) { 764 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 765 const GlobalValue *GV = NonCanonicalGlobals[i]; 766 const GlobalValue *CGV = 767 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 768 void *Ptr = getPointerToGlobalIfAvailable(CGV); 769 assert(Ptr && "Canonical global wasn't codegen'd!"); 770 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 771 } 772 } 773 774 // Now that all of the globals are set up in memory, loop through them all 775 // and initialize their contents. 776 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 777 I != E; ++I) { 778 if (!I->isDeclaration()) { 779 if (!LinkedGlobalsMap.empty()) { 780 if (const GlobalValue *GVEntry = 781 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 782 if (GVEntry != &*I) // Not the canonical variable. 783 continue; 784 } 785 EmitGlobalVariable(I); 786 } 787 } 788 } 789 } 790 791 // EmitGlobalVariable - This method emits the specified global variable to the 792 // address specified in GlobalAddresses, or allocates new memory if it's not 793 // already in the map. 794 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 795 void *GA = getPointerToGlobalIfAvailable(GV); 796 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 797 798 const Type *ElTy = GV->getType()->getElementType(); 799 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 800 if (GA == 0) { 801 // If it's not already specified, allocate memory for the global. 802 GA = new char[GVSize]; 803 addGlobalMapping(GV, GA); 804 } 805 806 InitializeMemory(GV->getInitializer(), GA); 807 NumInitBytes += (unsigned)GVSize; 808 ++NumGlobals; 809 } 810