1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Object/Archive.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DynamicLibrary.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Host.h" 35 #include "llvm/Support/MutexGuard.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cmath> 40 #include <cstring> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "jit" 44 45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46 STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 56 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 57 std::unique_ptr<TargetMachine> TM) = nullptr; 58 59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 60 std::string *ErrorStr) =nullptr; 61 62 void JITEventListener::anchor() {} 63 64 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 65 CompilingLazily = false; 66 GVCompilationDisabled = false; 67 SymbolSearchingDisabled = false; 68 69 // IR module verification is enabled by default in debug builds, and disabled 70 // by default in release builds. 71 #ifndef NDEBUG 72 VerifyModules = true; 73 #else 74 VerifyModules = false; 75 #endif 76 77 assert(M && "Module is null?"); 78 Modules.push_back(std::move(M)); 79 } 80 81 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 82 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 83 Init(std::move(M)); 84 } 85 86 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 87 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 88 Init(std::move(M)); 89 } 90 91 ExecutionEngine::~ExecutionEngine() { 92 clearAllGlobalMappings(); 93 } 94 95 namespace { 96 /// \brief Helper class which uses a value handler to automatically deletes the 97 /// memory block when the GlobalVariable is destroyed. 98 class GVMemoryBlock final : public CallbackVH { 99 GVMemoryBlock(const GlobalVariable *GV) 100 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 101 102 public: 103 /// \brief Returns the address the GlobalVariable should be written into. The 104 /// GVMemoryBlock object prefixes that. 105 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 106 Type *ElTy = GV->getType()->getElementType(); 107 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 108 void *RawMemory = ::operator new( 109 RoundUpToAlignment(sizeof(GVMemoryBlock), 110 TD.getPreferredAlignment(GV)) 111 + GVSize); 112 new(RawMemory) GVMemoryBlock(GV); 113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 114 } 115 116 void deleted() override { 117 // We allocated with operator new and with some extra memory hanging off the 118 // end, so don't just delete this. I'm not sure if this is actually 119 // required. 120 this->~GVMemoryBlock(); 121 ::operator delete(this); 122 } 123 }; 124 } // anonymous namespace 125 126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 127 return GVMemoryBlock::Create(GV, getDataLayout()); 128 } 129 130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 132 } 133 134 void 135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 137 } 138 139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 141 } 142 143 bool ExecutionEngine::removeModule(Module *M) { 144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 145 Module *Found = I->get(); 146 if (Found == M) { 147 I->release(); 148 Modules.erase(I); 149 clearGlobalMappingsFromModule(M); 150 return true; 151 } 152 } 153 return false; 154 } 155 156 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 158 Function *F = Modules[i]->getFunction(FnName); 159 if (F && !F->isDeclaration()) 160 return F; 161 } 162 return nullptr; 163 } 164 165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { 166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 168 if (GV && !GV->isDeclaration()) 169 return GV; 170 } 171 return nullptr; 172 } 173 174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 176 uint64_t OldVal; 177 178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 179 // GlobalAddressMap. 180 if (I == GlobalAddressMap.end()) 181 OldVal = 0; 182 else { 183 GlobalAddressReverseMap.erase(I->second); 184 OldVal = I->second; 185 GlobalAddressMap.erase(I); 186 } 187 188 return OldVal; 189 } 190 191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 192 assert(GV->hasName() && "Global must have name."); 193 194 MutexGuard locked(lock); 195 SmallString<128> FullName; 196 197 const DataLayout &DL = 198 GV->getParent()->getDataLayout().isDefault() 199 ? getDataLayout() 200 : GV->getParent()->getDataLayout(); 201 202 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 203 return FullName.str(); 204 } 205 206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 207 MutexGuard locked(lock); 208 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 209 } 210 211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 212 MutexGuard locked(lock); 213 214 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 215 216 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 217 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 218 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 219 CurVal = Addr; 220 221 // If we are using the reverse mapping, add it too. 222 if (!EEState.getGlobalAddressReverseMap().empty()) { 223 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 224 assert((!V.empty() || !Name.empty()) && 225 "GlobalMapping already established!"); 226 V = Name; 227 } 228 } 229 230 void ExecutionEngine::clearAllGlobalMappings() { 231 MutexGuard locked(lock); 232 233 EEState.getGlobalAddressMap().clear(); 234 EEState.getGlobalAddressReverseMap().clear(); 235 } 236 237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 238 MutexGuard locked(lock); 239 240 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 241 EEState.RemoveMapping(getMangledName(FI)); 242 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 243 GI != GE; ++GI) 244 EEState.RemoveMapping(getMangledName(GI)); 245 } 246 247 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 248 void *Addr) { 249 MutexGuard locked(lock); 250 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 251 } 252 253 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 254 MutexGuard locked(lock); 255 256 ExecutionEngineState::GlobalAddressMapTy &Map = 257 EEState.getGlobalAddressMap(); 258 259 // Deleting from the mapping? 260 if (!Addr) 261 return EEState.RemoveMapping(Name); 262 263 uint64_t &CurVal = Map[Name]; 264 uint64_t OldVal = CurVal; 265 266 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 267 EEState.getGlobalAddressReverseMap().erase(CurVal); 268 CurVal = Addr; 269 270 // If we are using the reverse mapping, add it too. 271 if (!EEState.getGlobalAddressReverseMap().empty()) { 272 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 273 assert((!V.empty() || !Name.empty()) && 274 "GlobalMapping already established!"); 275 V = Name; 276 } 277 return OldVal; 278 } 279 280 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 281 MutexGuard locked(lock); 282 uint64_t Address = 0; 283 ExecutionEngineState::GlobalAddressMapTy::iterator I = 284 EEState.getGlobalAddressMap().find(S); 285 if (I != EEState.getGlobalAddressMap().end()) 286 Address = I->second; 287 return Address; 288 } 289 290 291 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 292 MutexGuard locked(lock); 293 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 294 return Address; 295 return nullptr; 296 } 297 298 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 299 MutexGuard locked(lock); 300 return getPointerToGlobalIfAvailable(getMangledName(GV)); 301 } 302 303 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 304 MutexGuard locked(lock); 305 306 // If we haven't computed the reverse mapping yet, do so first. 307 if (EEState.getGlobalAddressReverseMap().empty()) { 308 for (ExecutionEngineState::GlobalAddressMapTy::iterator 309 I = EEState.getGlobalAddressMap().begin(), 310 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 311 StringRef Name = I->first(); 312 uint64_t Addr = I->second; 313 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 314 Addr, Name)); 315 } 316 } 317 318 std::map<uint64_t, std::string>::iterator I = 319 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 320 321 if (I != EEState.getGlobalAddressReverseMap().end()) { 322 StringRef Name = I->second; 323 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 324 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 325 return GV; 326 } 327 return nullptr; 328 } 329 330 namespace { 331 class ArgvArray { 332 std::unique_ptr<char[]> Array; 333 std::vector<std::unique_ptr<char[]>> Values; 334 public: 335 /// Turn a vector of strings into a nice argv style array of pointers to null 336 /// terminated strings. 337 void *reset(LLVMContext &C, ExecutionEngine *EE, 338 const std::vector<std::string> &InputArgv); 339 }; 340 } // anonymous namespace 341 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 342 const std::vector<std::string> &InputArgv) { 343 Values.clear(); // Free the old contents. 344 Values.reserve(InputArgv.size()); 345 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 346 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 347 348 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 349 Type *SBytePtr = Type::getInt8PtrTy(C); 350 351 for (unsigned i = 0; i != InputArgv.size(); ++i) { 352 unsigned Size = InputArgv[i].size()+1; 353 auto Dest = make_unique<char[]>(Size); 354 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 355 356 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 357 Dest[Size-1] = 0; 358 359 // Endian safe: Array[i] = (PointerTy)Dest; 360 EE->StoreValueToMemory(PTOGV(Dest.get()), 361 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 362 Values.push_back(std::move(Dest)); 363 } 364 365 // Null terminate it 366 EE->StoreValueToMemory(PTOGV(nullptr), 367 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 368 SBytePtr); 369 return Array.get(); 370 } 371 372 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 373 bool isDtors) { 374 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 375 GlobalVariable *GV = module.getNamedGlobal(Name); 376 377 // If this global has internal linkage, or if it has a use, then it must be 378 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 379 // this is the case, don't execute any of the global ctors, __main will do 380 // it. 381 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 382 383 // Should be an array of '{ i32, void ()* }' structs. The first value is 384 // the init priority, which we ignore. 385 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 386 if (!InitList) 387 return; 388 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 389 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 390 if (!CS) continue; 391 392 Constant *FP = CS->getOperand(1); 393 if (FP->isNullValue()) 394 continue; // Found a sentinal value, ignore. 395 396 // Strip off constant expression casts. 397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 398 if (CE->isCast()) 399 FP = CE->getOperand(0); 400 401 // Execute the ctor/dtor function! 402 if (Function *F = dyn_cast<Function>(FP)) 403 runFunction(F, None); 404 405 // FIXME: It is marginally lame that we just do nothing here if we see an 406 // entry we don't recognize. It might not be unreasonable for the verifier 407 // to not even allow this and just assert here. 408 } 409 } 410 411 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 412 // Execute global ctors/dtors for each module in the program. 413 for (std::unique_ptr<Module> &M : Modules) 414 runStaticConstructorsDestructors(*M, isDtors); 415 } 416 417 #ifndef NDEBUG 418 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 419 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 420 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 421 for (unsigned i = 0; i < PtrSize; ++i) 422 if (*(i + (uint8_t*)Loc)) 423 return false; 424 return true; 425 } 426 #endif 427 428 int ExecutionEngine::runFunctionAsMain(Function *Fn, 429 const std::vector<std::string> &argv, 430 const char * const * envp) { 431 std::vector<GenericValue> GVArgs; 432 GenericValue GVArgc; 433 GVArgc.IntVal = APInt(32, argv.size()); 434 435 // Check main() type 436 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 437 FunctionType *FTy = Fn->getFunctionType(); 438 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 439 440 // Check the argument types. 441 if (NumArgs > 3) 442 report_fatal_error("Invalid number of arguments of main() supplied"); 443 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 444 report_fatal_error("Invalid type for third argument of main() supplied"); 445 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 446 report_fatal_error("Invalid type for second argument of main() supplied"); 447 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 448 report_fatal_error("Invalid type for first argument of main() supplied"); 449 if (!FTy->getReturnType()->isIntegerTy() && 450 !FTy->getReturnType()->isVoidTy()) 451 report_fatal_error("Invalid return type of main() supplied"); 452 453 ArgvArray CArgv; 454 ArgvArray CEnv; 455 if (NumArgs) { 456 GVArgs.push_back(GVArgc); // Arg #0 = argc. 457 if (NumArgs > 1) { 458 // Arg #1 = argv. 459 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 460 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 461 "argv[0] was null after CreateArgv"); 462 if (NumArgs > 2) { 463 std::vector<std::string> EnvVars; 464 for (unsigned i = 0; envp[i]; ++i) 465 EnvVars.emplace_back(envp[i]); 466 // Arg #2 = envp. 467 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 468 } 469 } 470 } 471 472 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 473 } 474 475 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 476 477 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 478 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 479 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 480 RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault), 481 UseOrcMCJITReplacement(false) { 482 // IR module verification is enabled by default in debug builds, and disabled 483 // by default in release builds. 484 #ifndef NDEBUG 485 VerifyModules = true; 486 #else 487 VerifyModules = false; 488 #endif 489 } 490 491 EngineBuilder::~EngineBuilder() = default; 492 493 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 494 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 495 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 496 MemMgr = SharedMM; 497 Resolver = SharedMM; 498 return *this; 499 } 500 501 EngineBuilder& 502 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 503 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 504 return *this; 505 } 506 507 EngineBuilder& 508 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) { 509 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR)); 510 return *this; 511 } 512 513 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 514 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 515 516 // Make sure we can resolve symbols in the program as well. The zero arg 517 // to the function tells DynamicLibrary to load the program, not a library. 518 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 519 return nullptr; 520 521 // If the user specified a memory manager but didn't specify which engine to 522 // create, we assume they only want the JIT, and we fail if they only want 523 // the interpreter. 524 if (MemMgr) { 525 if (WhichEngine & EngineKind::JIT) 526 WhichEngine = EngineKind::JIT; 527 else { 528 if (ErrorStr) 529 *ErrorStr = "Cannot create an interpreter with a memory manager."; 530 return nullptr; 531 } 532 } 533 534 // Unless the interpreter was explicitly selected or the JIT is not linked, 535 // try making a JIT. 536 if ((WhichEngine & EngineKind::JIT) && TheTM) { 537 Triple TT(M->getTargetTriple()); 538 if (!TM->getTarget().hasJIT()) { 539 errs() << "WARNING: This target JIT is not designed for the host" 540 << " you are running. If bad things happen, please choose" 541 << " a different -march switch.\n"; 542 } 543 544 ExecutionEngine *EE = nullptr; 545 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 546 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 547 std::move(Resolver), 548 std::move(TheTM)); 549 EE->addModule(std::move(M)); 550 } else if (ExecutionEngine::MCJITCtor) 551 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 552 std::move(Resolver), std::move(TheTM)); 553 554 if (EE) { 555 EE->setVerifyModules(VerifyModules); 556 return EE; 557 } 558 } 559 560 // If we can't make a JIT and we didn't request one specifically, try making 561 // an interpreter instead. 562 if (WhichEngine & EngineKind::Interpreter) { 563 if (ExecutionEngine::InterpCtor) 564 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 565 if (ErrorStr) 566 *ErrorStr = "Interpreter has not been linked in."; 567 return nullptr; 568 } 569 570 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 571 if (ErrorStr) 572 *ErrorStr = "JIT has not been linked in."; 573 } 574 575 return nullptr; 576 } 577 578 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 579 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 580 return getPointerToFunction(F); 581 582 MutexGuard locked(lock); 583 if (void* P = getPointerToGlobalIfAvailable(GV)) 584 return P; 585 586 // Global variable might have been added since interpreter started. 587 if (GlobalVariable *GVar = 588 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 589 EmitGlobalVariable(GVar); 590 else 591 llvm_unreachable("Global hasn't had an address allocated yet!"); 592 593 return getPointerToGlobalIfAvailable(GV); 594 } 595 596 /// \brief Converts a Constant* into a GenericValue, including handling of 597 /// ConstantExpr values. 598 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 599 // If its undefined, return the garbage. 600 if (isa<UndefValue>(C)) { 601 GenericValue Result; 602 switch (C->getType()->getTypeID()) { 603 default: 604 break; 605 case Type::IntegerTyID: 606 case Type::X86_FP80TyID: 607 case Type::FP128TyID: 608 case Type::PPC_FP128TyID: 609 // Although the value is undefined, we still have to construct an APInt 610 // with the correct bit width. 611 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 612 break; 613 case Type::StructTyID: { 614 // if the whole struct is 'undef' just reserve memory for the value. 615 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 616 unsigned int elemNum = STy->getNumElements(); 617 Result.AggregateVal.resize(elemNum); 618 for (unsigned int i = 0; i < elemNum; ++i) { 619 Type *ElemTy = STy->getElementType(i); 620 if (ElemTy->isIntegerTy()) 621 Result.AggregateVal[i].IntVal = 622 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 623 else if (ElemTy->isAggregateType()) { 624 const Constant *ElemUndef = UndefValue::get(ElemTy); 625 Result.AggregateVal[i] = getConstantValue(ElemUndef); 626 } 627 } 628 } 629 } 630 break; 631 case Type::VectorTyID: 632 // if the whole vector is 'undef' just reserve memory for the value. 633 auto* VTy = dyn_cast<VectorType>(C->getType()); 634 Type *ElemTy = VTy->getElementType(); 635 unsigned int elemNum = VTy->getNumElements(); 636 Result.AggregateVal.resize(elemNum); 637 if (ElemTy->isIntegerTy()) 638 for (unsigned int i = 0; i < elemNum; ++i) 639 Result.AggregateVal[i].IntVal = 640 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 641 break; 642 } 643 return Result; 644 } 645 646 // Otherwise, if the value is a ConstantExpr... 647 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 648 Constant *Op0 = CE->getOperand(0); 649 switch (CE->getOpcode()) { 650 case Instruction::GetElementPtr: { 651 // Compute the index 652 GenericValue Result = getConstantValue(Op0); 653 APInt Offset(DL.getPointerSizeInBits(), 0); 654 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 655 656 char* tmp = (char*) Result.PointerVal; 657 Result = PTOGV(tmp + Offset.getSExtValue()); 658 return Result; 659 } 660 case Instruction::Trunc: { 661 GenericValue GV = getConstantValue(Op0); 662 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 663 GV.IntVal = GV.IntVal.trunc(BitWidth); 664 return GV; 665 } 666 case Instruction::ZExt: { 667 GenericValue GV = getConstantValue(Op0); 668 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 669 GV.IntVal = GV.IntVal.zext(BitWidth); 670 return GV; 671 } 672 case Instruction::SExt: { 673 GenericValue GV = getConstantValue(Op0); 674 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 675 GV.IntVal = GV.IntVal.sext(BitWidth); 676 return GV; 677 } 678 case Instruction::FPTrunc: { 679 // FIXME long double 680 GenericValue GV = getConstantValue(Op0); 681 GV.FloatVal = float(GV.DoubleVal); 682 return GV; 683 } 684 case Instruction::FPExt:{ 685 // FIXME long double 686 GenericValue GV = getConstantValue(Op0); 687 GV.DoubleVal = double(GV.FloatVal); 688 return GV; 689 } 690 case Instruction::UIToFP: { 691 GenericValue GV = getConstantValue(Op0); 692 if (CE->getType()->isFloatTy()) 693 GV.FloatVal = float(GV.IntVal.roundToDouble()); 694 else if (CE->getType()->isDoubleTy()) 695 GV.DoubleVal = GV.IntVal.roundToDouble(); 696 else if (CE->getType()->isX86_FP80Ty()) { 697 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 698 (void)apf.convertFromAPInt(GV.IntVal, 699 false, 700 APFloat::rmNearestTiesToEven); 701 GV.IntVal = apf.bitcastToAPInt(); 702 } 703 return GV; 704 } 705 case Instruction::SIToFP: { 706 GenericValue GV = getConstantValue(Op0); 707 if (CE->getType()->isFloatTy()) 708 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 709 else if (CE->getType()->isDoubleTy()) 710 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 711 else if (CE->getType()->isX86_FP80Ty()) { 712 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 713 (void)apf.convertFromAPInt(GV.IntVal, 714 true, 715 APFloat::rmNearestTiesToEven); 716 GV.IntVal = apf.bitcastToAPInt(); 717 } 718 return GV; 719 } 720 case Instruction::FPToUI: // double->APInt conversion handles sign 721 case Instruction::FPToSI: { 722 GenericValue GV = getConstantValue(Op0); 723 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 724 if (Op0->getType()->isFloatTy()) 725 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 726 else if (Op0->getType()->isDoubleTy()) 727 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 728 else if (Op0->getType()->isX86_FP80Ty()) { 729 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 730 uint64_t v; 731 bool ignored; 732 (void)apf.convertToInteger(&v, BitWidth, 733 CE->getOpcode()==Instruction::FPToSI, 734 APFloat::rmTowardZero, &ignored); 735 GV.IntVal = v; // endian? 736 } 737 return GV; 738 } 739 case Instruction::PtrToInt: { 740 GenericValue GV = getConstantValue(Op0); 741 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 742 assert(PtrWidth <= 64 && "Bad pointer width"); 743 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 744 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 745 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 746 return GV; 747 } 748 case Instruction::IntToPtr: { 749 GenericValue GV = getConstantValue(Op0); 750 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 751 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 752 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 753 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 754 return GV; 755 } 756 case Instruction::BitCast: { 757 GenericValue GV = getConstantValue(Op0); 758 Type* DestTy = CE->getType(); 759 switch (Op0->getType()->getTypeID()) { 760 default: llvm_unreachable("Invalid bitcast operand"); 761 case Type::IntegerTyID: 762 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 763 if (DestTy->isFloatTy()) 764 GV.FloatVal = GV.IntVal.bitsToFloat(); 765 else if (DestTy->isDoubleTy()) 766 GV.DoubleVal = GV.IntVal.bitsToDouble(); 767 break; 768 case Type::FloatTyID: 769 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 770 GV.IntVal = APInt::floatToBits(GV.FloatVal); 771 break; 772 case Type::DoubleTyID: 773 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 774 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 775 break; 776 case Type::PointerTyID: 777 assert(DestTy->isPointerTy() && "Invalid bitcast"); 778 break; // getConstantValue(Op0) above already converted it 779 } 780 return GV; 781 } 782 case Instruction::Add: 783 case Instruction::FAdd: 784 case Instruction::Sub: 785 case Instruction::FSub: 786 case Instruction::Mul: 787 case Instruction::FMul: 788 case Instruction::UDiv: 789 case Instruction::SDiv: 790 case Instruction::URem: 791 case Instruction::SRem: 792 case Instruction::And: 793 case Instruction::Or: 794 case Instruction::Xor: { 795 GenericValue LHS = getConstantValue(Op0); 796 GenericValue RHS = getConstantValue(CE->getOperand(1)); 797 GenericValue GV; 798 switch (CE->getOperand(0)->getType()->getTypeID()) { 799 default: llvm_unreachable("Bad add type!"); 800 case Type::IntegerTyID: 801 switch (CE->getOpcode()) { 802 default: llvm_unreachable("Invalid integer opcode"); 803 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 804 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 805 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 806 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 807 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 808 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 809 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 810 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 811 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 812 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 813 } 814 break; 815 case Type::FloatTyID: 816 switch (CE->getOpcode()) { 817 default: llvm_unreachable("Invalid float opcode"); 818 case Instruction::FAdd: 819 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 820 case Instruction::FSub: 821 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 822 case Instruction::FMul: 823 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 824 case Instruction::FDiv: 825 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 826 case Instruction::FRem: 827 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 828 } 829 break; 830 case Type::DoubleTyID: 831 switch (CE->getOpcode()) { 832 default: llvm_unreachable("Invalid double opcode"); 833 case Instruction::FAdd: 834 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 835 case Instruction::FSub: 836 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 837 case Instruction::FMul: 838 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 839 case Instruction::FDiv: 840 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 841 case Instruction::FRem: 842 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 843 } 844 break; 845 case Type::X86_FP80TyID: 846 case Type::PPC_FP128TyID: 847 case Type::FP128TyID: { 848 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 849 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 850 switch (CE->getOpcode()) { 851 default: llvm_unreachable("Invalid long double opcode"); 852 case Instruction::FAdd: 853 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 854 GV.IntVal = apfLHS.bitcastToAPInt(); 855 break; 856 case Instruction::FSub: 857 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 858 APFloat::rmNearestTiesToEven); 859 GV.IntVal = apfLHS.bitcastToAPInt(); 860 break; 861 case Instruction::FMul: 862 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 863 APFloat::rmNearestTiesToEven); 864 GV.IntVal = apfLHS.bitcastToAPInt(); 865 break; 866 case Instruction::FDiv: 867 apfLHS.divide(APFloat(Sem, RHS.IntVal), 868 APFloat::rmNearestTiesToEven); 869 GV.IntVal = apfLHS.bitcastToAPInt(); 870 break; 871 case Instruction::FRem: 872 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 873 GV.IntVal = apfLHS.bitcastToAPInt(); 874 break; 875 } 876 } 877 break; 878 } 879 return GV; 880 } 881 default: 882 break; 883 } 884 885 SmallString<256> Msg; 886 raw_svector_ostream OS(Msg); 887 OS << "ConstantExpr not handled: " << *CE; 888 report_fatal_error(OS.str()); 889 } 890 891 // Otherwise, we have a simple constant. 892 GenericValue Result; 893 switch (C->getType()->getTypeID()) { 894 case Type::FloatTyID: 895 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 896 break; 897 case Type::DoubleTyID: 898 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 899 break; 900 case Type::X86_FP80TyID: 901 case Type::FP128TyID: 902 case Type::PPC_FP128TyID: 903 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 904 break; 905 case Type::IntegerTyID: 906 Result.IntVal = cast<ConstantInt>(C)->getValue(); 907 break; 908 case Type::PointerTyID: 909 if (isa<ConstantPointerNull>(C)) 910 Result.PointerVal = nullptr; 911 else if (const Function *F = dyn_cast<Function>(C)) 912 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 913 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 914 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 915 else 916 llvm_unreachable("Unknown constant pointer type!"); 917 break; 918 case Type::VectorTyID: { 919 unsigned elemNum; 920 Type* ElemTy; 921 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 922 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 923 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 924 925 if (CDV) { 926 elemNum = CDV->getNumElements(); 927 ElemTy = CDV->getElementType(); 928 } else if (CV || CAZ) { 929 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 930 elemNum = VTy->getNumElements(); 931 ElemTy = VTy->getElementType(); 932 } else { 933 llvm_unreachable("Unknown constant vector type!"); 934 } 935 936 Result.AggregateVal.resize(elemNum); 937 // Check if vector holds floats. 938 if(ElemTy->isFloatTy()) { 939 if (CAZ) { 940 GenericValue floatZero; 941 floatZero.FloatVal = 0.f; 942 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 943 floatZero); 944 break; 945 } 946 if(CV) { 947 for (unsigned i = 0; i < elemNum; ++i) 948 if (!isa<UndefValue>(CV->getOperand(i))) 949 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 950 CV->getOperand(i))->getValueAPF().convertToFloat(); 951 break; 952 } 953 if(CDV) 954 for (unsigned i = 0; i < elemNum; ++i) 955 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 956 957 break; 958 } 959 // Check if vector holds doubles. 960 if (ElemTy->isDoubleTy()) { 961 if (CAZ) { 962 GenericValue doubleZero; 963 doubleZero.DoubleVal = 0.0; 964 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 965 doubleZero); 966 break; 967 } 968 if(CV) { 969 for (unsigned i = 0; i < elemNum; ++i) 970 if (!isa<UndefValue>(CV->getOperand(i))) 971 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 972 CV->getOperand(i))->getValueAPF().convertToDouble(); 973 break; 974 } 975 if(CDV) 976 for (unsigned i = 0; i < elemNum; ++i) 977 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 978 979 break; 980 } 981 // Check if vector holds integers. 982 if (ElemTy->isIntegerTy()) { 983 if (CAZ) { 984 GenericValue intZero; 985 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 986 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 987 intZero); 988 break; 989 } 990 if(CV) { 991 for (unsigned i = 0; i < elemNum; ++i) 992 if (!isa<UndefValue>(CV->getOperand(i))) 993 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 994 CV->getOperand(i))->getValue(); 995 else { 996 Result.AggregateVal[i].IntVal = 997 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 998 } 999 break; 1000 } 1001 if(CDV) 1002 for (unsigned i = 0; i < elemNum; ++i) 1003 Result.AggregateVal[i].IntVal = APInt( 1004 CDV->getElementType()->getPrimitiveSizeInBits(), 1005 CDV->getElementAsInteger(i)); 1006 1007 break; 1008 } 1009 llvm_unreachable("Unknown constant pointer type!"); 1010 } 1011 break; 1012 1013 default: 1014 SmallString<256> Msg; 1015 raw_svector_ostream OS(Msg); 1016 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1017 report_fatal_error(OS.str()); 1018 } 1019 1020 return Result; 1021 } 1022 1023 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1024 /// with the integer held in IntVal. 1025 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1026 unsigned StoreBytes) { 1027 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1028 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1029 1030 if (sys::IsLittleEndianHost) { 1031 // Little-endian host - the source is ordered from LSB to MSB. Order the 1032 // destination from LSB to MSB: Do a straight copy. 1033 memcpy(Dst, Src, StoreBytes); 1034 } else { 1035 // Big-endian host - the source is an array of 64 bit words ordered from 1036 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1037 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1038 while (StoreBytes > sizeof(uint64_t)) { 1039 StoreBytes -= sizeof(uint64_t); 1040 // May not be aligned so use memcpy. 1041 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1042 Src += sizeof(uint64_t); 1043 } 1044 1045 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1046 } 1047 } 1048 1049 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1050 GenericValue *Ptr, Type *Ty) { 1051 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1052 1053 switch (Ty->getTypeID()) { 1054 default: 1055 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1056 break; 1057 case Type::IntegerTyID: 1058 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1059 break; 1060 case Type::FloatTyID: 1061 *((float*)Ptr) = Val.FloatVal; 1062 break; 1063 case Type::DoubleTyID: 1064 *((double*)Ptr) = Val.DoubleVal; 1065 break; 1066 case Type::X86_FP80TyID: 1067 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1068 break; 1069 case Type::PointerTyID: 1070 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1071 if (StoreBytes != sizeof(PointerTy)) 1072 memset(&(Ptr->PointerVal), 0, StoreBytes); 1073 1074 *((PointerTy*)Ptr) = Val.PointerVal; 1075 break; 1076 case Type::VectorTyID: 1077 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1078 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1079 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1080 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1081 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1082 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1083 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1084 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1085 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1086 } 1087 } 1088 break; 1089 } 1090 1091 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1092 // Host and target are different endian - reverse the stored bytes. 1093 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1094 } 1095 1096 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1097 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1098 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1099 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1100 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1101 const_cast<uint64_t *>(IntVal.getRawData())); 1102 1103 if (sys::IsLittleEndianHost) 1104 // Little-endian host - the destination must be ordered from LSB to MSB. 1105 // The source is ordered from LSB to MSB: Do a straight copy. 1106 memcpy(Dst, Src, LoadBytes); 1107 else { 1108 // Big-endian - the destination is an array of 64 bit words ordered from 1109 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1110 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1111 // a word. 1112 while (LoadBytes > sizeof(uint64_t)) { 1113 LoadBytes -= sizeof(uint64_t); 1114 // May not be aligned so use memcpy. 1115 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1116 Dst += sizeof(uint64_t); 1117 } 1118 1119 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1120 } 1121 } 1122 1123 /// FIXME: document 1124 /// 1125 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1126 GenericValue *Ptr, 1127 Type *Ty) { 1128 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1129 1130 switch (Ty->getTypeID()) { 1131 case Type::IntegerTyID: 1132 // An APInt with all words initially zero. 1133 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1134 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1135 break; 1136 case Type::FloatTyID: 1137 Result.FloatVal = *((float*)Ptr); 1138 break; 1139 case Type::DoubleTyID: 1140 Result.DoubleVal = *((double*)Ptr); 1141 break; 1142 case Type::PointerTyID: 1143 Result.PointerVal = *((PointerTy*)Ptr); 1144 break; 1145 case Type::X86_FP80TyID: { 1146 // This is endian dependent, but it will only work on x86 anyway. 1147 // FIXME: Will not trap if loading a signaling NaN. 1148 uint64_t y[2]; 1149 memcpy(y, Ptr, 10); 1150 Result.IntVal = APInt(80, y); 1151 break; 1152 } 1153 case Type::VectorTyID: { 1154 auto *VT = cast<VectorType>(Ty); 1155 Type *ElemT = VT->getElementType(); 1156 const unsigned numElems = VT->getNumElements(); 1157 if (ElemT->isFloatTy()) { 1158 Result.AggregateVal.resize(numElems); 1159 for (unsigned i = 0; i < numElems; ++i) 1160 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1161 } 1162 if (ElemT->isDoubleTy()) { 1163 Result.AggregateVal.resize(numElems); 1164 for (unsigned i = 0; i < numElems; ++i) 1165 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1166 } 1167 if (ElemT->isIntegerTy()) { 1168 GenericValue intZero; 1169 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1170 intZero.IntVal = APInt(elemBitWidth, 0); 1171 Result.AggregateVal.resize(numElems, intZero); 1172 for (unsigned i = 0; i < numElems; ++i) 1173 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1174 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1175 } 1176 break; 1177 } 1178 default: 1179 SmallString<256> Msg; 1180 raw_svector_ostream OS(Msg); 1181 OS << "Cannot load value of type " << *Ty << "!"; 1182 report_fatal_error(OS.str()); 1183 } 1184 } 1185 1186 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1187 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1188 DEBUG(Init->dump()); 1189 if (isa<UndefValue>(Init)) 1190 return; 1191 1192 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1193 unsigned ElementSize = 1194 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1195 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1196 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1197 return; 1198 } 1199 1200 if (isa<ConstantAggregateZero>(Init)) { 1201 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1202 return; 1203 } 1204 1205 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1206 unsigned ElementSize = 1207 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1208 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1209 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1210 return; 1211 } 1212 1213 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1214 const StructLayout *SL = 1215 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1216 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1217 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1218 return; 1219 } 1220 1221 if (const ConstantDataSequential *CDS = 1222 dyn_cast<ConstantDataSequential>(Init)) { 1223 // CDS is already laid out in host memory order. 1224 StringRef Data = CDS->getRawDataValues(); 1225 memcpy(Addr, Data.data(), Data.size()); 1226 return; 1227 } 1228 1229 if (Init->getType()->isFirstClassType()) { 1230 GenericValue Val = getConstantValue(Init); 1231 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1232 return; 1233 } 1234 1235 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1236 llvm_unreachable("Unknown constant type to initialize memory with!"); 1237 } 1238 1239 /// EmitGlobals - Emit all of the global variables to memory, storing their 1240 /// addresses into GlobalAddress. This must make sure to copy the contents of 1241 /// their initializers into the memory. 1242 void ExecutionEngine::emitGlobals() { 1243 // Loop over all of the global variables in the program, allocating the memory 1244 // to hold them. If there is more than one module, do a prepass over globals 1245 // to figure out how the different modules should link together. 1246 std::map<std::pair<std::string, Type*>, 1247 const GlobalValue*> LinkedGlobalsMap; 1248 1249 if (Modules.size() != 1) { 1250 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1251 Module &M = *Modules[m]; 1252 for (const auto &GV : M.globals()) { 1253 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1254 GV.hasAppendingLinkage() || !GV.hasName()) 1255 continue;// Ignore external globals and globals with internal linkage. 1256 1257 const GlobalValue *&GVEntry = 1258 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1259 1260 // If this is the first time we've seen this global, it is the canonical 1261 // version. 1262 if (!GVEntry) { 1263 GVEntry = &GV; 1264 continue; 1265 } 1266 1267 // If the existing global is strong, never replace it. 1268 if (GVEntry->hasExternalLinkage()) 1269 continue; 1270 1271 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1272 // symbol. FIXME is this right for common? 1273 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1274 GVEntry = &GV; 1275 } 1276 } 1277 } 1278 1279 std::vector<const GlobalValue*> NonCanonicalGlobals; 1280 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1281 Module &M = *Modules[m]; 1282 for (const auto &GV : M.globals()) { 1283 // In the multi-module case, see what this global maps to. 1284 if (!LinkedGlobalsMap.empty()) { 1285 if (const GlobalValue *GVEntry = 1286 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1287 // If something else is the canonical global, ignore this one. 1288 if (GVEntry != &GV) { 1289 NonCanonicalGlobals.push_back(&GV); 1290 continue; 1291 } 1292 } 1293 } 1294 1295 if (!GV.isDeclaration()) { 1296 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1297 } else { 1298 // External variable reference. Try to use the dynamic loader to 1299 // get a pointer to it. 1300 if (void *SymAddr = 1301 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1302 addGlobalMapping(&GV, SymAddr); 1303 else { 1304 report_fatal_error("Could not resolve external global address: " 1305 +GV.getName()); 1306 } 1307 } 1308 } 1309 1310 // If there are multiple modules, map the non-canonical globals to their 1311 // canonical location. 1312 if (!NonCanonicalGlobals.empty()) { 1313 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1314 const GlobalValue *GV = NonCanonicalGlobals[i]; 1315 const GlobalValue *CGV = 1316 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1317 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1318 assert(Ptr && "Canonical global wasn't codegen'd!"); 1319 addGlobalMapping(GV, Ptr); 1320 } 1321 } 1322 1323 // Now that all of the globals are set up in memory, loop through them all 1324 // and initialize their contents. 1325 for (const auto &GV : M.globals()) { 1326 if (!GV.isDeclaration()) { 1327 if (!LinkedGlobalsMap.empty()) { 1328 if (const GlobalValue *GVEntry = 1329 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1330 if (GVEntry != &GV) // Not the canonical variable. 1331 continue; 1332 } 1333 EmitGlobalVariable(&GV); 1334 } 1335 } 1336 } 1337 } 1338 1339 // EmitGlobalVariable - This method emits the specified global variable to the 1340 // address specified in GlobalAddresses, or allocates new memory if it's not 1341 // already in the map. 1342 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1343 void *GA = getPointerToGlobalIfAvailable(GV); 1344 1345 if (!GA) { 1346 // If it's not already specified, allocate memory for the global. 1347 GA = getMemoryForGV(GV); 1348 1349 // If we failed to allocate memory for this global, return. 1350 if (!GA) return; 1351 1352 addGlobalMapping(GV, GA); 1353 } 1354 1355 // Don't initialize if it's thread local, let the client do it. 1356 if (!GV->isThreadLocal()) 1357 InitializeMemory(GV->getInitializer(), GA); 1358 1359 Type *ElTy = GV->getType()->getElementType(); 1360 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1361 NumInitBytes += (unsigned)GVSize; 1362 ++NumGlobals; 1363 } 1364