1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Object/Archive.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DynamicLibrary.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Host.h" 35 #include "llvm/Support/MutexGuard.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cmath> 40 #include <cstring> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "jit" 44 45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46 STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 52 std::shared_ptr<JITSymbolResolver> Resolver, 53 std::unique_ptr<TargetMachine> TM) = nullptr; 54 55 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 56 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 57 std::shared_ptr<JITSymbolResolver> Resolver, 58 std::unique_ptr<TargetMachine> TM) = nullptr; 59 60 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 61 std::string *ErrorStr) =nullptr; 62 63 void JITEventListener::anchor() {} 64 65 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 66 CompilingLazily = false; 67 GVCompilationDisabled = false; 68 SymbolSearchingDisabled = false; 69 70 // IR module verification is enabled by default in debug builds, and disabled 71 // by default in release builds. 72 #ifndef NDEBUG 73 VerifyModules = true; 74 #else 75 VerifyModules = false; 76 #endif 77 78 assert(M && "Module is null?"); 79 Modules.push_back(std::move(M)); 80 } 81 82 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 83 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 84 Init(std::move(M)); 85 } 86 87 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 88 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 89 Init(std::move(M)); 90 } 91 92 ExecutionEngine::~ExecutionEngine() { 93 clearAllGlobalMappings(); 94 } 95 96 namespace { 97 /// \brief Helper class which uses a value handler to automatically deletes the 98 /// memory block when the GlobalVariable is destroyed. 99 class GVMemoryBlock final : public CallbackVH { 100 GVMemoryBlock(const GlobalVariable *GV) 101 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 102 103 public: 104 /// \brief Returns the address the GlobalVariable should be written into. The 105 /// GVMemoryBlock object prefixes that. 106 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 107 Type *ElTy = GV->getValueType(); 108 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 109 void *RawMemory = ::operator new( 110 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); 111 new(RawMemory) GVMemoryBlock(GV); 112 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 113 } 114 115 void deleted() override { 116 // We allocated with operator new and with some extra memory hanging off the 117 // end, so don't just delete this. I'm not sure if this is actually 118 // required. 119 this->~GVMemoryBlock(); 120 ::operator delete(this); 121 } 122 }; 123 } // anonymous namespace 124 125 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 126 return GVMemoryBlock::Create(GV, getDataLayout()); 127 } 128 129 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 130 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 131 } 132 133 void 134 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 135 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 136 } 137 138 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 139 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 140 } 141 142 bool ExecutionEngine::removeModule(Module *M) { 143 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 144 Module *Found = I->get(); 145 if (Found == M) { 146 I->release(); 147 Modules.erase(I); 148 clearGlobalMappingsFromModule(M); 149 return true; 150 } 151 } 152 return false; 153 } 154 155 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 156 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 157 Function *F = Modules[i]->getFunction(FnName); 158 if (F && !F->isDeclaration()) 159 return F; 160 } 161 return nullptr; 162 } 163 164 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { 165 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 166 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 167 if (GV && !GV->isDeclaration()) 168 return GV; 169 } 170 return nullptr; 171 } 172 173 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 174 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 175 uint64_t OldVal; 176 177 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 178 // GlobalAddressMap. 179 if (I == GlobalAddressMap.end()) 180 OldVal = 0; 181 else { 182 GlobalAddressReverseMap.erase(I->second); 183 OldVal = I->second; 184 GlobalAddressMap.erase(I); 185 } 186 187 return OldVal; 188 } 189 190 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 191 assert(GV->hasName() && "Global must have name."); 192 193 MutexGuard locked(lock); 194 SmallString<128> FullName; 195 196 const DataLayout &DL = 197 GV->getParent()->getDataLayout().isDefault() 198 ? getDataLayout() 199 : GV->getParent()->getDataLayout(); 200 201 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 202 return FullName.str(); 203 } 204 205 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 206 MutexGuard locked(lock); 207 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 208 } 209 210 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 211 MutexGuard locked(lock); 212 213 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 214 215 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 216 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 217 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 218 CurVal = Addr; 219 220 // If we are using the reverse mapping, add it too. 221 if (!EEState.getGlobalAddressReverseMap().empty()) { 222 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 223 assert((!V.empty() || !Name.empty()) && 224 "GlobalMapping already established!"); 225 V = Name; 226 } 227 } 228 229 void ExecutionEngine::clearAllGlobalMappings() { 230 MutexGuard locked(lock); 231 232 EEState.getGlobalAddressMap().clear(); 233 EEState.getGlobalAddressReverseMap().clear(); 234 } 235 236 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 237 MutexGuard locked(lock); 238 239 for (GlobalObject &GO : M->global_objects()) 240 EEState.RemoveMapping(getMangledName(&GO)); 241 } 242 243 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 244 void *Addr) { 245 MutexGuard locked(lock); 246 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 247 } 248 249 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 250 MutexGuard locked(lock); 251 252 ExecutionEngineState::GlobalAddressMapTy &Map = 253 EEState.getGlobalAddressMap(); 254 255 // Deleting from the mapping? 256 if (!Addr) 257 return EEState.RemoveMapping(Name); 258 259 uint64_t &CurVal = Map[Name]; 260 uint64_t OldVal = CurVal; 261 262 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 263 EEState.getGlobalAddressReverseMap().erase(CurVal); 264 CurVal = Addr; 265 266 // If we are using the reverse mapping, add it too. 267 if (!EEState.getGlobalAddressReverseMap().empty()) { 268 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 269 assert((!V.empty() || !Name.empty()) && 270 "GlobalMapping already established!"); 271 V = Name; 272 } 273 return OldVal; 274 } 275 276 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 277 MutexGuard locked(lock); 278 uint64_t Address = 0; 279 ExecutionEngineState::GlobalAddressMapTy::iterator I = 280 EEState.getGlobalAddressMap().find(S); 281 if (I != EEState.getGlobalAddressMap().end()) 282 Address = I->second; 283 return Address; 284 } 285 286 287 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 288 MutexGuard locked(lock); 289 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 290 return Address; 291 return nullptr; 292 } 293 294 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 295 MutexGuard locked(lock); 296 return getPointerToGlobalIfAvailable(getMangledName(GV)); 297 } 298 299 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 300 MutexGuard locked(lock); 301 302 // If we haven't computed the reverse mapping yet, do so first. 303 if (EEState.getGlobalAddressReverseMap().empty()) { 304 for (ExecutionEngineState::GlobalAddressMapTy::iterator 305 I = EEState.getGlobalAddressMap().begin(), 306 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 307 StringRef Name = I->first(); 308 uint64_t Addr = I->second; 309 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 310 Addr, Name)); 311 } 312 } 313 314 std::map<uint64_t, std::string>::iterator I = 315 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 316 317 if (I != EEState.getGlobalAddressReverseMap().end()) { 318 StringRef Name = I->second; 319 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 320 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 321 return GV; 322 } 323 return nullptr; 324 } 325 326 namespace { 327 class ArgvArray { 328 std::unique_ptr<char[]> Array; 329 std::vector<std::unique_ptr<char[]>> Values; 330 public: 331 /// Turn a vector of strings into a nice argv style array of pointers to null 332 /// terminated strings. 333 void *reset(LLVMContext &C, ExecutionEngine *EE, 334 const std::vector<std::string> &InputArgv); 335 }; 336 } // anonymous namespace 337 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 338 const std::vector<std::string> &InputArgv) { 339 Values.clear(); // Free the old contents. 340 Values.reserve(InputArgv.size()); 341 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 342 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 343 344 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 345 Type *SBytePtr = Type::getInt8PtrTy(C); 346 347 for (unsigned i = 0; i != InputArgv.size(); ++i) { 348 unsigned Size = InputArgv[i].size()+1; 349 auto Dest = make_unique<char[]>(Size); 350 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 351 352 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 353 Dest[Size-1] = 0; 354 355 // Endian safe: Array[i] = (PointerTy)Dest; 356 EE->StoreValueToMemory(PTOGV(Dest.get()), 357 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 358 Values.push_back(std::move(Dest)); 359 } 360 361 // Null terminate it 362 EE->StoreValueToMemory(PTOGV(nullptr), 363 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 364 SBytePtr); 365 return Array.get(); 366 } 367 368 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 369 bool isDtors) { 370 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 371 GlobalVariable *GV = module.getNamedGlobal(Name); 372 373 // If this global has internal linkage, or if it has a use, then it must be 374 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 375 // this is the case, don't execute any of the global ctors, __main will do 376 // it. 377 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 378 379 // Should be an array of '{ i32, void ()* }' structs. The first value is 380 // the init priority, which we ignore. 381 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 382 if (!InitList) 383 return; 384 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 385 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 386 if (!CS) continue; 387 388 Constant *FP = CS->getOperand(1); 389 if (FP->isNullValue()) 390 continue; // Found a sentinal value, ignore. 391 392 // Strip off constant expression casts. 393 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 394 if (CE->isCast()) 395 FP = CE->getOperand(0); 396 397 // Execute the ctor/dtor function! 398 if (Function *F = dyn_cast<Function>(FP)) 399 runFunction(F, None); 400 401 // FIXME: It is marginally lame that we just do nothing here if we see an 402 // entry we don't recognize. It might not be unreasonable for the verifier 403 // to not even allow this and just assert here. 404 } 405 } 406 407 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 408 // Execute global ctors/dtors for each module in the program. 409 for (std::unique_ptr<Module> &M : Modules) 410 runStaticConstructorsDestructors(*M, isDtors); 411 } 412 413 #ifndef NDEBUG 414 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 415 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 416 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 417 for (unsigned i = 0; i < PtrSize; ++i) 418 if (*(i + (uint8_t*)Loc)) 419 return false; 420 return true; 421 } 422 #endif 423 424 int ExecutionEngine::runFunctionAsMain(Function *Fn, 425 const std::vector<std::string> &argv, 426 const char * const * envp) { 427 std::vector<GenericValue> GVArgs; 428 GenericValue GVArgc; 429 GVArgc.IntVal = APInt(32, argv.size()); 430 431 // Check main() type 432 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 433 FunctionType *FTy = Fn->getFunctionType(); 434 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 435 436 // Check the argument types. 437 if (NumArgs > 3) 438 report_fatal_error("Invalid number of arguments of main() supplied"); 439 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 440 report_fatal_error("Invalid type for third argument of main() supplied"); 441 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 442 report_fatal_error("Invalid type for second argument of main() supplied"); 443 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 444 report_fatal_error("Invalid type for first argument of main() supplied"); 445 if (!FTy->getReturnType()->isIntegerTy() && 446 !FTy->getReturnType()->isVoidTy()) 447 report_fatal_error("Invalid return type of main() supplied"); 448 449 ArgvArray CArgv; 450 ArgvArray CEnv; 451 if (NumArgs) { 452 GVArgs.push_back(GVArgc); // Arg #0 = argc. 453 if (NumArgs > 1) { 454 // Arg #1 = argv. 455 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 456 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 457 "argv[0] was null after CreateArgv"); 458 if (NumArgs > 2) { 459 std::vector<std::string> EnvVars; 460 for (unsigned i = 0; envp[i]; ++i) 461 EnvVars.emplace_back(envp[i]); 462 // Arg #2 = envp. 463 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 464 } 465 } 466 } 467 468 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 469 } 470 471 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 472 473 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 474 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 475 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 476 CMModel(CodeModel::JITDefault), UseOrcMCJITReplacement(false) { 477 // IR module verification is enabled by default in debug builds, and disabled 478 // by default in release builds. 479 #ifndef NDEBUG 480 VerifyModules = true; 481 #else 482 VerifyModules = false; 483 #endif 484 } 485 486 EngineBuilder::~EngineBuilder() = default; 487 488 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 489 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 490 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 491 MemMgr = SharedMM; 492 Resolver = SharedMM; 493 return *this; 494 } 495 496 EngineBuilder& 497 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 498 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 499 return *this; 500 } 501 502 EngineBuilder& 503 EngineBuilder::setSymbolResolver(std::unique_ptr<JITSymbolResolver> SR) { 504 Resolver = std::shared_ptr<JITSymbolResolver>(std::move(SR)); 505 return *this; 506 } 507 508 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 509 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 510 511 // Make sure we can resolve symbols in the program as well. The zero arg 512 // to the function tells DynamicLibrary to load the program, not a library. 513 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 514 return nullptr; 515 516 // If the user specified a memory manager but didn't specify which engine to 517 // create, we assume they only want the JIT, and we fail if they only want 518 // the interpreter. 519 if (MemMgr) { 520 if (WhichEngine & EngineKind::JIT) 521 WhichEngine = EngineKind::JIT; 522 else { 523 if (ErrorStr) 524 *ErrorStr = "Cannot create an interpreter with a memory manager."; 525 return nullptr; 526 } 527 } 528 529 // Unless the interpreter was explicitly selected or the JIT is not linked, 530 // try making a JIT. 531 if ((WhichEngine & EngineKind::JIT) && TheTM) { 532 Triple TT(M->getTargetTriple()); 533 if (!TM->getTarget().hasJIT()) { 534 errs() << "WARNING: This target JIT is not designed for the host" 535 << " you are running. If bad things happen, please choose" 536 << " a different -march switch.\n"; 537 } 538 539 ExecutionEngine *EE = nullptr; 540 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 541 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 542 std::move(Resolver), 543 std::move(TheTM)); 544 EE->addModule(std::move(M)); 545 } else if (ExecutionEngine::MCJITCtor) 546 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 547 std::move(Resolver), std::move(TheTM)); 548 549 if (EE) { 550 EE->setVerifyModules(VerifyModules); 551 return EE; 552 } 553 } 554 555 // If we can't make a JIT and we didn't request one specifically, try making 556 // an interpreter instead. 557 if (WhichEngine & EngineKind::Interpreter) { 558 if (ExecutionEngine::InterpCtor) 559 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 560 if (ErrorStr) 561 *ErrorStr = "Interpreter has not been linked in."; 562 return nullptr; 563 } 564 565 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 566 if (ErrorStr) 567 *ErrorStr = "JIT has not been linked in."; 568 } 569 570 return nullptr; 571 } 572 573 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 574 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 575 return getPointerToFunction(F); 576 577 MutexGuard locked(lock); 578 if (void* P = getPointerToGlobalIfAvailable(GV)) 579 return P; 580 581 // Global variable might have been added since interpreter started. 582 if (GlobalVariable *GVar = 583 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 584 EmitGlobalVariable(GVar); 585 else 586 llvm_unreachable("Global hasn't had an address allocated yet!"); 587 588 return getPointerToGlobalIfAvailable(GV); 589 } 590 591 /// \brief Converts a Constant* into a GenericValue, including handling of 592 /// ConstantExpr values. 593 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 594 // If its undefined, return the garbage. 595 if (isa<UndefValue>(C)) { 596 GenericValue Result; 597 switch (C->getType()->getTypeID()) { 598 default: 599 break; 600 case Type::IntegerTyID: 601 case Type::X86_FP80TyID: 602 case Type::FP128TyID: 603 case Type::PPC_FP128TyID: 604 // Although the value is undefined, we still have to construct an APInt 605 // with the correct bit width. 606 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 607 break; 608 case Type::StructTyID: { 609 // if the whole struct is 'undef' just reserve memory for the value. 610 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 611 unsigned int elemNum = STy->getNumElements(); 612 Result.AggregateVal.resize(elemNum); 613 for (unsigned int i = 0; i < elemNum; ++i) { 614 Type *ElemTy = STy->getElementType(i); 615 if (ElemTy->isIntegerTy()) 616 Result.AggregateVal[i].IntVal = 617 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 618 else if (ElemTy->isAggregateType()) { 619 const Constant *ElemUndef = UndefValue::get(ElemTy); 620 Result.AggregateVal[i] = getConstantValue(ElemUndef); 621 } 622 } 623 } 624 } 625 break; 626 case Type::VectorTyID: 627 // if the whole vector is 'undef' just reserve memory for the value. 628 auto* VTy = dyn_cast<VectorType>(C->getType()); 629 Type *ElemTy = VTy->getElementType(); 630 unsigned int elemNum = VTy->getNumElements(); 631 Result.AggregateVal.resize(elemNum); 632 if (ElemTy->isIntegerTy()) 633 for (unsigned int i = 0; i < elemNum; ++i) 634 Result.AggregateVal[i].IntVal = 635 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 636 break; 637 } 638 return Result; 639 } 640 641 // Otherwise, if the value is a ConstantExpr... 642 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 643 Constant *Op0 = CE->getOperand(0); 644 switch (CE->getOpcode()) { 645 case Instruction::GetElementPtr: { 646 // Compute the index 647 GenericValue Result = getConstantValue(Op0); 648 APInt Offset(DL.getPointerSizeInBits(), 0); 649 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 650 651 char* tmp = (char*) Result.PointerVal; 652 Result = PTOGV(tmp + Offset.getSExtValue()); 653 return Result; 654 } 655 case Instruction::Trunc: { 656 GenericValue GV = getConstantValue(Op0); 657 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 658 GV.IntVal = GV.IntVal.trunc(BitWidth); 659 return GV; 660 } 661 case Instruction::ZExt: { 662 GenericValue GV = getConstantValue(Op0); 663 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 664 GV.IntVal = GV.IntVal.zext(BitWidth); 665 return GV; 666 } 667 case Instruction::SExt: { 668 GenericValue GV = getConstantValue(Op0); 669 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 670 GV.IntVal = GV.IntVal.sext(BitWidth); 671 return GV; 672 } 673 case Instruction::FPTrunc: { 674 // FIXME long double 675 GenericValue GV = getConstantValue(Op0); 676 GV.FloatVal = float(GV.DoubleVal); 677 return GV; 678 } 679 case Instruction::FPExt:{ 680 // FIXME long double 681 GenericValue GV = getConstantValue(Op0); 682 GV.DoubleVal = double(GV.FloatVal); 683 return GV; 684 } 685 case Instruction::UIToFP: { 686 GenericValue GV = getConstantValue(Op0); 687 if (CE->getType()->isFloatTy()) 688 GV.FloatVal = float(GV.IntVal.roundToDouble()); 689 else if (CE->getType()->isDoubleTy()) 690 GV.DoubleVal = GV.IntVal.roundToDouble(); 691 else if (CE->getType()->isX86_FP80Ty()) { 692 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 693 (void)apf.convertFromAPInt(GV.IntVal, 694 false, 695 APFloat::rmNearestTiesToEven); 696 GV.IntVal = apf.bitcastToAPInt(); 697 } 698 return GV; 699 } 700 case Instruction::SIToFP: { 701 GenericValue GV = getConstantValue(Op0); 702 if (CE->getType()->isFloatTy()) 703 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 704 else if (CE->getType()->isDoubleTy()) 705 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 706 else if (CE->getType()->isX86_FP80Ty()) { 707 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 708 (void)apf.convertFromAPInt(GV.IntVal, 709 true, 710 APFloat::rmNearestTiesToEven); 711 GV.IntVal = apf.bitcastToAPInt(); 712 } 713 return GV; 714 } 715 case Instruction::FPToUI: // double->APInt conversion handles sign 716 case Instruction::FPToSI: { 717 GenericValue GV = getConstantValue(Op0); 718 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 719 if (Op0->getType()->isFloatTy()) 720 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 721 else if (Op0->getType()->isDoubleTy()) 722 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 723 else if (Op0->getType()->isX86_FP80Ty()) { 724 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 725 uint64_t v; 726 bool ignored; 727 (void)apf.convertToInteger(&v, BitWidth, 728 CE->getOpcode()==Instruction::FPToSI, 729 APFloat::rmTowardZero, &ignored); 730 GV.IntVal = v; // endian? 731 } 732 return GV; 733 } 734 case Instruction::PtrToInt: { 735 GenericValue GV = getConstantValue(Op0); 736 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 737 assert(PtrWidth <= 64 && "Bad pointer width"); 738 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 739 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 740 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 741 return GV; 742 } 743 case Instruction::IntToPtr: { 744 GenericValue GV = getConstantValue(Op0); 745 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 746 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 747 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 748 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 749 return GV; 750 } 751 case Instruction::BitCast: { 752 GenericValue GV = getConstantValue(Op0); 753 Type* DestTy = CE->getType(); 754 switch (Op0->getType()->getTypeID()) { 755 default: llvm_unreachable("Invalid bitcast operand"); 756 case Type::IntegerTyID: 757 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 758 if (DestTy->isFloatTy()) 759 GV.FloatVal = GV.IntVal.bitsToFloat(); 760 else if (DestTy->isDoubleTy()) 761 GV.DoubleVal = GV.IntVal.bitsToDouble(); 762 break; 763 case Type::FloatTyID: 764 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 765 GV.IntVal = APInt::floatToBits(GV.FloatVal); 766 break; 767 case Type::DoubleTyID: 768 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 769 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 770 break; 771 case Type::PointerTyID: 772 assert(DestTy->isPointerTy() && "Invalid bitcast"); 773 break; // getConstantValue(Op0) above already converted it 774 } 775 return GV; 776 } 777 case Instruction::Add: 778 case Instruction::FAdd: 779 case Instruction::Sub: 780 case Instruction::FSub: 781 case Instruction::Mul: 782 case Instruction::FMul: 783 case Instruction::UDiv: 784 case Instruction::SDiv: 785 case Instruction::URem: 786 case Instruction::SRem: 787 case Instruction::And: 788 case Instruction::Or: 789 case Instruction::Xor: { 790 GenericValue LHS = getConstantValue(Op0); 791 GenericValue RHS = getConstantValue(CE->getOperand(1)); 792 GenericValue GV; 793 switch (CE->getOperand(0)->getType()->getTypeID()) { 794 default: llvm_unreachable("Bad add type!"); 795 case Type::IntegerTyID: 796 switch (CE->getOpcode()) { 797 default: llvm_unreachable("Invalid integer opcode"); 798 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 799 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 800 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 801 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 802 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 803 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 804 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 805 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 806 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 807 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 808 } 809 break; 810 case Type::FloatTyID: 811 switch (CE->getOpcode()) { 812 default: llvm_unreachable("Invalid float opcode"); 813 case Instruction::FAdd: 814 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 815 case Instruction::FSub: 816 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 817 case Instruction::FMul: 818 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 819 case Instruction::FDiv: 820 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 821 case Instruction::FRem: 822 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 823 } 824 break; 825 case Type::DoubleTyID: 826 switch (CE->getOpcode()) { 827 default: llvm_unreachable("Invalid double opcode"); 828 case Instruction::FAdd: 829 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 830 case Instruction::FSub: 831 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 832 case Instruction::FMul: 833 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 834 case Instruction::FDiv: 835 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 836 case Instruction::FRem: 837 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 838 } 839 break; 840 case Type::X86_FP80TyID: 841 case Type::PPC_FP128TyID: 842 case Type::FP128TyID: { 843 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 844 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 845 switch (CE->getOpcode()) { 846 default: llvm_unreachable("Invalid long double opcode"); 847 case Instruction::FAdd: 848 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 849 GV.IntVal = apfLHS.bitcastToAPInt(); 850 break; 851 case Instruction::FSub: 852 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 853 APFloat::rmNearestTiesToEven); 854 GV.IntVal = apfLHS.bitcastToAPInt(); 855 break; 856 case Instruction::FMul: 857 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 858 APFloat::rmNearestTiesToEven); 859 GV.IntVal = apfLHS.bitcastToAPInt(); 860 break; 861 case Instruction::FDiv: 862 apfLHS.divide(APFloat(Sem, RHS.IntVal), 863 APFloat::rmNearestTiesToEven); 864 GV.IntVal = apfLHS.bitcastToAPInt(); 865 break; 866 case Instruction::FRem: 867 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 868 GV.IntVal = apfLHS.bitcastToAPInt(); 869 break; 870 } 871 } 872 break; 873 } 874 return GV; 875 } 876 default: 877 break; 878 } 879 880 SmallString<256> Msg; 881 raw_svector_ostream OS(Msg); 882 OS << "ConstantExpr not handled: " << *CE; 883 report_fatal_error(OS.str()); 884 } 885 886 // Otherwise, we have a simple constant. 887 GenericValue Result; 888 switch (C->getType()->getTypeID()) { 889 case Type::FloatTyID: 890 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 891 break; 892 case Type::DoubleTyID: 893 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 894 break; 895 case Type::X86_FP80TyID: 896 case Type::FP128TyID: 897 case Type::PPC_FP128TyID: 898 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 899 break; 900 case Type::IntegerTyID: 901 Result.IntVal = cast<ConstantInt>(C)->getValue(); 902 break; 903 case Type::PointerTyID: 904 if (isa<ConstantPointerNull>(C)) 905 Result.PointerVal = nullptr; 906 else if (const Function *F = dyn_cast<Function>(C)) 907 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 908 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 909 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 910 else 911 llvm_unreachable("Unknown constant pointer type!"); 912 break; 913 case Type::VectorTyID: { 914 unsigned elemNum; 915 Type* ElemTy; 916 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 917 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 918 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 919 920 if (CDV) { 921 elemNum = CDV->getNumElements(); 922 ElemTy = CDV->getElementType(); 923 } else if (CV || CAZ) { 924 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 925 elemNum = VTy->getNumElements(); 926 ElemTy = VTy->getElementType(); 927 } else { 928 llvm_unreachable("Unknown constant vector type!"); 929 } 930 931 Result.AggregateVal.resize(elemNum); 932 // Check if vector holds floats. 933 if(ElemTy->isFloatTy()) { 934 if (CAZ) { 935 GenericValue floatZero; 936 floatZero.FloatVal = 0.f; 937 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 938 floatZero); 939 break; 940 } 941 if(CV) { 942 for (unsigned i = 0; i < elemNum; ++i) 943 if (!isa<UndefValue>(CV->getOperand(i))) 944 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 945 CV->getOperand(i))->getValueAPF().convertToFloat(); 946 break; 947 } 948 if(CDV) 949 for (unsigned i = 0; i < elemNum; ++i) 950 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 951 952 break; 953 } 954 // Check if vector holds doubles. 955 if (ElemTy->isDoubleTy()) { 956 if (CAZ) { 957 GenericValue doubleZero; 958 doubleZero.DoubleVal = 0.0; 959 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 960 doubleZero); 961 break; 962 } 963 if(CV) { 964 for (unsigned i = 0; i < elemNum; ++i) 965 if (!isa<UndefValue>(CV->getOperand(i))) 966 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 967 CV->getOperand(i))->getValueAPF().convertToDouble(); 968 break; 969 } 970 if(CDV) 971 for (unsigned i = 0; i < elemNum; ++i) 972 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 973 974 break; 975 } 976 // Check if vector holds integers. 977 if (ElemTy->isIntegerTy()) { 978 if (CAZ) { 979 GenericValue intZero; 980 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 981 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 982 intZero); 983 break; 984 } 985 if(CV) { 986 for (unsigned i = 0; i < elemNum; ++i) 987 if (!isa<UndefValue>(CV->getOperand(i))) 988 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 989 CV->getOperand(i))->getValue(); 990 else { 991 Result.AggregateVal[i].IntVal = 992 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 993 } 994 break; 995 } 996 if(CDV) 997 for (unsigned i = 0; i < elemNum; ++i) 998 Result.AggregateVal[i].IntVal = APInt( 999 CDV->getElementType()->getPrimitiveSizeInBits(), 1000 CDV->getElementAsInteger(i)); 1001 1002 break; 1003 } 1004 llvm_unreachable("Unknown constant pointer type!"); 1005 } 1006 break; 1007 1008 default: 1009 SmallString<256> Msg; 1010 raw_svector_ostream OS(Msg); 1011 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1012 report_fatal_error(OS.str()); 1013 } 1014 1015 return Result; 1016 } 1017 1018 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1019 /// with the integer held in IntVal. 1020 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1021 unsigned StoreBytes) { 1022 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1023 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1024 1025 if (sys::IsLittleEndianHost) { 1026 // Little-endian host - the source is ordered from LSB to MSB. Order the 1027 // destination from LSB to MSB: Do a straight copy. 1028 memcpy(Dst, Src, StoreBytes); 1029 } else { 1030 // Big-endian host - the source is an array of 64 bit words ordered from 1031 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1032 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1033 while (StoreBytes > sizeof(uint64_t)) { 1034 StoreBytes -= sizeof(uint64_t); 1035 // May not be aligned so use memcpy. 1036 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1037 Src += sizeof(uint64_t); 1038 } 1039 1040 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1041 } 1042 } 1043 1044 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1045 GenericValue *Ptr, Type *Ty) { 1046 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1047 1048 switch (Ty->getTypeID()) { 1049 default: 1050 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1051 break; 1052 case Type::IntegerTyID: 1053 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1054 break; 1055 case Type::FloatTyID: 1056 *((float*)Ptr) = Val.FloatVal; 1057 break; 1058 case Type::DoubleTyID: 1059 *((double*)Ptr) = Val.DoubleVal; 1060 break; 1061 case Type::X86_FP80TyID: 1062 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1063 break; 1064 case Type::PointerTyID: 1065 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1066 if (StoreBytes != sizeof(PointerTy)) 1067 memset(&(Ptr->PointerVal), 0, StoreBytes); 1068 1069 *((PointerTy*)Ptr) = Val.PointerVal; 1070 break; 1071 case Type::VectorTyID: 1072 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1073 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1074 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1075 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1076 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1077 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1078 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1079 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1080 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1081 } 1082 } 1083 break; 1084 } 1085 1086 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1087 // Host and target are different endian - reverse the stored bytes. 1088 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1089 } 1090 1091 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1092 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1093 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1094 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1095 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1096 const_cast<uint64_t *>(IntVal.getRawData())); 1097 1098 if (sys::IsLittleEndianHost) 1099 // Little-endian host - the destination must be ordered from LSB to MSB. 1100 // The source is ordered from LSB to MSB: Do a straight copy. 1101 memcpy(Dst, Src, LoadBytes); 1102 else { 1103 // Big-endian - the destination is an array of 64 bit words ordered from 1104 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1105 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1106 // a word. 1107 while (LoadBytes > sizeof(uint64_t)) { 1108 LoadBytes -= sizeof(uint64_t); 1109 // May not be aligned so use memcpy. 1110 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1111 Dst += sizeof(uint64_t); 1112 } 1113 1114 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1115 } 1116 } 1117 1118 /// FIXME: document 1119 /// 1120 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1121 GenericValue *Ptr, 1122 Type *Ty) { 1123 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1124 1125 switch (Ty->getTypeID()) { 1126 case Type::IntegerTyID: 1127 // An APInt with all words initially zero. 1128 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1129 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1130 break; 1131 case Type::FloatTyID: 1132 Result.FloatVal = *((float*)Ptr); 1133 break; 1134 case Type::DoubleTyID: 1135 Result.DoubleVal = *((double*)Ptr); 1136 break; 1137 case Type::PointerTyID: 1138 Result.PointerVal = *((PointerTy*)Ptr); 1139 break; 1140 case Type::X86_FP80TyID: { 1141 // This is endian dependent, but it will only work on x86 anyway. 1142 // FIXME: Will not trap if loading a signaling NaN. 1143 uint64_t y[2]; 1144 memcpy(y, Ptr, 10); 1145 Result.IntVal = APInt(80, y); 1146 break; 1147 } 1148 case Type::VectorTyID: { 1149 auto *VT = cast<VectorType>(Ty); 1150 Type *ElemT = VT->getElementType(); 1151 const unsigned numElems = VT->getNumElements(); 1152 if (ElemT->isFloatTy()) { 1153 Result.AggregateVal.resize(numElems); 1154 for (unsigned i = 0; i < numElems; ++i) 1155 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1156 } 1157 if (ElemT->isDoubleTy()) { 1158 Result.AggregateVal.resize(numElems); 1159 for (unsigned i = 0; i < numElems; ++i) 1160 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1161 } 1162 if (ElemT->isIntegerTy()) { 1163 GenericValue intZero; 1164 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1165 intZero.IntVal = APInt(elemBitWidth, 0); 1166 Result.AggregateVal.resize(numElems, intZero); 1167 for (unsigned i = 0; i < numElems; ++i) 1168 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1169 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1170 } 1171 break; 1172 } 1173 default: 1174 SmallString<256> Msg; 1175 raw_svector_ostream OS(Msg); 1176 OS << "Cannot load value of type " << *Ty << "!"; 1177 report_fatal_error(OS.str()); 1178 } 1179 } 1180 1181 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1182 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1183 DEBUG(Init->dump()); 1184 if (isa<UndefValue>(Init)) 1185 return; 1186 1187 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1188 unsigned ElementSize = 1189 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1190 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1191 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1192 return; 1193 } 1194 1195 if (isa<ConstantAggregateZero>(Init)) { 1196 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1197 return; 1198 } 1199 1200 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1201 unsigned ElementSize = 1202 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1203 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1204 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1205 return; 1206 } 1207 1208 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1209 const StructLayout *SL = 1210 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1211 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1212 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1213 return; 1214 } 1215 1216 if (const ConstantDataSequential *CDS = 1217 dyn_cast<ConstantDataSequential>(Init)) { 1218 // CDS is already laid out in host memory order. 1219 StringRef Data = CDS->getRawDataValues(); 1220 memcpy(Addr, Data.data(), Data.size()); 1221 return; 1222 } 1223 1224 if (Init->getType()->isFirstClassType()) { 1225 GenericValue Val = getConstantValue(Init); 1226 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1227 return; 1228 } 1229 1230 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1231 llvm_unreachable("Unknown constant type to initialize memory with!"); 1232 } 1233 1234 /// EmitGlobals - Emit all of the global variables to memory, storing their 1235 /// addresses into GlobalAddress. This must make sure to copy the contents of 1236 /// their initializers into the memory. 1237 void ExecutionEngine::emitGlobals() { 1238 // Loop over all of the global variables in the program, allocating the memory 1239 // to hold them. If there is more than one module, do a prepass over globals 1240 // to figure out how the different modules should link together. 1241 std::map<std::pair<std::string, Type*>, 1242 const GlobalValue*> LinkedGlobalsMap; 1243 1244 if (Modules.size() != 1) { 1245 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1246 Module &M = *Modules[m]; 1247 for (const auto &GV : M.globals()) { 1248 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1249 GV.hasAppendingLinkage() || !GV.hasName()) 1250 continue;// Ignore external globals and globals with internal linkage. 1251 1252 const GlobalValue *&GVEntry = 1253 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1254 1255 // If this is the first time we've seen this global, it is the canonical 1256 // version. 1257 if (!GVEntry) { 1258 GVEntry = &GV; 1259 continue; 1260 } 1261 1262 // If the existing global is strong, never replace it. 1263 if (GVEntry->hasExternalLinkage()) 1264 continue; 1265 1266 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1267 // symbol. FIXME is this right for common? 1268 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1269 GVEntry = &GV; 1270 } 1271 } 1272 } 1273 1274 std::vector<const GlobalValue*> NonCanonicalGlobals; 1275 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1276 Module &M = *Modules[m]; 1277 for (const auto &GV : M.globals()) { 1278 // In the multi-module case, see what this global maps to. 1279 if (!LinkedGlobalsMap.empty()) { 1280 if (const GlobalValue *GVEntry = 1281 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1282 // If something else is the canonical global, ignore this one. 1283 if (GVEntry != &GV) { 1284 NonCanonicalGlobals.push_back(&GV); 1285 continue; 1286 } 1287 } 1288 } 1289 1290 if (!GV.isDeclaration()) { 1291 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1292 } else { 1293 // External variable reference. Try to use the dynamic loader to 1294 // get a pointer to it. 1295 if (void *SymAddr = 1296 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1297 addGlobalMapping(&GV, SymAddr); 1298 else { 1299 report_fatal_error("Could not resolve external global address: " 1300 +GV.getName()); 1301 } 1302 } 1303 } 1304 1305 // If there are multiple modules, map the non-canonical globals to their 1306 // canonical location. 1307 if (!NonCanonicalGlobals.empty()) { 1308 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1309 const GlobalValue *GV = NonCanonicalGlobals[i]; 1310 const GlobalValue *CGV = 1311 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1312 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1313 assert(Ptr && "Canonical global wasn't codegen'd!"); 1314 addGlobalMapping(GV, Ptr); 1315 } 1316 } 1317 1318 // Now that all of the globals are set up in memory, loop through them all 1319 // and initialize their contents. 1320 for (const auto &GV : M.globals()) { 1321 if (!GV.isDeclaration()) { 1322 if (!LinkedGlobalsMap.empty()) { 1323 if (const GlobalValue *GVEntry = 1324 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1325 if (GVEntry != &GV) // Not the canonical variable. 1326 continue; 1327 } 1328 EmitGlobalVariable(&GV); 1329 } 1330 } 1331 } 1332 } 1333 1334 // EmitGlobalVariable - This method emits the specified global variable to the 1335 // address specified in GlobalAddresses, or allocates new memory if it's not 1336 // already in the map. 1337 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1338 void *GA = getPointerToGlobalIfAvailable(GV); 1339 1340 if (!GA) { 1341 // If it's not already specified, allocate memory for the global. 1342 GA = getMemoryForGV(GV); 1343 1344 // If we failed to allocate memory for this global, return. 1345 if (!GA) return; 1346 1347 addGlobalMapping(GV, GA); 1348 } 1349 1350 // Don't initialize if it's thread local, let the client do it. 1351 if (!GV->isThreadLocal()) 1352 InitializeMemory(GV->getInitializer(), GA); 1353 1354 Type *ElTy = GV->getValueType(); 1355 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1356 NumInitBytes += (unsigned)GVSize; 1357 ++NumGlobals; 1358 } 1359