1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 // Pin the vtable to this file. 46 void ObjectCache::anchor() {} 47 void ObjectBuffer::anchor() {} 48 void ObjectBufferStream::anchor() {} 49 50 ExecutionEngine *(*ExecutionEngine::JITCtor)( 51 Module *M, 52 std::string *ErrorStr, 53 JITMemoryManager *JMM, 54 bool GVsWithCode, 55 TargetMachine *TM) = nullptr; 56 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 57 Module *M, 58 std::string *ErrorStr, 59 RTDyldMemoryManager *MCJMM, 60 TargetMachine *TM) = nullptr; 61 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 62 std::string *ErrorStr) =nullptr; 63 64 ExecutionEngine::ExecutionEngine(Module *M) 65 : EEState(*this), 66 LazyFunctionCreator(nullptr) { 67 CompilingLazily = false; 68 GVCompilationDisabled = false; 69 SymbolSearchingDisabled = false; 70 71 // IR module verification is enabled by default in debug builds, and disabled 72 // by default in release builds. 73 #ifndef NDEBUG 74 VerifyModules = true; 75 #else 76 VerifyModules = false; 77 #endif 78 79 Modules.push_back(M); 80 assert(M && "Module is null?"); 81 } 82 83 ExecutionEngine::~ExecutionEngine() { 84 clearAllGlobalMappings(); 85 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 86 delete Modules[i]; 87 } 88 89 namespace { 90 /// \brief Helper class which uses a value handler to automatically deletes the 91 /// memory block when the GlobalVariable is destroyed. 92 class GVMemoryBlock : public CallbackVH { 93 GVMemoryBlock(const GlobalVariable *GV) 94 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 95 96 public: 97 /// \brief Returns the address the GlobalVariable should be written into. The 98 /// GVMemoryBlock object prefixes that. 99 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 100 Type *ElTy = GV->getType()->getElementType(); 101 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 102 void *RawMemory = ::operator new( 103 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 104 TD.getPreferredAlignment(GV)) 105 + GVSize); 106 new(RawMemory) GVMemoryBlock(GV); 107 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 108 } 109 110 void deleted() override { 111 // We allocated with operator new and with some extra memory hanging off the 112 // end, so don't just delete this. I'm not sure if this is actually 113 // required. 114 this->~GVMemoryBlock(); 115 ::operator delete(this); 116 } 117 }; 118 } // anonymous namespace 119 120 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 121 return GVMemoryBlock::Create(GV, *getDataLayout()); 122 } 123 124 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 125 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 126 } 127 128 void ExecutionEngine::addArchive(std::unique_ptr<object::Archive> A) { 129 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 130 } 131 132 bool ExecutionEngine::removeModule(Module *M) { 133 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 134 E = Modules.end(); I != E; ++I) { 135 Module *Found = *I; 136 if (Found == M) { 137 Modules.erase(I); 138 clearGlobalMappingsFromModule(M); 139 return true; 140 } 141 } 142 return false; 143 } 144 145 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 146 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 147 if (Function *F = Modules[i]->getFunction(FnName)) 148 return F; 149 } 150 return nullptr; 151 } 152 153 154 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 155 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 156 void *OldVal; 157 158 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 159 // GlobalAddressMap. 160 if (I == GlobalAddressMap.end()) 161 OldVal = nullptr; 162 else { 163 OldVal = I->second; 164 GlobalAddressMap.erase(I); 165 } 166 167 GlobalAddressReverseMap.erase(OldVal); 168 return OldVal; 169 } 170 171 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 172 MutexGuard locked(lock); 173 174 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 175 << "\' to [" << Addr << "]\n";); 176 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 177 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 178 CurVal = Addr; 179 180 // If we are using the reverse mapping, add it too. 181 if (!EEState.getGlobalAddressReverseMap().empty()) { 182 AssertingVH<const GlobalValue> &V = 183 EEState.getGlobalAddressReverseMap()[Addr]; 184 assert((!V || !GV) && "GlobalMapping already established!"); 185 V = GV; 186 } 187 } 188 189 void ExecutionEngine::clearAllGlobalMappings() { 190 MutexGuard locked(lock); 191 192 EEState.getGlobalAddressMap().clear(); 193 EEState.getGlobalAddressReverseMap().clear(); 194 } 195 196 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 197 MutexGuard locked(lock); 198 199 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 200 EEState.RemoveMapping(FI); 201 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 202 GI != GE; ++GI) 203 EEState.RemoveMapping(GI); 204 } 205 206 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 207 MutexGuard locked(lock); 208 209 ExecutionEngineState::GlobalAddressMapTy &Map = 210 EEState.getGlobalAddressMap(); 211 212 // Deleting from the mapping? 213 if (!Addr) 214 return EEState.RemoveMapping(GV); 215 216 void *&CurVal = Map[GV]; 217 void *OldVal = CurVal; 218 219 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 220 EEState.getGlobalAddressReverseMap().erase(CurVal); 221 CurVal = Addr; 222 223 // If we are using the reverse mapping, add it too. 224 if (!EEState.getGlobalAddressReverseMap().empty()) { 225 AssertingVH<const GlobalValue> &V = 226 EEState.getGlobalAddressReverseMap()[Addr]; 227 assert((!V || !GV) && "GlobalMapping already established!"); 228 V = GV; 229 } 230 return OldVal; 231 } 232 233 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 234 MutexGuard locked(lock); 235 236 ExecutionEngineState::GlobalAddressMapTy::iterator I = 237 EEState.getGlobalAddressMap().find(GV); 238 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 239 } 240 241 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 242 MutexGuard locked(lock); 243 244 // If we haven't computed the reverse mapping yet, do so first. 245 if (EEState.getGlobalAddressReverseMap().empty()) { 246 for (ExecutionEngineState::GlobalAddressMapTy::iterator 247 I = EEState.getGlobalAddressMap().begin(), 248 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 249 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 250 I->second, I->first)); 251 } 252 253 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 254 EEState.getGlobalAddressReverseMap().find(Addr); 255 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 256 } 257 258 namespace { 259 class ArgvArray { 260 char *Array; 261 std::vector<char*> Values; 262 public: 263 ArgvArray() : Array(nullptr) {} 264 ~ArgvArray() { clear(); } 265 void clear() { 266 delete[] Array; 267 Array = nullptr; 268 for (size_t I = 0, E = Values.size(); I != E; ++I) { 269 delete[] Values[I]; 270 } 271 Values.clear(); 272 } 273 /// Turn a vector of strings into a nice argv style array of pointers to null 274 /// terminated strings. 275 void *reset(LLVMContext &C, ExecutionEngine *EE, 276 const std::vector<std::string> &InputArgv); 277 }; 278 } // anonymous namespace 279 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 280 const std::vector<std::string> &InputArgv) { 281 clear(); // Free the old contents. 282 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 283 Array = new char[(InputArgv.size()+1)*PtrSize]; 284 285 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 286 Type *SBytePtr = Type::getInt8PtrTy(C); 287 288 for (unsigned i = 0; i != InputArgv.size(); ++i) { 289 unsigned Size = InputArgv[i].size()+1; 290 char *Dest = new char[Size]; 291 Values.push_back(Dest); 292 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 293 294 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 295 Dest[Size-1] = 0; 296 297 // Endian safe: Array[i] = (PointerTy)Dest; 298 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 299 SBytePtr); 300 } 301 302 // Null terminate it 303 EE->StoreValueToMemory(PTOGV(nullptr), 304 (GenericValue*)(Array+InputArgv.size()*PtrSize), 305 SBytePtr); 306 return Array; 307 } 308 309 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 310 bool isDtors) { 311 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 312 GlobalVariable *GV = module->getNamedGlobal(Name); 313 314 // If this global has internal linkage, or if it has a use, then it must be 315 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 316 // this is the case, don't execute any of the global ctors, __main will do 317 // it. 318 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 319 320 // Should be an array of '{ i32, void ()* }' structs. The first value is 321 // the init priority, which we ignore. 322 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 323 if (!InitList) 324 return; 325 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 326 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 327 if (!CS) continue; 328 329 Constant *FP = CS->getOperand(1); 330 if (FP->isNullValue()) 331 continue; // Found a sentinal value, ignore. 332 333 // Strip off constant expression casts. 334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 335 if (CE->isCast()) 336 FP = CE->getOperand(0); 337 338 // Execute the ctor/dtor function! 339 if (Function *F = dyn_cast<Function>(FP)) 340 runFunction(F, std::vector<GenericValue>()); 341 342 // FIXME: It is marginally lame that we just do nothing here if we see an 343 // entry we don't recognize. It might not be unreasonable for the verifier 344 // to not even allow this and just assert here. 345 } 346 } 347 348 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 349 // Execute global ctors/dtors for each module in the program. 350 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 351 runStaticConstructorsDestructors(Modules[i], isDtors); 352 } 353 354 #ifndef NDEBUG 355 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 356 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 357 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 358 for (unsigned i = 0; i < PtrSize; ++i) 359 if (*(i + (uint8_t*)Loc)) 360 return false; 361 return true; 362 } 363 #endif 364 365 int ExecutionEngine::runFunctionAsMain(Function *Fn, 366 const std::vector<std::string> &argv, 367 const char * const * envp) { 368 std::vector<GenericValue> GVArgs; 369 GenericValue GVArgc; 370 GVArgc.IntVal = APInt(32, argv.size()); 371 372 // Check main() type 373 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 374 FunctionType *FTy = Fn->getFunctionType(); 375 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 376 377 // Check the argument types. 378 if (NumArgs > 3) 379 report_fatal_error("Invalid number of arguments of main() supplied"); 380 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 381 report_fatal_error("Invalid type for third argument of main() supplied"); 382 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 383 report_fatal_error("Invalid type for second argument of main() supplied"); 384 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 385 report_fatal_error("Invalid type for first argument of main() supplied"); 386 if (!FTy->getReturnType()->isIntegerTy() && 387 !FTy->getReturnType()->isVoidTy()) 388 report_fatal_error("Invalid return type of main() supplied"); 389 390 ArgvArray CArgv; 391 ArgvArray CEnv; 392 if (NumArgs) { 393 GVArgs.push_back(GVArgc); // Arg #0 = argc. 394 if (NumArgs > 1) { 395 // Arg #1 = argv. 396 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 397 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 398 "argv[0] was null after CreateArgv"); 399 if (NumArgs > 2) { 400 std::vector<std::string> EnvVars; 401 for (unsigned i = 0; envp[i]; ++i) 402 EnvVars.push_back(envp[i]); 403 // Arg #2 = envp. 404 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 405 } 406 } 407 } 408 409 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 410 } 411 412 void EngineBuilder::InitEngine() { 413 WhichEngine = EngineKind::Either; 414 ErrorStr = nullptr; 415 OptLevel = CodeGenOpt::Default; 416 MCJMM = nullptr; 417 JMM = nullptr; 418 Options = TargetOptions(); 419 AllocateGVsWithCode = false; 420 RelocModel = Reloc::Default; 421 CMModel = CodeModel::JITDefault; 422 UseMCJIT = false; 423 424 // IR module verification is enabled by default in debug builds, and disabled 425 // by default in release builds. 426 #ifndef NDEBUG 427 VerifyModules = true; 428 #else 429 VerifyModules = false; 430 #endif 431 } 432 433 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 434 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 435 436 // Make sure we can resolve symbols in the program as well. The zero arg 437 // to the function tells DynamicLibrary to load the program, not a library. 438 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 439 return nullptr; 440 441 assert(!(JMM && MCJMM)); 442 443 // If the user specified a memory manager but didn't specify which engine to 444 // create, we assume they only want the JIT, and we fail if they only want 445 // the interpreter. 446 if (JMM || MCJMM) { 447 if (WhichEngine & EngineKind::JIT) 448 WhichEngine = EngineKind::JIT; 449 else { 450 if (ErrorStr) 451 *ErrorStr = "Cannot create an interpreter with a memory manager."; 452 return nullptr; 453 } 454 } 455 456 if (MCJMM && ! UseMCJIT) { 457 if (ErrorStr) 458 *ErrorStr = 459 "Cannot create a legacy JIT with a runtime dyld memory " 460 "manager."; 461 return nullptr; 462 } 463 464 // Unless the interpreter was explicitly selected or the JIT is not linked, 465 // try making a JIT. 466 if ((WhichEngine & EngineKind::JIT) && TheTM) { 467 Triple TT(M->getTargetTriple()); 468 if (!TM->getTarget().hasJIT()) { 469 errs() << "WARNING: This target JIT is not designed for the host" 470 << " you are running. If bad things happen, please choose" 471 << " a different -march switch.\n"; 472 } 473 474 ExecutionEngine *EE = nullptr; 475 if (UseMCJIT && ExecutionEngine::MCJITCtor) 476 EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 477 TheTM.release()); 478 else if (ExecutionEngine::JITCtor) 479 EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM, 480 AllocateGVsWithCode, TheTM.release()); 481 482 if (EE) { 483 EE->setVerifyModules(VerifyModules); 484 return EE; 485 } 486 } 487 488 // If we can't make a JIT and we didn't request one specifically, try making 489 // an interpreter instead. 490 if (WhichEngine & EngineKind::Interpreter) { 491 if (ExecutionEngine::InterpCtor) 492 return ExecutionEngine::InterpCtor(M, ErrorStr); 493 if (ErrorStr) 494 *ErrorStr = "Interpreter has not been linked in."; 495 return nullptr; 496 } 497 498 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 499 !ExecutionEngine::MCJITCtor) { 500 if (ErrorStr) 501 *ErrorStr = "JIT has not been linked in."; 502 } 503 504 return nullptr; 505 } 506 507 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 508 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 509 return getPointerToFunction(F); 510 511 MutexGuard locked(lock); 512 if (void *P = EEState.getGlobalAddressMap()[GV]) 513 return P; 514 515 // Global variable might have been added since interpreter started. 516 if (GlobalVariable *GVar = 517 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 518 EmitGlobalVariable(GVar); 519 else 520 llvm_unreachable("Global hasn't had an address allocated yet!"); 521 522 return EEState.getGlobalAddressMap()[GV]; 523 } 524 525 /// \brief Converts a Constant* into a GenericValue, including handling of 526 /// ConstantExpr values. 527 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 528 // If its undefined, return the garbage. 529 if (isa<UndefValue>(C)) { 530 GenericValue Result; 531 switch (C->getType()->getTypeID()) { 532 default: 533 break; 534 case Type::IntegerTyID: 535 case Type::X86_FP80TyID: 536 case Type::FP128TyID: 537 case Type::PPC_FP128TyID: 538 // Although the value is undefined, we still have to construct an APInt 539 // with the correct bit width. 540 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 541 break; 542 case Type::StructTyID: { 543 // if the whole struct is 'undef' just reserve memory for the value. 544 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 545 unsigned int elemNum = STy->getNumElements(); 546 Result.AggregateVal.resize(elemNum); 547 for (unsigned int i = 0; i < elemNum; ++i) { 548 Type *ElemTy = STy->getElementType(i); 549 if (ElemTy->isIntegerTy()) 550 Result.AggregateVal[i].IntVal = 551 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 552 else if (ElemTy->isAggregateType()) { 553 const Constant *ElemUndef = UndefValue::get(ElemTy); 554 Result.AggregateVal[i] = getConstantValue(ElemUndef); 555 } 556 } 557 } 558 } 559 break; 560 case Type::VectorTyID: 561 // if the whole vector is 'undef' just reserve memory for the value. 562 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 563 const Type *ElemTy = VTy->getElementType(); 564 unsigned int elemNum = VTy->getNumElements(); 565 Result.AggregateVal.resize(elemNum); 566 if (ElemTy->isIntegerTy()) 567 for (unsigned int i = 0; i < elemNum; ++i) 568 Result.AggregateVal[i].IntVal = 569 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 570 break; 571 } 572 return Result; 573 } 574 575 // Otherwise, if the value is a ConstantExpr... 576 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 577 Constant *Op0 = CE->getOperand(0); 578 switch (CE->getOpcode()) { 579 case Instruction::GetElementPtr: { 580 // Compute the index 581 GenericValue Result = getConstantValue(Op0); 582 APInt Offset(DL->getPointerSizeInBits(), 0); 583 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 584 585 char* tmp = (char*) Result.PointerVal; 586 Result = PTOGV(tmp + Offset.getSExtValue()); 587 return Result; 588 } 589 case Instruction::Trunc: { 590 GenericValue GV = getConstantValue(Op0); 591 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 592 GV.IntVal = GV.IntVal.trunc(BitWidth); 593 return GV; 594 } 595 case Instruction::ZExt: { 596 GenericValue GV = getConstantValue(Op0); 597 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 598 GV.IntVal = GV.IntVal.zext(BitWidth); 599 return GV; 600 } 601 case Instruction::SExt: { 602 GenericValue GV = getConstantValue(Op0); 603 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 604 GV.IntVal = GV.IntVal.sext(BitWidth); 605 return GV; 606 } 607 case Instruction::FPTrunc: { 608 // FIXME long double 609 GenericValue GV = getConstantValue(Op0); 610 GV.FloatVal = float(GV.DoubleVal); 611 return GV; 612 } 613 case Instruction::FPExt:{ 614 // FIXME long double 615 GenericValue GV = getConstantValue(Op0); 616 GV.DoubleVal = double(GV.FloatVal); 617 return GV; 618 } 619 case Instruction::UIToFP: { 620 GenericValue GV = getConstantValue(Op0); 621 if (CE->getType()->isFloatTy()) 622 GV.FloatVal = float(GV.IntVal.roundToDouble()); 623 else if (CE->getType()->isDoubleTy()) 624 GV.DoubleVal = GV.IntVal.roundToDouble(); 625 else if (CE->getType()->isX86_FP80Ty()) { 626 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 627 (void)apf.convertFromAPInt(GV.IntVal, 628 false, 629 APFloat::rmNearestTiesToEven); 630 GV.IntVal = apf.bitcastToAPInt(); 631 } 632 return GV; 633 } 634 case Instruction::SIToFP: { 635 GenericValue GV = getConstantValue(Op0); 636 if (CE->getType()->isFloatTy()) 637 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 638 else if (CE->getType()->isDoubleTy()) 639 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 640 else if (CE->getType()->isX86_FP80Ty()) { 641 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 642 (void)apf.convertFromAPInt(GV.IntVal, 643 true, 644 APFloat::rmNearestTiesToEven); 645 GV.IntVal = apf.bitcastToAPInt(); 646 } 647 return GV; 648 } 649 case Instruction::FPToUI: // double->APInt conversion handles sign 650 case Instruction::FPToSI: { 651 GenericValue GV = getConstantValue(Op0); 652 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 653 if (Op0->getType()->isFloatTy()) 654 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 655 else if (Op0->getType()->isDoubleTy()) 656 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 657 else if (Op0->getType()->isX86_FP80Ty()) { 658 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 659 uint64_t v; 660 bool ignored; 661 (void)apf.convertToInteger(&v, BitWidth, 662 CE->getOpcode()==Instruction::FPToSI, 663 APFloat::rmTowardZero, &ignored); 664 GV.IntVal = v; // endian? 665 } 666 return GV; 667 } 668 case Instruction::PtrToInt: { 669 GenericValue GV = getConstantValue(Op0); 670 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 671 assert(PtrWidth <= 64 && "Bad pointer width"); 672 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 673 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 674 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 675 return GV; 676 } 677 case Instruction::IntToPtr: { 678 GenericValue GV = getConstantValue(Op0); 679 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 680 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 681 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 682 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 683 return GV; 684 } 685 case Instruction::BitCast: { 686 GenericValue GV = getConstantValue(Op0); 687 Type* DestTy = CE->getType(); 688 switch (Op0->getType()->getTypeID()) { 689 default: llvm_unreachable("Invalid bitcast operand"); 690 case Type::IntegerTyID: 691 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 692 if (DestTy->isFloatTy()) 693 GV.FloatVal = GV.IntVal.bitsToFloat(); 694 else if (DestTy->isDoubleTy()) 695 GV.DoubleVal = GV.IntVal.bitsToDouble(); 696 break; 697 case Type::FloatTyID: 698 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 699 GV.IntVal = APInt::floatToBits(GV.FloatVal); 700 break; 701 case Type::DoubleTyID: 702 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 703 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 704 break; 705 case Type::PointerTyID: 706 assert(DestTy->isPointerTy() && "Invalid bitcast"); 707 break; // getConstantValue(Op0) above already converted it 708 } 709 return GV; 710 } 711 case Instruction::Add: 712 case Instruction::FAdd: 713 case Instruction::Sub: 714 case Instruction::FSub: 715 case Instruction::Mul: 716 case Instruction::FMul: 717 case Instruction::UDiv: 718 case Instruction::SDiv: 719 case Instruction::URem: 720 case Instruction::SRem: 721 case Instruction::And: 722 case Instruction::Or: 723 case Instruction::Xor: { 724 GenericValue LHS = getConstantValue(Op0); 725 GenericValue RHS = getConstantValue(CE->getOperand(1)); 726 GenericValue GV; 727 switch (CE->getOperand(0)->getType()->getTypeID()) { 728 default: llvm_unreachable("Bad add type!"); 729 case Type::IntegerTyID: 730 switch (CE->getOpcode()) { 731 default: llvm_unreachable("Invalid integer opcode"); 732 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 733 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 734 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 735 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 736 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 737 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 738 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 739 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 740 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 741 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 742 } 743 break; 744 case Type::FloatTyID: 745 switch (CE->getOpcode()) { 746 default: llvm_unreachable("Invalid float opcode"); 747 case Instruction::FAdd: 748 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 749 case Instruction::FSub: 750 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 751 case Instruction::FMul: 752 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 753 case Instruction::FDiv: 754 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 755 case Instruction::FRem: 756 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 757 } 758 break; 759 case Type::DoubleTyID: 760 switch (CE->getOpcode()) { 761 default: llvm_unreachable("Invalid double opcode"); 762 case Instruction::FAdd: 763 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 764 case Instruction::FSub: 765 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 766 case Instruction::FMul: 767 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 768 case Instruction::FDiv: 769 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 770 case Instruction::FRem: 771 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 772 } 773 break; 774 case Type::X86_FP80TyID: 775 case Type::PPC_FP128TyID: 776 case Type::FP128TyID: { 777 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 778 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 779 switch (CE->getOpcode()) { 780 default: llvm_unreachable("Invalid long double opcode"); 781 case Instruction::FAdd: 782 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 783 GV.IntVal = apfLHS.bitcastToAPInt(); 784 break; 785 case Instruction::FSub: 786 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 787 APFloat::rmNearestTiesToEven); 788 GV.IntVal = apfLHS.bitcastToAPInt(); 789 break; 790 case Instruction::FMul: 791 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 792 APFloat::rmNearestTiesToEven); 793 GV.IntVal = apfLHS.bitcastToAPInt(); 794 break; 795 case Instruction::FDiv: 796 apfLHS.divide(APFloat(Sem, RHS.IntVal), 797 APFloat::rmNearestTiesToEven); 798 GV.IntVal = apfLHS.bitcastToAPInt(); 799 break; 800 case Instruction::FRem: 801 apfLHS.mod(APFloat(Sem, RHS.IntVal), 802 APFloat::rmNearestTiesToEven); 803 GV.IntVal = apfLHS.bitcastToAPInt(); 804 break; 805 } 806 } 807 break; 808 } 809 return GV; 810 } 811 default: 812 break; 813 } 814 815 SmallString<256> Msg; 816 raw_svector_ostream OS(Msg); 817 OS << "ConstantExpr not handled: " << *CE; 818 report_fatal_error(OS.str()); 819 } 820 821 // Otherwise, we have a simple constant. 822 GenericValue Result; 823 switch (C->getType()->getTypeID()) { 824 case Type::FloatTyID: 825 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 826 break; 827 case Type::DoubleTyID: 828 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 829 break; 830 case Type::X86_FP80TyID: 831 case Type::FP128TyID: 832 case Type::PPC_FP128TyID: 833 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 834 break; 835 case Type::IntegerTyID: 836 Result.IntVal = cast<ConstantInt>(C)->getValue(); 837 break; 838 case Type::PointerTyID: 839 if (isa<ConstantPointerNull>(C)) 840 Result.PointerVal = nullptr; 841 else if (const Function *F = dyn_cast<Function>(C)) 842 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 843 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 844 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 845 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 846 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 847 BA->getBasicBlock()))); 848 else 849 llvm_unreachable("Unknown constant pointer type!"); 850 break; 851 case Type::VectorTyID: { 852 unsigned elemNum; 853 Type* ElemTy; 854 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 855 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 856 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 857 858 if (CDV) { 859 elemNum = CDV->getNumElements(); 860 ElemTy = CDV->getElementType(); 861 } else if (CV || CAZ) { 862 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 863 elemNum = VTy->getNumElements(); 864 ElemTy = VTy->getElementType(); 865 } else { 866 llvm_unreachable("Unknown constant vector type!"); 867 } 868 869 Result.AggregateVal.resize(elemNum); 870 // Check if vector holds floats. 871 if(ElemTy->isFloatTy()) { 872 if (CAZ) { 873 GenericValue floatZero; 874 floatZero.FloatVal = 0.f; 875 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 876 floatZero); 877 break; 878 } 879 if(CV) { 880 for (unsigned i = 0; i < elemNum; ++i) 881 if (!isa<UndefValue>(CV->getOperand(i))) 882 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 883 CV->getOperand(i))->getValueAPF().convertToFloat(); 884 break; 885 } 886 if(CDV) 887 for (unsigned i = 0; i < elemNum; ++i) 888 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 889 890 break; 891 } 892 // Check if vector holds doubles. 893 if (ElemTy->isDoubleTy()) { 894 if (CAZ) { 895 GenericValue doubleZero; 896 doubleZero.DoubleVal = 0.0; 897 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 898 doubleZero); 899 break; 900 } 901 if(CV) { 902 for (unsigned i = 0; i < elemNum; ++i) 903 if (!isa<UndefValue>(CV->getOperand(i))) 904 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 905 CV->getOperand(i))->getValueAPF().convertToDouble(); 906 break; 907 } 908 if(CDV) 909 for (unsigned i = 0; i < elemNum; ++i) 910 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 911 912 break; 913 } 914 // Check if vector holds integers. 915 if (ElemTy->isIntegerTy()) { 916 if (CAZ) { 917 GenericValue intZero; 918 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 919 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 920 intZero); 921 break; 922 } 923 if(CV) { 924 for (unsigned i = 0; i < elemNum; ++i) 925 if (!isa<UndefValue>(CV->getOperand(i))) 926 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 927 CV->getOperand(i))->getValue(); 928 else { 929 Result.AggregateVal[i].IntVal = 930 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 931 } 932 break; 933 } 934 if(CDV) 935 for (unsigned i = 0; i < elemNum; ++i) 936 Result.AggregateVal[i].IntVal = APInt( 937 CDV->getElementType()->getPrimitiveSizeInBits(), 938 CDV->getElementAsInteger(i)); 939 940 break; 941 } 942 llvm_unreachable("Unknown constant pointer type!"); 943 } 944 break; 945 946 default: 947 SmallString<256> Msg; 948 raw_svector_ostream OS(Msg); 949 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 950 report_fatal_error(OS.str()); 951 } 952 953 return Result; 954 } 955 956 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 957 /// with the integer held in IntVal. 958 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 959 unsigned StoreBytes) { 960 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 961 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 962 963 if (sys::IsLittleEndianHost) { 964 // Little-endian host - the source is ordered from LSB to MSB. Order the 965 // destination from LSB to MSB: Do a straight copy. 966 memcpy(Dst, Src, StoreBytes); 967 } else { 968 // Big-endian host - the source is an array of 64 bit words ordered from 969 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 970 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 971 while (StoreBytes > sizeof(uint64_t)) { 972 StoreBytes -= sizeof(uint64_t); 973 // May not be aligned so use memcpy. 974 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 975 Src += sizeof(uint64_t); 976 } 977 978 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 979 } 980 } 981 982 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 983 GenericValue *Ptr, Type *Ty) { 984 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 985 986 switch (Ty->getTypeID()) { 987 default: 988 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 989 break; 990 case Type::IntegerTyID: 991 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 992 break; 993 case Type::FloatTyID: 994 *((float*)Ptr) = Val.FloatVal; 995 break; 996 case Type::DoubleTyID: 997 *((double*)Ptr) = Val.DoubleVal; 998 break; 999 case Type::X86_FP80TyID: 1000 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1001 break; 1002 case Type::PointerTyID: 1003 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1004 if (StoreBytes != sizeof(PointerTy)) 1005 memset(&(Ptr->PointerVal), 0, StoreBytes); 1006 1007 *((PointerTy*)Ptr) = Val.PointerVal; 1008 break; 1009 case Type::VectorTyID: 1010 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1011 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1012 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1013 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1014 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1015 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1016 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1017 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1018 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1019 } 1020 } 1021 break; 1022 } 1023 1024 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1025 // Host and target are different endian - reverse the stored bytes. 1026 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1027 } 1028 1029 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1030 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1031 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1032 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1033 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1034 const_cast<uint64_t *>(IntVal.getRawData())); 1035 1036 if (sys::IsLittleEndianHost) 1037 // Little-endian host - the destination must be ordered from LSB to MSB. 1038 // The source is ordered from LSB to MSB: Do a straight copy. 1039 memcpy(Dst, Src, LoadBytes); 1040 else { 1041 // Big-endian - the destination is an array of 64 bit words ordered from 1042 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1043 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1044 // a word. 1045 while (LoadBytes > sizeof(uint64_t)) { 1046 LoadBytes -= sizeof(uint64_t); 1047 // May not be aligned so use memcpy. 1048 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1049 Dst += sizeof(uint64_t); 1050 } 1051 1052 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1053 } 1054 } 1055 1056 /// FIXME: document 1057 /// 1058 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1059 GenericValue *Ptr, 1060 Type *Ty) { 1061 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1062 1063 switch (Ty->getTypeID()) { 1064 case Type::IntegerTyID: 1065 // An APInt with all words initially zero. 1066 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1067 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1068 break; 1069 case Type::FloatTyID: 1070 Result.FloatVal = *((float*)Ptr); 1071 break; 1072 case Type::DoubleTyID: 1073 Result.DoubleVal = *((double*)Ptr); 1074 break; 1075 case Type::PointerTyID: 1076 Result.PointerVal = *((PointerTy*)Ptr); 1077 break; 1078 case Type::X86_FP80TyID: { 1079 // This is endian dependent, but it will only work on x86 anyway. 1080 // FIXME: Will not trap if loading a signaling NaN. 1081 uint64_t y[2]; 1082 memcpy(y, Ptr, 10); 1083 Result.IntVal = APInt(80, y); 1084 break; 1085 } 1086 case Type::VectorTyID: { 1087 const VectorType *VT = cast<VectorType>(Ty); 1088 const Type *ElemT = VT->getElementType(); 1089 const unsigned numElems = VT->getNumElements(); 1090 if (ElemT->isFloatTy()) { 1091 Result.AggregateVal.resize(numElems); 1092 for (unsigned i = 0; i < numElems; ++i) 1093 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1094 } 1095 if (ElemT->isDoubleTy()) { 1096 Result.AggregateVal.resize(numElems); 1097 for (unsigned i = 0; i < numElems; ++i) 1098 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1099 } 1100 if (ElemT->isIntegerTy()) { 1101 GenericValue intZero; 1102 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1103 intZero.IntVal = APInt(elemBitWidth, 0); 1104 Result.AggregateVal.resize(numElems, intZero); 1105 for (unsigned i = 0; i < numElems; ++i) 1106 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1107 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1108 } 1109 break; 1110 } 1111 default: 1112 SmallString<256> Msg; 1113 raw_svector_ostream OS(Msg); 1114 OS << "Cannot load value of type " << *Ty << "!"; 1115 report_fatal_error(OS.str()); 1116 } 1117 } 1118 1119 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1120 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1121 DEBUG(Init->dump()); 1122 if (isa<UndefValue>(Init)) 1123 return; 1124 1125 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1126 unsigned ElementSize = 1127 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1128 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1129 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1130 return; 1131 } 1132 1133 if (isa<ConstantAggregateZero>(Init)) { 1134 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1135 return; 1136 } 1137 1138 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1139 unsigned ElementSize = 1140 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1141 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1142 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1143 return; 1144 } 1145 1146 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1147 const StructLayout *SL = 1148 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1149 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1150 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1151 return; 1152 } 1153 1154 if (const ConstantDataSequential *CDS = 1155 dyn_cast<ConstantDataSequential>(Init)) { 1156 // CDS is already laid out in host memory order. 1157 StringRef Data = CDS->getRawDataValues(); 1158 memcpy(Addr, Data.data(), Data.size()); 1159 return; 1160 } 1161 1162 if (Init->getType()->isFirstClassType()) { 1163 GenericValue Val = getConstantValue(Init); 1164 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1165 return; 1166 } 1167 1168 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1169 llvm_unreachable("Unknown constant type to initialize memory with!"); 1170 } 1171 1172 /// EmitGlobals - Emit all of the global variables to memory, storing their 1173 /// addresses into GlobalAddress. This must make sure to copy the contents of 1174 /// their initializers into the memory. 1175 void ExecutionEngine::emitGlobals() { 1176 // Loop over all of the global variables in the program, allocating the memory 1177 // to hold them. If there is more than one module, do a prepass over globals 1178 // to figure out how the different modules should link together. 1179 std::map<std::pair<std::string, Type*>, 1180 const GlobalValue*> LinkedGlobalsMap; 1181 1182 if (Modules.size() != 1) { 1183 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1184 Module &M = *Modules[m]; 1185 for (const auto &GV : M.globals()) { 1186 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1187 GV.hasAppendingLinkage() || !GV.hasName()) 1188 continue;// Ignore external globals and globals with internal linkage. 1189 1190 const GlobalValue *&GVEntry = 1191 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1192 1193 // If this is the first time we've seen this global, it is the canonical 1194 // version. 1195 if (!GVEntry) { 1196 GVEntry = &GV; 1197 continue; 1198 } 1199 1200 // If the existing global is strong, never replace it. 1201 if (GVEntry->hasExternalLinkage()) 1202 continue; 1203 1204 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1205 // symbol. FIXME is this right for common? 1206 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1207 GVEntry = &GV; 1208 } 1209 } 1210 } 1211 1212 std::vector<const GlobalValue*> NonCanonicalGlobals; 1213 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1214 Module &M = *Modules[m]; 1215 for (const auto &GV : M.globals()) { 1216 // In the multi-module case, see what this global maps to. 1217 if (!LinkedGlobalsMap.empty()) { 1218 if (const GlobalValue *GVEntry = 1219 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1220 // If something else is the canonical global, ignore this one. 1221 if (GVEntry != &GV) { 1222 NonCanonicalGlobals.push_back(&GV); 1223 continue; 1224 } 1225 } 1226 } 1227 1228 if (!GV.isDeclaration()) { 1229 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1230 } else { 1231 // External variable reference. Try to use the dynamic loader to 1232 // get a pointer to it. 1233 if (void *SymAddr = 1234 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1235 addGlobalMapping(&GV, SymAddr); 1236 else { 1237 report_fatal_error("Could not resolve external global address: " 1238 +GV.getName()); 1239 } 1240 } 1241 } 1242 1243 // If there are multiple modules, map the non-canonical globals to their 1244 // canonical location. 1245 if (!NonCanonicalGlobals.empty()) { 1246 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1247 const GlobalValue *GV = NonCanonicalGlobals[i]; 1248 const GlobalValue *CGV = 1249 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1250 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1251 assert(Ptr && "Canonical global wasn't codegen'd!"); 1252 addGlobalMapping(GV, Ptr); 1253 } 1254 } 1255 1256 // Now that all of the globals are set up in memory, loop through them all 1257 // and initialize their contents. 1258 for (const auto &GV : M.globals()) { 1259 if (!GV.isDeclaration()) { 1260 if (!LinkedGlobalsMap.empty()) { 1261 if (const GlobalValue *GVEntry = 1262 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1263 if (GVEntry != &GV) // Not the canonical variable. 1264 continue; 1265 } 1266 EmitGlobalVariable(&GV); 1267 } 1268 } 1269 } 1270 } 1271 1272 // EmitGlobalVariable - This method emits the specified global variable to the 1273 // address specified in GlobalAddresses, or allocates new memory if it's not 1274 // already in the map. 1275 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1276 void *GA = getPointerToGlobalIfAvailable(GV); 1277 1278 if (!GA) { 1279 // If it's not already specified, allocate memory for the global. 1280 GA = getMemoryForGV(GV); 1281 1282 // If we failed to allocate memory for this global, return. 1283 if (!GA) return; 1284 1285 addGlobalMapping(GV, GA); 1286 } 1287 1288 // Don't initialize if it's thread local, let the client do it. 1289 if (!GV->isThreadLocal()) 1290 InitializeMemory(GV->getInitializer(), GA); 1291 1292 Type *ElTy = GV->getType()->getElementType(); 1293 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1294 NumInitBytes += (unsigned)GVSize; 1295 ++NumGlobals; 1296 } 1297 1298 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1299 : EE(EE), GlobalAddressMap(this) { 1300 } 1301 1302 sys::Mutex * 1303 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1304 return &EES->EE.lock; 1305 } 1306 1307 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1308 const GlobalValue *Old) { 1309 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1310 EES->GlobalAddressReverseMap.erase(OldVal); 1311 } 1312 1313 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1314 const GlobalValue *, 1315 const GlobalValue *) { 1316 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1317 " RAUW on a value it has a global mapping for."); 1318 } 1319