1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cmath> 34 #include <cstring> 35 using namespace llvm; 36 37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 38 STATISTIC(NumGlobals , "Number of global vars initialized"); 39 40 ExecutionEngine *(*ExecutionEngine::JITCtor)( 41 Module *M, 42 std::string *ErrorStr, 43 JITMemoryManager *JMM, 44 CodeGenOpt::Level OptLevel, 45 bool GVsWithCode, 46 TargetMachine *TM) = 0; 47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 48 Module *M, 49 std::string *ErrorStr, 50 JITMemoryManager *JMM, 51 CodeGenOpt::Level OptLevel, 52 bool GVsWithCode, 53 TargetMachine *TM) = 0; 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 55 std::string *ErrorStr) = 0; 56 57 ExecutionEngine::ExecutionEngine(Module *M) 58 : EEState(*this), 59 LazyFunctionCreator(0), 60 ExceptionTableRegister(0), 61 ExceptionTableDeregister(0) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 Modules.push_back(M); 66 assert(M && "Module is null?"); 67 } 68 69 ExecutionEngine::~ExecutionEngine() { 70 clearAllGlobalMappings(); 71 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 72 delete Modules[i]; 73 } 74 75 void ExecutionEngine::DeregisterAllTables() { 76 if (ExceptionTableDeregister) { 77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 79 for (; it != ite; ++it) 80 ExceptionTableDeregister(it->second); 81 AllExceptionTables.clear(); 82 } 83 } 84 85 namespace { 86 /// \brief Helper class which uses a value handler to automatically deletes the 87 /// memory block when the GlobalVariable is destroyed. 88 class GVMemoryBlock : public CallbackVH { 89 GVMemoryBlock(const GlobalVariable *GV) 90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 91 92 public: 93 /// \brief Returns the address the GlobalVariable should be written into. The 94 /// GVMemoryBlock object prefixes that. 95 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 96 const Type *ElTy = GV->getType()->getElementType(); 97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 98 void *RawMemory = ::operator new( 99 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 100 TD.getPreferredAlignment(GV)) 101 + GVSize); 102 new(RawMemory) GVMemoryBlock(GV); 103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 104 } 105 106 virtual void deleted() { 107 // We allocated with operator new and with some extra memory hanging off the 108 // end, so don't just delete this. I'm not sure if this is actually 109 // required. 110 this->~GVMemoryBlock(); 111 ::operator delete(this); 112 } 113 }; 114 } // anonymous namespace 115 116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 117 return GVMemoryBlock::Create(GV, *getTargetData()); 118 } 119 120 bool ExecutionEngine::removeModule(Module *M) { 121 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 122 E = Modules.end(); I != E; ++I) { 123 Module *Found = *I; 124 if (Found == M) { 125 Modules.erase(I); 126 clearGlobalMappingsFromModule(M); 127 return true; 128 } 129 } 130 return false; 131 } 132 133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 135 if (Function *F = Modules[i]->getFunction(FnName)) 136 return F; 137 } 138 return 0; 139 } 140 141 142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 143 const GlobalValue *ToUnmap) { 144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 145 void *OldVal; 146 147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 148 // GlobalAddressMap. 149 if (I == GlobalAddressMap.end()) 150 OldVal = 0; 151 else { 152 OldVal = I->second; 153 GlobalAddressMap.erase(I); 154 } 155 156 GlobalAddressReverseMap.erase(OldVal); 157 return OldVal; 158 } 159 160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 161 MutexGuard locked(lock); 162 163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 164 << "\' to [" << Addr << "]\n";); 165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 167 CurVal = Addr; 168 169 // If we are using the reverse mapping, add it too. 170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 171 AssertingVH<const GlobalValue> &V = 172 EEState.getGlobalAddressReverseMap(locked)[Addr]; 173 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 174 V = GV; 175 } 176 } 177 178 void ExecutionEngine::clearAllGlobalMappings() { 179 MutexGuard locked(lock); 180 181 EEState.getGlobalAddressMap(locked).clear(); 182 EEState.getGlobalAddressReverseMap(locked).clear(); 183 } 184 185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 186 MutexGuard locked(lock); 187 188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 189 EEState.RemoveMapping(locked, FI); 190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 191 GI != GE; ++GI) 192 EEState.RemoveMapping(locked, GI); 193 } 194 195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 196 MutexGuard locked(lock); 197 198 ExecutionEngineState::GlobalAddressMapTy &Map = 199 EEState.getGlobalAddressMap(locked); 200 201 // Deleting from the mapping? 202 if (Addr == 0) 203 return EEState.RemoveMapping(locked, GV); 204 205 void *&CurVal = Map[GV]; 206 void *OldVal = CurVal; 207 208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too. 213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 214 AssertingVH<const GlobalValue> &V = 215 EEState.getGlobalAddressReverseMap(locked)[Addr]; 216 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 217 V = GV; 218 } 219 return OldVal; 220 } 221 222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 223 MutexGuard locked(lock); 224 225 ExecutionEngineState::GlobalAddressMapTy::iterator I = 226 EEState.getGlobalAddressMap(locked).find(GV); 227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 228 } 229 230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 231 MutexGuard locked(lock); 232 233 // If we haven't computed the reverse mapping yet, do so first. 234 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 235 for (ExecutionEngineState::GlobalAddressMapTy::iterator 236 I = EEState.getGlobalAddressMap(locked).begin(), 237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 239 I->second, I->first)); 240 } 241 242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 243 EEState.getGlobalAddressReverseMap(locked).find(Addr); 244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 245 } 246 247 namespace { 248 class ArgvArray { 249 char *Array; 250 std::vector<char*> Values; 251 public: 252 ArgvArray() : Array(NULL) {} 253 ~ArgvArray() { clear(); } 254 void clear() { 255 delete[] Array; 256 Array = NULL; 257 for (size_t I = 0, E = Values.size(); I != E; ++I) { 258 delete[] Values[I]; 259 } 260 Values.clear(); 261 } 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266 }; 267 } // anonymous namespace 268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 clear(); // Free the old contents. 271 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 272 Array = new char[(InputArgv.size()+1)*PtrSize]; 273 274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 275 const Type *SBytePtr = Type::getInt8PtrTy(C); 276 277 for (unsigned i = 0; i != InputArgv.size(); ++i) { 278 unsigned Size = InputArgv[i].size()+1; 279 char *Dest = new char[Size]; 280 Values.push_back(Dest); 281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 282 283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 284 Dest[Size-1] = 0; 285 286 // Endian safe: Array[i] = (PointerTy)Dest; 287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 288 SBytePtr); 289 } 290 291 // Null terminate it 292 EE->StoreValueToMemory(PTOGV(0), 293 (GenericValue*)(Array+InputArgv.size()*PtrSize), 294 SBytePtr); 295 return Array; 296 } 297 298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 299 bool isDtors) { 300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 301 GlobalVariable *GV = module->getNamedGlobal(Name); 302 303 // If this global has internal linkage, or if it has a use, then it must be 304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 305 // this is the case, don't execute any of the global ctors, __main will do 306 // it. 307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 308 309 // Should be an array of '{ i32, void ()* }' structs. The first value is 310 // the init priority, which we ignore. 311 if (isa<ConstantAggregateZero>(GV->getInitializer())) 312 return; 313 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 315 if (isa<ConstantAggregateZero>(InitList->getOperand(i))) 316 continue; 317 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i)); 318 319 Constant *FP = CS->getOperand(1); 320 if (FP->isNullValue()) 321 continue; // Found a sentinal value, ignore. 322 323 // Strip off constant expression casts. 324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 325 if (CE->isCast()) 326 FP = CE->getOperand(0); 327 328 // Execute the ctor/dtor function! 329 if (Function *F = dyn_cast<Function>(FP)) 330 runFunction(F, std::vector<GenericValue>()); 331 332 // FIXME: It is marginally lame that we just do nothing here if we see an 333 // entry we don't recognize. It might not be unreasonable for the verifier 334 // to not even allow this and just assert here. 335 } 336 } 337 338 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 339 // Execute global ctors/dtors for each module in the program. 340 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 341 runStaticConstructorsDestructors(Modules[i], isDtors); 342 } 343 344 #ifndef NDEBUG 345 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 346 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 347 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 348 for (unsigned i = 0; i < PtrSize; ++i) 349 if (*(i + (uint8_t*)Loc)) 350 return false; 351 return true; 352 } 353 #endif 354 355 int ExecutionEngine::runFunctionAsMain(Function *Fn, 356 const std::vector<std::string> &argv, 357 const char * const * envp) { 358 std::vector<GenericValue> GVArgs; 359 GenericValue GVArgc; 360 GVArgc.IntVal = APInt(32, argv.size()); 361 362 // Check main() type 363 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 364 const FunctionType *FTy = Fn->getFunctionType(); 365 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 366 367 // Check the argument types. 368 if (NumArgs > 3) 369 report_fatal_error("Invalid number of arguments of main() supplied"); 370 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 371 report_fatal_error("Invalid type for third argument of main() supplied"); 372 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 373 report_fatal_error("Invalid type for second argument of main() supplied"); 374 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 375 report_fatal_error("Invalid type for first argument of main() supplied"); 376 if (!FTy->getReturnType()->isIntegerTy() && 377 !FTy->getReturnType()->isVoidTy()) 378 report_fatal_error("Invalid return type of main() supplied"); 379 380 ArgvArray CArgv; 381 ArgvArray CEnv; 382 if (NumArgs) { 383 GVArgs.push_back(GVArgc); // Arg #0 = argc. 384 if (NumArgs > 1) { 385 // Arg #1 = argv. 386 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 387 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 388 "argv[0] was null after CreateArgv"); 389 if (NumArgs > 2) { 390 std::vector<std::string> EnvVars; 391 for (unsigned i = 0; envp[i]; ++i) 392 EnvVars.push_back(envp[i]); 393 // Arg #2 = envp. 394 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 395 } 396 } 397 } 398 399 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 400 } 401 402 ExecutionEngine *ExecutionEngine::create(Module *M, 403 bool ForceInterpreter, 404 std::string *ErrorStr, 405 CodeGenOpt::Level OptLevel, 406 bool GVsWithCode) { 407 return EngineBuilder(M) 408 .setEngineKind(ForceInterpreter 409 ? EngineKind::Interpreter 410 : EngineKind::JIT) 411 .setErrorStr(ErrorStr) 412 .setOptLevel(OptLevel) 413 .setAllocateGVsWithCode(GVsWithCode) 414 .create(); 415 } 416 417 ExecutionEngine *EngineBuilder::create() { 418 // Make sure we can resolve symbols in the program as well. The zero arg 419 // to the function tells DynamicLibrary to load the program, not a library. 420 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 421 return 0; 422 423 // If the user specified a memory manager but didn't specify which engine to 424 // create, we assume they only want the JIT, and we fail if they only want 425 // the interpreter. 426 if (JMM) { 427 if (WhichEngine & EngineKind::JIT) 428 WhichEngine = EngineKind::JIT; 429 else { 430 if (ErrorStr) 431 *ErrorStr = "Cannot create an interpreter with a memory manager."; 432 return 0; 433 } 434 } 435 436 // Unless the interpreter was explicitly selected or the JIT is not linked, 437 // try making a JIT. 438 if (WhichEngine & EngineKind::JIT) { 439 TargetMachine *TM = 440 ExecutionEngine::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr); 441 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 442 TM->setCodeModel(CMModel); 443 444 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 445 ExecutionEngine *EE = 446 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel, 447 AllocateGVsWithCode, TM); 448 if (EE) return EE; 449 } else if (ExecutionEngine::JITCtor) { 450 ExecutionEngine *EE = 451 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 452 AllocateGVsWithCode, TM); 453 if (EE) return EE; 454 } 455 } 456 457 // If we can't make a JIT and we didn't request one specifically, try making 458 // an interpreter instead. 459 if (WhichEngine & EngineKind::Interpreter) { 460 if (ExecutionEngine::InterpCtor) 461 return ExecutionEngine::InterpCtor(M, ErrorStr); 462 if (ErrorStr) 463 *ErrorStr = "Interpreter has not been linked in."; 464 return 0; 465 } 466 467 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 468 if (ErrorStr) 469 *ErrorStr = "JIT has not been linked in."; 470 } 471 472 return 0; 473 } 474 475 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 476 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 477 return getPointerToFunction(F); 478 479 MutexGuard locked(lock); 480 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 481 return P; 482 483 // Global variable might have been added since interpreter started. 484 if (GlobalVariable *GVar = 485 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 486 EmitGlobalVariable(GVar); 487 else 488 llvm_unreachable("Global hasn't had an address allocated yet!"); 489 490 return EEState.getGlobalAddressMap(locked)[GV]; 491 } 492 493 /// \brief Converts a Constant* into a GenericValue, including handling of 494 /// ConstantExpr values. 495 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 496 // If its undefined, return the garbage. 497 if (isa<UndefValue>(C)) { 498 GenericValue Result; 499 switch (C->getType()->getTypeID()) { 500 case Type::IntegerTyID: 501 case Type::X86_FP80TyID: 502 case Type::FP128TyID: 503 case Type::PPC_FP128TyID: 504 // Although the value is undefined, we still have to construct an APInt 505 // with the correct bit width. 506 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 507 break; 508 default: 509 break; 510 } 511 return Result; 512 } 513 514 // Otherwise, if the value is a ConstantExpr... 515 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 516 Constant *Op0 = CE->getOperand(0); 517 switch (CE->getOpcode()) { 518 case Instruction::GetElementPtr: { 519 // Compute the index 520 GenericValue Result = getConstantValue(Op0); 521 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 522 uint64_t Offset = 523 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 524 525 char* tmp = (char*) Result.PointerVal; 526 Result = PTOGV(tmp + Offset); 527 return Result; 528 } 529 case Instruction::Trunc: { 530 GenericValue GV = getConstantValue(Op0); 531 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 532 GV.IntVal = GV.IntVal.trunc(BitWidth); 533 return GV; 534 } 535 case Instruction::ZExt: { 536 GenericValue GV = getConstantValue(Op0); 537 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 538 GV.IntVal = GV.IntVal.zext(BitWidth); 539 return GV; 540 } 541 case Instruction::SExt: { 542 GenericValue GV = getConstantValue(Op0); 543 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 544 GV.IntVal = GV.IntVal.sext(BitWidth); 545 return GV; 546 } 547 case Instruction::FPTrunc: { 548 // FIXME long double 549 GenericValue GV = getConstantValue(Op0); 550 GV.FloatVal = float(GV.DoubleVal); 551 return GV; 552 } 553 case Instruction::FPExt:{ 554 // FIXME long double 555 GenericValue GV = getConstantValue(Op0); 556 GV.DoubleVal = double(GV.FloatVal); 557 return GV; 558 } 559 case Instruction::UIToFP: { 560 GenericValue GV = getConstantValue(Op0); 561 if (CE->getType()->isFloatTy()) 562 GV.FloatVal = float(GV.IntVal.roundToDouble()); 563 else if (CE->getType()->isDoubleTy()) 564 GV.DoubleVal = GV.IntVal.roundToDouble(); 565 else if (CE->getType()->isX86_FP80Ty()) { 566 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 567 (void)apf.convertFromAPInt(GV.IntVal, 568 false, 569 APFloat::rmNearestTiesToEven); 570 GV.IntVal = apf.bitcastToAPInt(); 571 } 572 return GV; 573 } 574 case Instruction::SIToFP: { 575 GenericValue GV = getConstantValue(Op0); 576 if (CE->getType()->isFloatTy()) 577 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 578 else if (CE->getType()->isDoubleTy()) 579 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 580 else if (CE->getType()->isX86_FP80Ty()) { 581 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 582 (void)apf.convertFromAPInt(GV.IntVal, 583 true, 584 APFloat::rmNearestTiesToEven); 585 GV.IntVal = apf.bitcastToAPInt(); 586 } 587 return GV; 588 } 589 case Instruction::FPToUI: // double->APInt conversion handles sign 590 case Instruction::FPToSI: { 591 GenericValue GV = getConstantValue(Op0); 592 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 593 if (Op0->getType()->isFloatTy()) 594 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 595 else if (Op0->getType()->isDoubleTy()) 596 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 597 else if (Op0->getType()->isX86_FP80Ty()) { 598 APFloat apf = APFloat(GV.IntVal); 599 uint64_t v; 600 bool ignored; 601 (void)apf.convertToInteger(&v, BitWidth, 602 CE->getOpcode()==Instruction::FPToSI, 603 APFloat::rmTowardZero, &ignored); 604 GV.IntVal = v; // endian? 605 } 606 return GV; 607 } 608 case Instruction::PtrToInt: { 609 GenericValue GV = getConstantValue(Op0); 610 uint32_t PtrWidth = TD->getPointerSizeInBits(); 611 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 612 return GV; 613 } 614 case Instruction::IntToPtr: { 615 GenericValue GV = getConstantValue(Op0); 616 uint32_t PtrWidth = TD->getPointerSizeInBits(); 617 if (PtrWidth != GV.IntVal.getBitWidth()) 618 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 619 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 620 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 621 return GV; 622 } 623 case Instruction::BitCast: { 624 GenericValue GV = getConstantValue(Op0); 625 const Type* DestTy = CE->getType(); 626 switch (Op0->getType()->getTypeID()) { 627 default: llvm_unreachable("Invalid bitcast operand"); 628 case Type::IntegerTyID: 629 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 630 if (DestTy->isFloatTy()) 631 GV.FloatVal = GV.IntVal.bitsToFloat(); 632 else if (DestTy->isDoubleTy()) 633 GV.DoubleVal = GV.IntVal.bitsToDouble(); 634 break; 635 case Type::FloatTyID: 636 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 637 GV.IntVal = APInt::floatToBits(GV.FloatVal); 638 break; 639 case Type::DoubleTyID: 640 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 641 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 642 break; 643 case Type::PointerTyID: 644 assert(DestTy->isPointerTy() && "Invalid bitcast"); 645 break; // getConstantValue(Op0) above already converted it 646 } 647 return GV; 648 } 649 case Instruction::Add: 650 case Instruction::FAdd: 651 case Instruction::Sub: 652 case Instruction::FSub: 653 case Instruction::Mul: 654 case Instruction::FMul: 655 case Instruction::UDiv: 656 case Instruction::SDiv: 657 case Instruction::URem: 658 case Instruction::SRem: 659 case Instruction::And: 660 case Instruction::Or: 661 case Instruction::Xor: { 662 GenericValue LHS = getConstantValue(Op0); 663 GenericValue RHS = getConstantValue(CE->getOperand(1)); 664 GenericValue GV; 665 switch (CE->getOperand(0)->getType()->getTypeID()) { 666 default: llvm_unreachable("Bad add type!"); 667 case Type::IntegerTyID: 668 switch (CE->getOpcode()) { 669 default: llvm_unreachable("Invalid integer opcode"); 670 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 671 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 672 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 673 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 674 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 675 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 676 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 677 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 678 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 679 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 680 } 681 break; 682 case Type::FloatTyID: 683 switch (CE->getOpcode()) { 684 default: llvm_unreachable("Invalid float opcode"); 685 case Instruction::FAdd: 686 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 687 case Instruction::FSub: 688 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 689 case Instruction::FMul: 690 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 691 case Instruction::FDiv: 692 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 693 case Instruction::FRem: 694 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 695 } 696 break; 697 case Type::DoubleTyID: 698 switch (CE->getOpcode()) { 699 default: llvm_unreachable("Invalid double opcode"); 700 case Instruction::FAdd: 701 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 702 case Instruction::FSub: 703 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 704 case Instruction::FMul: 705 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 706 case Instruction::FDiv: 707 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 708 case Instruction::FRem: 709 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 710 } 711 break; 712 case Type::X86_FP80TyID: 713 case Type::PPC_FP128TyID: 714 case Type::FP128TyID: { 715 APFloat apfLHS = APFloat(LHS.IntVal); 716 switch (CE->getOpcode()) { 717 default: llvm_unreachable("Invalid long double opcode"); 718 case Instruction::FAdd: 719 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 720 GV.IntVal = apfLHS.bitcastToAPInt(); 721 break; 722 case Instruction::FSub: 723 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 724 GV.IntVal = apfLHS.bitcastToAPInt(); 725 break; 726 case Instruction::FMul: 727 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 728 GV.IntVal = apfLHS.bitcastToAPInt(); 729 break; 730 case Instruction::FDiv: 731 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 732 GV.IntVal = apfLHS.bitcastToAPInt(); 733 break; 734 case Instruction::FRem: 735 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 736 GV.IntVal = apfLHS.bitcastToAPInt(); 737 break; 738 } 739 } 740 break; 741 } 742 return GV; 743 } 744 default: 745 break; 746 } 747 748 SmallString<256> Msg; 749 raw_svector_ostream OS(Msg); 750 OS << "ConstantExpr not handled: " << *CE; 751 report_fatal_error(OS.str()); 752 } 753 754 // Otherwise, we have a simple constant. 755 GenericValue Result; 756 switch (C->getType()->getTypeID()) { 757 case Type::FloatTyID: 758 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 759 break; 760 case Type::DoubleTyID: 761 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 762 break; 763 case Type::X86_FP80TyID: 764 case Type::FP128TyID: 765 case Type::PPC_FP128TyID: 766 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 767 break; 768 case Type::IntegerTyID: 769 Result.IntVal = cast<ConstantInt>(C)->getValue(); 770 break; 771 case Type::PointerTyID: 772 if (isa<ConstantPointerNull>(C)) 773 Result.PointerVal = 0; 774 else if (const Function *F = dyn_cast<Function>(C)) 775 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 776 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 777 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 778 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 779 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 780 BA->getBasicBlock()))); 781 else 782 llvm_unreachable("Unknown constant pointer type!"); 783 break; 784 default: 785 SmallString<256> Msg; 786 raw_svector_ostream OS(Msg); 787 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 788 report_fatal_error(OS.str()); 789 } 790 791 return Result; 792 } 793 794 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 795 /// with the integer held in IntVal. 796 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 797 unsigned StoreBytes) { 798 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 799 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 800 801 if (sys::isLittleEndianHost()) { 802 // Little-endian host - the source is ordered from LSB to MSB. Order the 803 // destination from LSB to MSB: Do a straight copy. 804 memcpy(Dst, Src, StoreBytes); 805 } else { 806 // Big-endian host - the source is an array of 64 bit words ordered from 807 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 808 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 809 while (StoreBytes > sizeof(uint64_t)) { 810 StoreBytes -= sizeof(uint64_t); 811 // May not be aligned so use memcpy. 812 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 813 Src += sizeof(uint64_t); 814 } 815 816 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 817 } 818 } 819 820 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 821 GenericValue *Ptr, const Type *Ty) { 822 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 823 824 switch (Ty->getTypeID()) { 825 case Type::IntegerTyID: 826 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 827 break; 828 case Type::FloatTyID: 829 *((float*)Ptr) = Val.FloatVal; 830 break; 831 case Type::DoubleTyID: 832 *((double*)Ptr) = Val.DoubleVal; 833 break; 834 case Type::X86_FP80TyID: 835 memcpy(Ptr, Val.IntVal.getRawData(), 10); 836 break; 837 case Type::PointerTyID: 838 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 839 if (StoreBytes != sizeof(PointerTy)) 840 memset(&(Ptr->PointerVal), 0, StoreBytes); 841 842 *((PointerTy*)Ptr) = Val.PointerVal; 843 break; 844 default: 845 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 846 } 847 848 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 849 // Host and target are different endian - reverse the stored bytes. 850 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 851 } 852 853 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 854 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 855 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 856 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 857 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 858 859 if (sys::isLittleEndianHost()) 860 // Little-endian host - the destination must be ordered from LSB to MSB. 861 // The source is ordered from LSB to MSB: Do a straight copy. 862 memcpy(Dst, Src, LoadBytes); 863 else { 864 // Big-endian - the destination is an array of 64 bit words ordered from 865 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 866 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 867 // a word. 868 while (LoadBytes > sizeof(uint64_t)) { 869 LoadBytes -= sizeof(uint64_t); 870 // May not be aligned so use memcpy. 871 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 872 Dst += sizeof(uint64_t); 873 } 874 875 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 876 } 877 } 878 879 /// FIXME: document 880 /// 881 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 882 GenericValue *Ptr, 883 const Type *Ty) { 884 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 885 886 switch (Ty->getTypeID()) { 887 case Type::IntegerTyID: 888 // An APInt with all words initially zero. 889 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 890 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 891 break; 892 case Type::FloatTyID: 893 Result.FloatVal = *((float*)Ptr); 894 break; 895 case Type::DoubleTyID: 896 Result.DoubleVal = *((double*)Ptr); 897 break; 898 case Type::PointerTyID: 899 Result.PointerVal = *((PointerTy*)Ptr); 900 break; 901 case Type::X86_FP80TyID: { 902 // This is endian dependent, but it will only work on x86 anyway. 903 // FIXME: Will not trap if loading a signaling NaN. 904 uint64_t y[2]; 905 memcpy(y, Ptr, 10); 906 Result.IntVal = APInt(80, 2, y); 907 break; 908 } 909 default: 910 SmallString<256> Msg; 911 raw_svector_ostream OS(Msg); 912 OS << "Cannot load value of type " << *Ty << "!"; 913 report_fatal_error(OS.str()); 914 } 915 } 916 917 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 918 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 919 DEBUG(Init->dump()); 920 if (isa<UndefValue>(Init)) { 921 return; 922 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 923 unsigned ElementSize = 924 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 925 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 926 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 927 return; 928 } else if (isa<ConstantAggregateZero>(Init)) { 929 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 930 return; 931 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 932 unsigned ElementSize = 933 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 934 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 935 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 936 return; 937 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 938 const StructLayout *SL = 939 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 940 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 941 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 942 return; 943 } else if (Init->getType()->isFirstClassType()) { 944 GenericValue Val = getConstantValue(Init); 945 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 946 return; 947 } 948 949 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 950 llvm_unreachable("Unknown constant type to initialize memory with!"); 951 } 952 953 /// EmitGlobals - Emit all of the global variables to memory, storing their 954 /// addresses into GlobalAddress. This must make sure to copy the contents of 955 /// their initializers into the memory. 956 void ExecutionEngine::emitGlobals() { 957 // Loop over all of the global variables in the program, allocating the memory 958 // to hold them. If there is more than one module, do a prepass over globals 959 // to figure out how the different modules should link together. 960 std::map<std::pair<std::string, const Type*>, 961 const GlobalValue*> LinkedGlobalsMap; 962 963 if (Modules.size() != 1) { 964 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 965 Module &M = *Modules[m]; 966 for (Module::const_global_iterator I = M.global_begin(), 967 E = M.global_end(); I != E; ++I) { 968 const GlobalValue *GV = I; 969 if (GV->hasLocalLinkage() || GV->isDeclaration() || 970 GV->hasAppendingLinkage() || !GV->hasName()) 971 continue;// Ignore external globals and globals with internal linkage. 972 973 const GlobalValue *&GVEntry = 974 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 975 976 // If this is the first time we've seen this global, it is the canonical 977 // version. 978 if (!GVEntry) { 979 GVEntry = GV; 980 continue; 981 } 982 983 // If the existing global is strong, never replace it. 984 if (GVEntry->hasExternalLinkage() || 985 GVEntry->hasDLLImportLinkage() || 986 GVEntry->hasDLLExportLinkage()) 987 continue; 988 989 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 990 // symbol. FIXME is this right for common? 991 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 992 GVEntry = GV; 993 } 994 } 995 } 996 997 std::vector<const GlobalValue*> NonCanonicalGlobals; 998 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 999 Module &M = *Modules[m]; 1000 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1001 I != E; ++I) { 1002 // In the multi-module case, see what this global maps to. 1003 if (!LinkedGlobalsMap.empty()) { 1004 if (const GlobalValue *GVEntry = 1005 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1006 // If something else is the canonical global, ignore this one. 1007 if (GVEntry != &*I) { 1008 NonCanonicalGlobals.push_back(I); 1009 continue; 1010 } 1011 } 1012 } 1013 1014 if (!I->isDeclaration()) { 1015 addGlobalMapping(I, getMemoryForGV(I)); 1016 } else { 1017 // External variable reference. Try to use the dynamic loader to 1018 // get a pointer to it. 1019 if (void *SymAddr = 1020 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1021 addGlobalMapping(I, SymAddr); 1022 else { 1023 report_fatal_error("Could not resolve external global address: " 1024 +I->getName()); 1025 } 1026 } 1027 } 1028 1029 // If there are multiple modules, map the non-canonical globals to their 1030 // canonical location. 1031 if (!NonCanonicalGlobals.empty()) { 1032 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1033 const GlobalValue *GV = NonCanonicalGlobals[i]; 1034 const GlobalValue *CGV = 1035 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1036 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1037 assert(Ptr && "Canonical global wasn't codegen'd!"); 1038 addGlobalMapping(GV, Ptr); 1039 } 1040 } 1041 1042 // Now that all of the globals are set up in memory, loop through them all 1043 // and initialize their contents. 1044 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1045 I != E; ++I) { 1046 if (!I->isDeclaration()) { 1047 if (!LinkedGlobalsMap.empty()) { 1048 if (const GlobalValue *GVEntry = 1049 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1050 if (GVEntry != &*I) // Not the canonical variable. 1051 continue; 1052 } 1053 EmitGlobalVariable(I); 1054 } 1055 } 1056 } 1057 } 1058 1059 // EmitGlobalVariable - This method emits the specified global variable to the 1060 // address specified in GlobalAddresses, or allocates new memory if it's not 1061 // already in the map. 1062 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1063 void *GA = getPointerToGlobalIfAvailable(GV); 1064 1065 if (GA == 0) { 1066 // If it's not already specified, allocate memory for the global. 1067 GA = getMemoryForGV(GV); 1068 addGlobalMapping(GV, GA); 1069 } 1070 1071 // Don't initialize if it's thread local, let the client do it. 1072 if (!GV->isThreadLocal()) 1073 InitializeMemory(GV->getInitializer(), GA); 1074 1075 const Type *ElTy = GV->getType()->getElementType(); 1076 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1077 NumInitBytes += (unsigned)GVSize; 1078 ++NumGlobals; 1079 } 1080 1081 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1082 : EE(EE), GlobalAddressMap(this) { 1083 } 1084 1085 sys::Mutex * 1086 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1087 return &EES->EE.lock; 1088 } 1089 1090 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1091 const GlobalValue *Old) { 1092 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1093 EES->GlobalAddressReverseMap.erase(OldVal); 1094 } 1095 1096 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1097 const GlobalValue *, 1098 const GlobalValue *) { 1099 assert(false && "The ExecutionEngine doesn't know how to handle a" 1100 " RAUW on a value it has a global mapping for."); 1101 } 1102