1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITEventListener.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Object/Archive.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 46 std::unique_ptr<Module> M, std::string *ErrorStr, 47 RTDyldMemoryManager *MCJMM, std::unique_ptr<TargetMachine> TM) = nullptr; 48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 49 std::string *ErrorStr) =nullptr; 50 51 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 52 : EEState(*this), 53 LazyFunctionCreator(nullptr) { 54 CompilingLazily = false; 55 GVCompilationDisabled = false; 56 SymbolSearchingDisabled = false; 57 58 // IR module verification is enabled by default in debug builds, and disabled 59 // by default in release builds. 60 #ifndef NDEBUG 61 VerifyModules = true; 62 #else 63 VerifyModules = false; 64 #endif 65 66 assert(M && "Module is null?"); 67 Modules.push_back(std::move(M)); 68 } 69 70 ExecutionEngine::~ExecutionEngine() { 71 clearAllGlobalMappings(); 72 } 73 74 namespace { 75 /// \brief Helper class which uses a value handler to automatically deletes the 76 /// memory block when the GlobalVariable is destroyed. 77 class GVMemoryBlock : public CallbackVH { 78 GVMemoryBlock(const GlobalVariable *GV) 79 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 80 81 public: 82 /// \brief Returns the address the GlobalVariable should be written into. The 83 /// GVMemoryBlock object prefixes that. 84 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 85 Type *ElTy = GV->getType()->getElementType(); 86 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 87 void *RawMemory = ::operator new( 88 RoundUpToAlignment(sizeof(GVMemoryBlock), 89 TD.getPreferredAlignment(GV)) 90 + GVSize); 91 new(RawMemory) GVMemoryBlock(GV); 92 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 93 } 94 95 void deleted() override { 96 // We allocated with operator new and with some extra memory hanging off the 97 // end, so don't just delete this. I'm not sure if this is actually 98 // required. 99 this->~GVMemoryBlock(); 100 ::operator delete(this); 101 } 102 }; 103 } // anonymous namespace 104 105 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 106 return GVMemoryBlock::Create(GV, *getDataLayout()); 107 } 108 109 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 110 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 111 } 112 113 void 114 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 115 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 116 } 117 118 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 119 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 120 } 121 122 bool ExecutionEngine::removeModule(Module *M) { 123 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 124 Module *Found = I->get(); 125 if (Found == M) { 126 I->release(); 127 Modules.erase(I); 128 clearGlobalMappingsFromModule(M); 129 return true; 130 } 131 } 132 return false; 133 } 134 135 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 136 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 137 if (Function *F = Modules[i]->getFunction(FnName)) 138 return F; 139 } 140 return nullptr; 141 } 142 143 144 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 145 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 146 void *OldVal; 147 148 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 149 // GlobalAddressMap. 150 if (I == GlobalAddressMap.end()) 151 OldVal = nullptr; 152 else { 153 OldVal = I->second; 154 GlobalAddressMap.erase(I); 155 } 156 157 GlobalAddressReverseMap.erase(OldVal); 158 return OldVal; 159 } 160 161 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 162 MutexGuard locked(lock); 163 164 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 165 << "\' to [" << Addr << "]\n";); 166 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 167 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 168 CurVal = Addr; 169 170 // If we are using the reverse mapping, add it too. 171 if (!EEState.getGlobalAddressReverseMap().empty()) { 172 AssertingVH<const GlobalValue> &V = 173 EEState.getGlobalAddressReverseMap()[Addr]; 174 assert((!V || !GV) && "GlobalMapping already established!"); 175 V = GV; 176 } 177 } 178 179 void ExecutionEngine::clearAllGlobalMappings() { 180 MutexGuard locked(lock); 181 182 EEState.getGlobalAddressMap().clear(); 183 EEState.getGlobalAddressReverseMap().clear(); 184 } 185 186 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 187 MutexGuard locked(lock); 188 189 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 190 EEState.RemoveMapping(FI); 191 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 192 GI != GE; ++GI) 193 EEState.RemoveMapping(GI); 194 } 195 196 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 197 MutexGuard locked(lock); 198 199 ExecutionEngineState::GlobalAddressMapTy &Map = 200 EEState.getGlobalAddressMap(); 201 202 // Deleting from the mapping? 203 if (!Addr) 204 return EEState.RemoveMapping(GV); 205 206 void *&CurVal = Map[GV]; 207 void *OldVal = CurVal; 208 209 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 210 EEState.getGlobalAddressReverseMap().erase(CurVal); 211 CurVal = Addr; 212 213 // If we are using the reverse mapping, add it too. 214 if (!EEState.getGlobalAddressReverseMap().empty()) { 215 AssertingVH<const GlobalValue> &V = 216 EEState.getGlobalAddressReverseMap()[Addr]; 217 assert((!V || !GV) && "GlobalMapping already established!"); 218 V = GV; 219 } 220 return OldVal; 221 } 222 223 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 224 MutexGuard locked(lock); 225 226 ExecutionEngineState::GlobalAddressMapTy::iterator I = 227 EEState.getGlobalAddressMap().find(GV); 228 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 229 } 230 231 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 232 MutexGuard locked(lock); 233 234 // If we haven't computed the reverse mapping yet, do so first. 235 if (EEState.getGlobalAddressReverseMap().empty()) { 236 for (ExecutionEngineState::GlobalAddressMapTy::iterator 237 I = EEState.getGlobalAddressMap().begin(), 238 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 239 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 240 I->second, I->first)); 241 } 242 243 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 244 EEState.getGlobalAddressReverseMap().find(Addr); 245 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 246 } 247 248 namespace { 249 class ArgvArray { 250 std::unique_ptr<char[]> Array; 251 std::vector<std::unique_ptr<char[]>> Values; 252 public: 253 /// Turn a vector of strings into a nice argv style array of pointers to null 254 /// terminated strings. 255 void *reset(LLVMContext &C, ExecutionEngine *EE, 256 const std::vector<std::string> &InputArgv); 257 }; 258 } // anonymous namespace 259 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 260 const std::vector<std::string> &InputArgv) { 261 Values.clear(); // Free the old contents. 262 Values.reserve(InputArgv.size()); 263 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 264 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 265 266 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 267 Type *SBytePtr = Type::getInt8PtrTy(C); 268 269 for (unsigned i = 0; i != InputArgv.size(); ++i) { 270 unsigned Size = InputArgv[i].size()+1; 271 auto Dest = make_unique<char[]>(Size); 272 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 273 274 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 275 Dest[Size-1] = 0; 276 277 // Endian safe: Array[i] = (PointerTy)Dest; 278 EE->StoreValueToMemory(PTOGV(Dest.get()), 279 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 280 Values.push_back(std::move(Dest)); 281 } 282 283 // Null terminate it 284 EE->StoreValueToMemory(PTOGV(nullptr), 285 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 286 SBytePtr); 287 return Array.get(); 288 } 289 290 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 291 bool isDtors) { 292 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 293 GlobalVariable *GV = module.getNamedGlobal(Name); 294 295 // If this global has internal linkage, or if it has a use, then it must be 296 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 297 // this is the case, don't execute any of the global ctors, __main will do 298 // it. 299 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 300 301 // Should be an array of '{ i32, void ()* }' structs. The first value is 302 // the init priority, which we ignore. 303 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 304 if (!InitList) 305 return; 306 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 307 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 308 if (!CS) continue; 309 310 Constant *FP = CS->getOperand(1); 311 if (FP->isNullValue()) 312 continue; // Found a sentinal value, ignore. 313 314 // Strip off constant expression casts. 315 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 316 if (CE->isCast()) 317 FP = CE->getOperand(0); 318 319 // Execute the ctor/dtor function! 320 if (Function *F = dyn_cast<Function>(FP)) 321 runFunction(F, std::vector<GenericValue>()); 322 323 // FIXME: It is marginally lame that we just do nothing here if we see an 324 // entry we don't recognize. It might not be unreasonable for the verifier 325 // to not even allow this and just assert here. 326 } 327 } 328 329 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 330 // Execute global ctors/dtors for each module in the program. 331 for (std::unique_ptr<Module> &M : Modules) 332 runStaticConstructorsDestructors(*M, isDtors); 333 } 334 335 #ifndef NDEBUG 336 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 337 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 338 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 339 for (unsigned i = 0; i < PtrSize; ++i) 340 if (*(i + (uint8_t*)Loc)) 341 return false; 342 return true; 343 } 344 #endif 345 346 int ExecutionEngine::runFunctionAsMain(Function *Fn, 347 const std::vector<std::string> &argv, 348 const char * const * envp) { 349 std::vector<GenericValue> GVArgs; 350 GenericValue GVArgc; 351 GVArgc.IntVal = APInt(32, argv.size()); 352 353 // Check main() type 354 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 355 FunctionType *FTy = Fn->getFunctionType(); 356 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 357 358 // Check the argument types. 359 if (NumArgs > 3) 360 report_fatal_error("Invalid number of arguments of main() supplied"); 361 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 362 report_fatal_error("Invalid type for third argument of main() supplied"); 363 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 364 report_fatal_error("Invalid type for second argument of main() supplied"); 365 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 366 report_fatal_error("Invalid type for first argument of main() supplied"); 367 if (!FTy->getReturnType()->isIntegerTy() && 368 !FTy->getReturnType()->isVoidTy()) 369 report_fatal_error("Invalid return type of main() supplied"); 370 371 ArgvArray CArgv; 372 ArgvArray CEnv; 373 if (NumArgs) { 374 GVArgs.push_back(GVArgc); // Arg #0 = argc. 375 if (NumArgs > 1) { 376 // Arg #1 = argv. 377 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 378 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 379 "argv[0] was null after CreateArgv"); 380 if (NumArgs > 2) { 381 std::vector<std::string> EnvVars; 382 for (unsigned i = 0; envp[i]; ++i) 383 EnvVars.push_back(envp[i]); 384 // Arg #2 = envp. 385 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 386 } 387 } 388 } 389 390 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 391 } 392 393 void EngineBuilder::InitEngine() { 394 WhichEngine = EngineKind::Either; 395 ErrorStr = nullptr; 396 OptLevel = CodeGenOpt::Default; 397 MCJMM = nullptr; 398 Options = TargetOptions(); 399 RelocModel = Reloc::Default; 400 CMModel = CodeModel::JITDefault; 401 402 // IR module verification is enabled by default in debug builds, and disabled 403 // by default in release builds. 404 #ifndef NDEBUG 405 VerifyModules = true; 406 #else 407 VerifyModules = false; 408 #endif 409 } 410 411 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 412 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 413 414 // Make sure we can resolve symbols in the program as well. The zero arg 415 // to the function tells DynamicLibrary to load the program, not a library. 416 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 417 return nullptr; 418 419 // If the user specified a memory manager but didn't specify which engine to 420 // create, we assume they only want the JIT, and we fail if they only want 421 // the interpreter. 422 if (MCJMM) { 423 if (WhichEngine & EngineKind::JIT) 424 WhichEngine = EngineKind::JIT; 425 else { 426 if (ErrorStr) 427 *ErrorStr = "Cannot create an interpreter with a memory manager."; 428 return nullptr; 429 } 430 } 431 432 // Unless the interpreter was explicitly selected or the JIT is not linked, 433 // try making a JIT. 434 if ((WhichEngine & EngineKind::JIT) && TheTM) { 435 Triple TT(M->getTargetTriple()); 436 if (!TM->getTarget().hasJIT()) { 437 errs() << "WARNING: This target JIT is not designed for the host" 438 << " you are running. If bad things happen, please choose" 439 << " a different -march switch.\n"; 440 } 441 442 ExecutionEngine *EE = nullptr; 443 if (ExecutionEngine::MCJITCtor) 444 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, MCJMM, 445 std::move(TheTM)); 446 if (EE) { 447 EE->setVerifyModules(VerifyModules); 448 return EE; 449 } 450 } 451 452 // If we can't make a JIT and we didn't request one specifically, try making 453 // an interpreter instead. 454 if (WhichEngine & EngineKind::Interpreter) { 455 if (ExecutionEngine::InterpCtor) 456 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 457 if (ErrorStr) 458 *ErrorStr = "Interpreter has not been linked in."; 459 return nullptr; 460 } 461 462 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 463 if (ErrorStr) 464 *ErrorStr = "JIT has not been linked in."; 465 } 466 467 return nullptr; 468 } 469 470 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 471 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 472 return getPointerToFunction(F); 473 474 MutexGuard locked(lock); 475 if (void *P = EEState.getGlobalAddressMap()[GV]) 476 return P; 477 478 // Global variable might have been added since interpreter started. 479 if (GlobalVariable *GVar = 480 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 481 EmitGlobalVariable(GVar); 482 else 483 llvm_unreachable("Global hasn't had an address allocated yet!"); 484 485 return EEState.getGlobalAddressMap()[GV]; 486 } 487 488 /// \brief Converts a Constant* into a GenericValue, including handling of 489 /// ConstantExpr values. 490 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 491 // If its undefined, return the garbage. 492 if (isa<UndefValue>(C)) { 493 GenericValue Result; 494 switch (C->getType()->getTypeID()) { 495 default: 496 break; 497 case Type::IntegerTyID: 498 case Type::X86_FP80TyID: 499 case Type::FP128TyID: 500 case Type::PPC_FP128TyID: 501 // Although the value is undefined, we still have to construct an APInt 502 // with the correct bit width. 503 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 504 break; 505 case Type::StructTyID: { 506 // if the whole struct is 'undef' just reserve memory for the value. 507 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 508 unsigned int elemNum = STy->getNumElements(); 509 Result.AggregateVal.resize(elemNum); 510 for (unsigned int i = 0; i < elemNum; ++i) { 511 Type *ElemTy = STy->getElementType(i); 512 if (ElemTy->isIntegerTy()) 513 Result.AggregateVal[i].IntVal = 514 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 515 else if (ElemTy->isAggregateType()) { 516 const Constant *ElemUndef = UndefValue::get(ElemTy); 517 Result.AggregateVal[i] = getConstantValue(ElemUndef); 518 } 519 } 520 } 521 } 522 break; 523 case Type::VectorTyID: 524 // if the whole vector is 'undef' just reserve memory for the value. 525 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 526 const Type *ElemTy = VTy->getElementType(); 527 unsigned int elemNum = VTy->getNumElements(); 528 Result.AggregateVal.resize(elemNum); 529 if (ElemTy->isIntegerTy()) 530 for (unsigned int i = 0; i < elemNum; ++i) 531 Result.AggregateVal[i].IntVal = 532 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 533 break; 534 } 535 return Result; 536 } 537 538 // Otherwise, if the value is a ConstantExpr... 539 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 540 Constant *Op0 = CE->getOperand(0); 541 switch (CE->getOpcode()) { 542 case Instruction::GetElementPtr: { 543 // Compute the index 544 GenericValue Result = getConstantValue(Op0); 545 APInt Offset(DL->getPointerSizeInBits(), 0); 546 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 547 548 char* tmp = (char*) Result.PointerVal; 549 Result = PTOGV(tmp + Offset.getSExtValue()); 550 return Result; 551 } 552 case Instruction::Trunc: { 553 GenericValue GV = getConstantValue(Op0); 554 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 555 GV.IntVal = GV.IntVal.trunc(BitWidth); 556 return GV; 557 } 558 case Instruction::ZExt: { 559 GenericValue GV = getConstantValue(Op0); 560 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 561 GV.IntVal = GV.IntVal.zext(BitWidth); 562 return GV; 563 } 564 case Instruction::SExt: { 565 GenericValue GV = getConstantValue(Op0); 566 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 567 GV.IntVal = GV.IntVal.sext(BitWidth); 568 return GV; 569 } 570 case Instruction::FPTrunc: { 571 // FIXME long double 572 GenericValue GV = getConstantValue(Op0); 573 GV.FloatVal = float(GV.DoubleVal); 574 return GV; 575 } 576 case Instruction::FPExt:{ 577 // FIXME long double 578 GenericValue GV = getConstantValue(Op0); 579 GV.DoubleVal = double(GV.FloatVal); 580 return GV; 581 } 582 case Instruction::UIToFP: { 583 GenericValue GV = getConstantValue(Op0); 584 if (CE->getType()->isFloatTy()) 585 GV.FloatVal = float(GV.IntVal.roundToDouble()); 586 else if (CE->getType()->isDoubleTy()) 587 GV.DoubleVal = GV.IntVal.roundToDouble(); 588 else if (CE->getType()->isX86_FP80Ty()) { 589 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 590 (void)apf.convertFromAPInt(GV.IntVal, 591 false, 592 APFloat::rmNearestTiesToEven); 593 GV.IntVal = apf.bitcastToAPInt(); 594 } 595 return GV; 596 } 597 case Instruction::SIToFP: { 598 GenericValue GV = getConstantValue(Op0); 599 if (CE->getType()->isFloatTy()) 600 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 601 else if (CE->getType()->isDoubleTy()) 602 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 603 else if (CE->getType()->isX86_FP80Ty()) { 604 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 605 (void)apf.convertFromAPInt(GV.IntVal, 606 true, 607 APFloat::rmNearestTiesToEven); 608 GV.IntVal = apf.bitcastToAPInt(); 609 } 610 return GV; 611 } 612 case Instruction::FPToUI: // double->APInt conversion handles sign 613 case Instruction::FPToSI: { 614 GenericValue GV = getConstantValue(Op0); 615 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 616 if (Op0->getType()->isFloatTy()) 617 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 618 else if (Op0->getType()->isDoubleTy()) 619 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 620 else if (Op0->getType()->isX86_FP80Ty()) { 621 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 622 uint64_t v; 623 bool ignored; 624 (void)apf.convertToInteger(&v, BitWidth, 625 CE->getOpcode()==Instruction::FPToSI, 626 APFloat::rmTowardZero, &ignored); 627 GV.IntVal = v; // endian? 628 } 629 return GV; 630 } 631 case Instruction::PtrToInt: { 632 GenericValue GV = getConstantValue(Op0); 633 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 634 assert(PtrWidth <= 64 && "Bad pointer width"); 635 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 636 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 637 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 638 return GV; 639 } 640 case Instruction::IntToPtr: { 641 GenericValue GV = getConstantValue(Op0); 642 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 643 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 644 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 645 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 646 return GV; 647 } 648 case Instruction::BitCast: { 649 GenericValue GV = getConstantValue(Op0); 650 Type* DestTy = CE->getType(); 651 switch (Op0->getType()->getTypeID()) { 652 default: llvm_unreachable("Invalid bitcast operand"); 653 case Type::IntegerTyID: 654 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 655 if (DestTy->isFloatTy()) 656 GV.FloatVal = GV.IntVal.bitsToFloat(); 657 else if (DestTy->isDoubleTy()) 658 GV.DoubleVal = GV.IntVal.bitsToDouble(); 659 break; 660 case Type::FloatTyID: 661 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 662 GV.IntVal = APInt::floatToBits(GV.FloatVal); 663 break; 664 case Type::DoubleTyID: 665 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 666 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 667 break; 668 case Type::PointerTyID: 669 assert(DestTy->isPointerTy() && "Invalid bitcast"); 670 break; // getConstantValue(Op0) above already converted it 671 } 672 return GV; 673 } 674 case Instruction::Add: 675 case Instruction::FAdd: 676 case Instruction::Sub: 677 case Instruction::FSub: 678 case Instruction::Mul: 679 case Instruction::FMul: 680 case Instruction::UDiv: 681 case Instruction::SDiv: 682 case Instruction::URem: 683 case Instruction::SRem: 684 case Instruction::And: 685 case Instruction::Or: 686 case Instruction::Xor: { 687 GenericValue LHS = getConstantValue(Op0); 688 GenericValue RHS = getConstantValue(CE->getOperand(1)); 689 GenericValue GV; 690 switch (CE->getOperand(0)->getType()->getTypeID()) { 691 default: llvm_unreachable("Bad add type!"); 692 case Type::IntegerTyID: 693 switch (CE->getOpcode()) { 694 default: llvm_unreachable("Invalid integer opcode"); 695 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 696 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 697 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 698 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 699 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 700 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 701 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 702 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 703 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 704 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 705 } 706 break; 707 case Type::FloatTyID: 708 switch (CE->getOpcode()) { 709 default: llvm_unreachable("Invalid float opcode"); 710 case Instruction::FAdd: 711 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 712 case Instruction::FSub: 713 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 714 case Instruction::FMul: 715 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 716 case Instruction::FDiv: 717 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 718 case Instruction::FRem: 719 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 720 } 721 break; 722 case Type::DoubleTyID: 723 switch (CE->getOpcode()) { 724 default: llvm_unreachable("Invalid double opcode"); 725 case Instruction::FAdd: 726 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 727 case Instruction::FSub: 728 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 729 case Instruction::FMul: 730 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 731 case Instruction::FDiv: 732 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 733 case Instruction::FRem: 734 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 735 } 736 break; 737 case Type::X86_FP80TyID: 738 case Type::PPC_FP128TyID: 739 case Type::FP128TyID: { 740 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 741 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 742 switch (CE->getOpcode()) { 743 default: llvm_unreachable("Invalid long double opcode"); 744 case Instruction::FAdd: 745 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 746 GV.IntVal = apfLHS.bitcastToAPInt(); 747 break; 748 case Instruction::FSub: 749 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 750 APFloat::rmNearestTiesToEven); 751 GV.IntVal = apfLHS.bitcastToAPInt(); 752 break; 753 case Instruction::FMul: 754 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 755 APFloat::rmNearestTiesToEven); 756 GV.IntVal = apfLHS.bitcastToAPInt(); 757 break; 758 case Instruction::FDiv: 759 apfLHS.divide(APFloat(Sem, RHS.IntVal), 760 APFloat::rmNearestTiesToEven); 761 GV.IntVal = apfLHS.bitcastToAPInt(); 762 break; 763 case Instruction::FRem: 764 apfLHS.mod(APFloat(Sem, RHS.IntVal), 765 APFloat::rmNearestTiesToEven); 766 GV.IntVal = apfLHS.bitcastToAPInt(); 767 break; 768 } 769 } 770 break; 771 } 772 return GV; 773 } 774 default: 775 break; 776 } 777 778 SmallString<256> Msg; 779 raw_svector_ostream OS(Msg); 780 OS << "ConstantExpr not handled: " << *CE; 781 report_fatal_error(OS.str()); 782 } 783 784 // Otherwise, we have a simple constant. 785 GenericValue Result; 786 switch (C->getType()->getTypeID()) { 787 case Type::FloatTyID: 788 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 789 break; 790 case Type::DoubleTyID: 791 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 792 break; 793 case Type::X86_FP80TyID: 794 case Type::FP128TyID: 795 case Type::PPC_FP128TyID: 796 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 797 break; 798 case Type::IntegerTyID: 799 Result.IntVal = cast<ConstantInt>(C)->getValue(); 800 break; 801 case Type::PointerTyID: 802 if (isa<ConstantPointerNull>(C)) 803 Result.PointerVal = nullptr; 804 else if (const Function *F = dyn_cast<Function>(C)) 805 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 806 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 807 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 808 else 809 llvm_unreachable("Unknown constant pointer type!"); 810 break; 811 case Type::VectorTyID: { 812 unsigned elemNum; 813 Type* ElemTy; 814 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 815 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 816 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 817 818 if (CDV) { 819 elemNum = CDV->getNumElements(); 820 ElemTy = CDV->getElementType(); 821 } else if (CV || CAZ) { 822 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 823 elemNum = VTy->getNumElements(); 824 ElemTy = VTy->getElementType(); 825 } else { 826 llvm_unreachable("Unknown constant vector type!"); 827 } 828 829 Result.AggregateVal.resize(elemNum); 830 // Check if vector holds floats. 831 if(ElemTy->isFloatTy()) { 832 if (CAZ) { 833 GenericValue floatZero; 834 floatZero.FloatVal = 0.f; 835 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 836 floatZero); 837 break; 838 } 839 if(CV) { 840 for (unsigned i = 0; i < elemNum; ++i) 841 if (!isa<UndefValue>(CV->getOperand(i))) 842 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 843 CV->getOperand(i))->getValueAPF().convertToFloat(); 844 break; 845 } 846 if(CDV) 847 for (unsigned i = 0; i < elemNum; ++i) 848 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 849 850 break; 851 } 852 // Check if vector holds doubles. 853 if (ElemTy->isDoubleTy()) { 854 if (CAZ) { 855 GenericValue doubleZero; 856 doubleZero.DoubleVal = 0.0; 857 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 858 doubleZero); 859 break; 860 } 861 if(CV) { 862 for (unsigned i = 0; i < elemNum; ++i) 863 if (!isa<UndefValue>(CV->getOperand(i))) 864 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 865 CV->getOperand(i))->getValueAPF().convertToDouble(); 866 break; 867 } 868 if(CDV) 869 for (unsigned i = 0; i < elemNum; ++i) 870 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 871 872 break; 873 } 874 // Check if vector holds integers. 875 if (ElemTy->isIntegerTy()) { 876 if (CAZ) { 877 GenericValue intZero; 878 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 879 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 880 intZero); 881 break; 882 } 883 if(CV) { 884 for (unsigned i = 0; i < elemNum; ++i) 885 if (!isa<UndefValue>(CV->getOperand(i))) 886 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 887 CV->getOperand(i))->getValue(); 888 else { 889 Result.AggregateVal[i].IntVal = 890 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 891 } 892 break; 893 } 894 if(CDV) 895 for (unsigned i = 0; i < elemNum; ++i) 896 Result.AggregateVal[i].IntVal = APInt( 897 CDV->getElementType()->getPrimitiveSizeInBits(), 898 CDV->getElementAsInteger(i)); 899 900 break; 901 } 902 llvm_unreachable("Unknown constant pointer type!"); 903 } 904 break; 905 906 default: 907 SmallString<256> Msg; 908 raw_svector_ostream OS(Msg); 909 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 910 report_fatal_error(OS.str()); 911 } 912 913 return Result; 914 } 915 916 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 917 /// with the integer held in IntVal. 918 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 919 unsigned StoreBytes) { 920 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 921 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 922 923 if (sys::IsLittleEndianHost) { 924 // Little-endian host - the source is ordered from LSB to MSB. Order the 925 // destination from LSB to MSB: Do a straight copy. 926 memcpy(Dst, Src, StoreBytes); 927 } else { 928 // Big-endian host - the source is an array of 64 bit words ordered from 929 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 930 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 931 while (StoreBytes > sizeof(uint64_t)) { 932 StoreBytes -= sizeof(uint64_t); 933 // May not be aligned so use memcpy. 934 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 935 Src += sizeof(uint64_t); 936 } 937 938 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 939 } 940 } 941 942 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 943 GenericValue *Ptr, Type *Ty) { 944 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 945 946 switch (Ty->getTypeID()) { 947 default: 948 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 949 break; 950 case Type::IntegerTyID: 951 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 952 break; 953 case Type::FloatTyID: 954 *((float*)Ptr) = Val.FloatVal; 955 break; 956 case Type::DoubleTyID: 957 *((double*)Ptr) = Val.DoubleVal; 958 break; 959 case Type::X86_FP80TyID: 960 memcpy(Ptr, Val.IntVal.getRawData(), 10); 961 break; 962 case Type::PointerTyID: 963 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 964 if (StoreBytes != sizeof(PointerTy)) 965 memset(&(Ptr->PointerVal), 0, StoreBytes); 966 967 *((PointerTy*)Ptr) = Val.PointerVal; 968 break; 969 case Type::VectorTyID: 970 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 971 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 972 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 973 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 974 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 975 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 976 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 977 StoreIntToMemory(Val.AggregateVal[i].IntVal, 978 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 979 } 980 } 981 break; 982 } 983 984 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 985 // Host and target are different endian - reverse the stored bytes. 986 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 987 } 988 989 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 990 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 991 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 992 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 993 uint8_t *Dst = reinterpret_cast<uint8_t *>( 994 const_cast<uint64_t *>(IntVal.getRawData())); 995 996 if (sys::IsLittleEndianHost) 997 // Little-endian host - the destination must be ordered from LSB to MSB. 998 // The source is ordered from LSB to MSB: Do a straight copy. 999 memcpy(Dst, Src, LoadBytes); 1000 else { 1001 // Big-endian - the destination is an array of 64 bit words ordered from 1002 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1003 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1004 // a word. 1005 while (LoadBytes > sizeof(uint64_t)) { 1006 LoadBytes -= sizeof(uint64_t); 1007 // May not be aligned so use memcpy. 1008 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1009 Dst += sizeof(uint64_t); 1010 } 1011 1012 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1013 } 1014 } 1015 1016 /// FIXME: document 1017 /// 1018 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1019 GenericValue *Ptr, 1020 Type *Ty) { 1021 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1022 1023 switch (Ty->getTypeID()) { 1024 case Type::IntegerTyID: 1025 // An APInt with all words initially zero. 1026 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1027 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1028 break; 1029 case Type::FloatTyID: 1030 Result.FloatVal = *((float*)Ptr); 1031 break; 1032 case Type::DoubleTyID: 1033 Result.DoubleVal = *((double*)Ptr); 1034 break; 1035 case Type::PointerTyID: 1036 Result.PointerVal = *((PointerTy*)Ptr); 1037 break; 1038 case Type::X86_FP80TyID: { 1039 // This is endian dependent, but it will only work on x86 anyway. 1040 // FIXME: Will not trap if loading a signaling NaN. 1041 uint64_t y[2]; 1042 memcpy(y, Ptr, 10); 1043 Result.IntVal = APInt(80, y); 1044 break; 1045 } 1046 case Type::VectorTyID: { 1047 const VectorType *VT = cast<VectorType>(Ty); 1048 const Type *ElemT = VT->getElementType(); 1049 const unsigned numElems = VT->getNumElements(); 1050 if (ElemT->isFloatTy()) { 1051 Result.AggregateVal.resize(numElems); 1052 for (unsigned i = 0; i < numElems; ++i) 1053 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1054 } 1055 if (ElemT->isDoubleTy()) { 1056 Result.AggregateVal.resize(numElems); 1057 for (unsigned i = 0; i < numElems; ++i) 1058 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1059 } 1060 if (ElemT->isIntegerTy()) { 1061 GenericValue intZero; 1062 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1063 intZero.IntVal = APInt(elemBitWidth, 0); 1064 Result.AggregateVal.resize(numElems, intZero); 1065 for (unsigned i = 0; i < numElems; ++i) 1066 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1067 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1068 } 1069 break; 1070 } 1071 default: 1072 SmallString<256> Msg; 1073 raw_svector_ostream OS(Msg); 1074 OS << "Cannot load value of type " << *Ty << "!"; 1075 report_fatal_error(OS.str()); 1076 } 1077 } 1078 1079 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1080 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1081 DEBUG(Init->dump()); 1082 if (isa<UndefValue>(Init)) 1083 return; 1084 1085 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1086 unsigned ElementSize = 1087 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1088 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1089 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1090 return; 1091 } 1092 1093 if (isa<ConstantAggregateZero>(Init)) { 1094 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1095 return; 1096 } 1097 1098 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1099 unsigned ElementSize = 1100 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1101 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1102 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1103 return; 1104 } 1105 1106 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1107 const StructLayout *SL = 1108 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1109 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1110 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1111 return; 1112 } 1113 1114 if (const ConstantDataSequential *CDS = 1115 dyn_cast<ConstantDataSequential>(Init)) { 1116 // CDS is already laid out in host memory order. 1117 StringRef Data = CDS->getRawDataValues(); 1118 memcpy(Addr, Data.data(), Data.size()); 1119 return; 1120 } 1121 1122 if (Init->getType()->isFirstClassType()) { 1123 GenericValue Val = getConstantValue(Init); 1124 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1125 return; 1126 } 1127 1128 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1129 llvm_unreachable("Unknown constant type to initialize memory with!"); 1130 } 1131 1132 /// EmitGlobals - Emit all of the global variables to memory, storing their 1133 /// addresses into GlobalAddress. This must make sure to copy the contents of 1134 /// their initializers into the memory. 1135 void ExecutionEngine::emitGlobals() { 1136 // Loop over all of the global variables in the program, allocating the memory 1137 // to hold them. If there is more than one module, do a prepass over globals 1138 // to figure out how the different modules should link together. 1139 std::map<std::pair<std::string, Type*>, 1140 const GlobalValue*> LinkedGlobalsMap; 1141 1142 if (Modules.size() != 1) { 1143 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1144 Module &M = *Modules[m]; 1145 for (const auto &GV : M.globals()) { 1146 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1147 GV.hasAppendingLinkage() || !GV.hasName()) 1148 continue;// Ignore external globals and globals with internal linkage. 1149 1150 const GlobalValue *&GVEntry = 1151 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1152 1153 // If this is the first time we've seen this global, it is the canonical 1154 // version. 1155 if (!GVEntry) { 1156 GVEntry = &GV; 1157 continue; 1158 } 1159 1160 // If the existing global is strong, never replace it. 1161 if (GVEntry->hasExternalLinkage()) 1162 continue; 1163 1164 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1165 // symbol. FIXME is this right for common? 1166 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1167 GVEntry = &GV; 1168 } 1169 } 1170 } 1171 1172 std::vector<const GlobalValue*> NonCanonicalGlobals; 1173 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1174 Module &M = *Modules[m]; 1175 for (const auto &GV : M.globals()) { 1176 // In the multi-module case, see what this global maps to. 1177 if (!LinkedGlobalsMap.empty()) { 1178 if (const GlobalValue *GVEntry = 1179 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1180 // If something else is the canonical global, ignore this one. 1181 if (GVEntry != &GV) { 1182 NonCanonicalGlobals.push_back(&GV); 1183 continue; 1184 } 1185 } 1186 } 1187 1188 if (!GV.isDeclaration()) { 1189 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1190 } else { 1191 // External variable reference. Try to use the dynamic loader to 1192 // get a pointer to it. 1193 if (void *SymAddr = 1194 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1195 addGlobalMapping(&GV, SymAddr); 1196 else { 1197 report_fatal_error("Could not resolve external global address: " 1198 +GV.getName()); 1199 } 1200 } 1201 } 1202 1203 // If there are multiple modules, map the non-canonical globals to their 1204 // canonical location. 1205 if (!NonCanonicalGlobals.empty()) { 1206 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1207 const GlobalValue *GV = NonCanonicalGlobals[i]; 1208 const GlobalValue *CGV = 1209 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1210 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1211 assert(Ptr && "Canonical global wasn't codegen'd!"); 1212 addGlobalMapping(GV, Ptr); 1213 } 1214 } 1215 1216 // Now that all of the globals are set up in memory, loop through them all 1217 // and initialize their contents. 1218 for (const auto &GV : M.globals()) { 1219 if (!GV.isDeclaration()) { 1220 if (!LinkedGlobalsMap.empty()) { 1221 if (const GlobalValue *GVEntry = 1222 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1223 if (GVEntry != &GV) // Not the canonical variable. 1224 continue; 1225 } 1226 EmitGlobalVariable(&GV); 1227 } 1228 } 1229 } 1230 } 1231 1232 // EmitGlobalVariable - This method emits the specified global variable to the 1233 // address specified in GlobalAddresses, or allocates new memory if it's not 1234 // already in the map. 1235 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1236 void *GA = getPointerToGlobalIfAvailable(GV); 1237 1238 if (!GA) { 1239 // If it's not already specified, allocate memory for the global. 1240 GA = getMemoryForGV(GV); 1241 1242 // If we failed to allocate memory for this global, return. 1243 if (!GA) return; 1244 1245 addGlobalMapping(GV, GA); 1246 } 1247 1248 // Don't initialize if it's thread local, let the client do it. 1249 if (!GV->isThreadLocal()) 1250 InitializeMemory(GV->getInitializer(), GA); 1251 1252 Type *ElTy = GV->getType()->getElementType(); 1253 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1254 NumInitBytes += (unsigned)GVSize; 1255 ++NumGlobals; 1256 } 1257 1258 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1259 : EE(EE), GlobalAddressMap(this) { 1260 } 1261 1262 sys::Mutex * 1263 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1264 return &EES->EE.lock; 1265 } 1266 1267 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1268 const GlobalValue *Old) { 1269 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1270 EES->GlobalAddressReverseMap.erase(OldVal); 1271 } 1272 1273 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1274 const GlobalValue *, 1275 const GlobalValue *) { 1276 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1277 " RAUW on a value it has a global mapping for."); 1278 } 1279