1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ExecutionEngine/GenericValue.h" 20 #include "llvm/ExecutionEngine/JITEventListener.h" 21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Object/Archive.h" 30 #include "llvm/Object/ObjectFile.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/DynamicLibrary.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Host.h" 35 #include "llvm/Support/MutexGuard.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cmath> 40 #include <cstring> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "jit" 44 45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46 STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 56 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 57 std::unique_ptr<TargetMachine> TM) = nullptr; 58 59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 60 std::string *ErrorStr) =nullptr; 61 62 void JITEventListener::anchor() {} 63 64 void ExecutionEngine::Init(std::unique_ptr<Module> M) { 65 CompilingLazily = false; 66 GVCompilationDisabled = false; 67 SymbolSearchingDisabled = false; 68 69 // IR module verification is enabled by default in debug builds, and disabled 70 // by default in release builds. 71 #ifndef NDEBUG 72 VerifyModules = true; 73 #else 74 VerifyModules = false; 75 #endif 76 77 assert(M && "Module is null?"); 78 Modules.push_back(std::move(M)); 79 } 80 81 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 82 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 83 Init(std::move(M)); 84 } 85 86 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 87 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 88 Init(std::move(M)); 89 } 90 91 ExecutionEngine::~ExecutionEngine() { 92 clearAllGlobalMappings(); 93 } 94 95 namespace { 96 /// \brief Helper class which uses a value handler to automatically deletes the 97 /// memory block when the GlobalVariable is destroyed. 98 class GVMemoryBlock : public CallbackVH { 99 GVMemoryBlock(const GlobalVariable *GV) 100 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 101 102 public: 103 /// \brief Returns the address the GlobalVariable should be written into. The 104 /// GVMemoryBlock object prefixes that. 105 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 106 Type *ElTy = GV->getType()->getElementType(); 107 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 108 void *RawMemory = ::operator new( 109 RoundUpToAlignment(sizeof(GVMemoryBlock), 110 TD.getPreferredAlignment(GV)) 111 + GVSize); 112 new(RawMemory) GVMemoryBlock(GV); 113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 114 } 115 116 void deleted() override { 117 // We allocated with operator new and with some extra memory hanging off the 118 // end, so don't just delete this. I'm not sure if this is actually 119 // required. 120 this->~GVMemoryBlock(); 121 ::operator delete(this); 122 } 123 }; 124 } // anonymous namespace 125 126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 127 return GVMemoryBlock::Create(GV, getDataLayout()); 128 } 129 130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 132 } 133 134 void 135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 137 } 138 139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 141 } 142 143 bool ExecutionEngine::removeModule(Module *M) { 144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 145 Module *Found = I->get(); 146 if (Found == M) { 147 I->release(); 148 Modules.erase(I); 149 clearGlobalMappingsFromModule(M); 150 return true; 151 } 152 } 153 return false; 154 } 155 156 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 158 Function *F = Modules[i]->getFunction(FnName); 159 if (F && !F->isDeclaration()) 160 return F; 161 } 162 return nullptr; 163 } 164 165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { 166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 168 if (GV && !GV->isDeclaration()) 169 return GV; 170 } 171 return nullptr; 172 } 173 174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 176 uint64_t OldVal; 177 178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 179 // GlobalAddressMap. 180 if (I == GlobalAddressMap.end()) 181 OldVal = 0; 182 else { 183 GlobalAddressReverseMap.erase(I->second); 184 OldVal = I->second; 185 GlobalAddressMap.erase(I); 186 } 187 188 return OldVal; 189 } 190 191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 192 MutexGuard locked(lock); 193 Mangler Mang; 194 SmallString<128> FullName; 195 Mang.getNameWithPrefix(FullName, GV, false); 196 return FullName.str(); 197 } 198 199 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 200 MutexGuard locked(lock); 201 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 202 } 203 204 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 205 MutexGuard locked(lock); 206 207 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 208 209 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 210 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 211 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 212 CurVal = Addr; 213 214 // If we are using the reverse mapping, add it too. 215 if (!EEState.getGlobalAddressReverseMap().empty()) { 216 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 217 assert((!V.empty() || !Name.empty()) && 218 "GlobalMapping already established!"); 219 V = Name; 220 } 221 } 222 223 void ExecutionEngine::clearAllGlobalMappings() { 224 MutexGuard locked(lock); 225 226 EEState.getGlobalAddressMap().clear(); 227 EEState.getGlobalAddressReverseMap().clear(); 228 } 229 230 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 231 MutexGuard locked(lock); 232 233 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 234 EEState.RemoveMapping(getMangledName(FI)); 235 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 236 GI != GE; ++GI) 237 EEState.RemoveMapping(getMangledName(GI)); 238 } 239 240 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 241 void *Addr) { 242 MutexGuard locked(lock); 243 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 244 } 245 246 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 247 MutexGuard locked(lock); 248 249 ExecutionEngineState::GlobalAddressMapTy &Map = 250 EEState.getGlobalAddressMap(); 251 252 // Deleting from the mapping? 253 if (!Addr) 254 return EEState.RemoveMapping(Name); 255 256 uint64_t &CurVal = Map[Name]; 257 uint64_t OldVal = CurVal; 258 259 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 260 EEState.getGlobalAddressReverseMap().erase(CurVal); 261 CurVal = Addr; 262 263 // If we are using the reverse mapping, add it too. 264 if (!EEState.getGlobalAddressReverseMap().empty()) { 265 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 266 assert((!V.empty() || !Name.empty()) && 267 "GlobalMapping already established!"); 268 V = Name; 269 } 270 return OldVal; 271 } 272 273 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 274 MutexGuard locked(lock); 275 uint64_t Address = 0; 276 ExecutionEngineState::GlobalAddressMapTy::iterator I = 277 EEState.getGlobalAddressMap().find(S); 278 if (I != EEState.getGlobalAddressMap().end()) 279 Address = I->second; 280 return Address; 281 } 282 283 284 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 285 MutexGuard locked(lock); 286 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 287 return Address; 288 return nullptr; 289 } 290 291 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 292 MutexGuard locked(lock); 293 return getPointerToGlobalIfAvailable(getMangledName(GV)); 294 } 295 296 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 297 MutexGuard locked(lock); 298 299 // If we haven't computed the reverse mapping yet, do so first. 300 if (EEState.getGlobalAddressReverseMap().empty()) { 301 for (ExecutionEngineState::GlobalAddressMapTy::iterator 302 I = EEState.getGlobalAddressMap().begin(), 303 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 304 StringRef Name = I->first(); 305 uint64_t Addr = I->second; 306 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 307 Addr, Name)); 308 } 309 } 310 311 std::map<uint64_t, std::string>::iterator I = 312 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 313 314 if (I != EEState.getGlobalAddressReverseMap().end()) { 315 StringRef Name = I->second; 316 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 317 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 318 return GV; 319 } 320 return nullptr; 321 } 322 323 namespace { 324 class ArgvArray { 325 std::unique_ptr<char[]> Array; 326 std::vector<std::unique_ptr<char[]>> Values; 327 public: 328 /// Turn a vector of strings into a nice argv style array of pointers to null 329 /// terminated strings. 330 void *reset(LLVMContext &C, ExecutionEngine *EE, 331 const std::vector<std::string> &InputArgv); 332 }; 333 } // anonymous namespace 334 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 335 const std::vector<std::string> &InputArgv) { 336 Values.clear(); // Free the old contents. 337 Values.reserve(InputArgv.size()); 338 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 339 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 340 341 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 342 Type *SBytePtr = Type::getInt8PtrTy(C); 343 344 for (unsigned i = 0; i != InputArgv.size(); ++i) { 345 unsigned Size = InputArgv[i].size()+1; 346 auto Dest = make_unique<char[]>(Size); 347 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 348 349 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 350 Dest[Size-1] = 0; 351 352 // Endian safe: Array[i] = (PointerTy)Dest; 353 EE->StoreValueToMemory(PTOGV(Dest.get()), 354 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 355 Values.push_back(std::move(Dest)); 356 } 357 358 // Null terminate it 359 EE->StoreValueToMemory(PTOGV(nullptr), 360 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 361 SBytePtr); 362 return Array.get(); 363 } 364 365 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 366 bool isDtors) { 367 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 368 GlobalVariable *GV = module.getNamedGlobal(Name); 369 370 // If this global has internal linkage, or if it has a use, then it must be 371 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 372 // this is the case, don't execute any of the global ctors, __main will do 373 // it. 374 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 375 376 // Should be an array of '{ i32, void ()* }' structs. The first value is 377 // the init priority, which we ignore. 378 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 379 if (!InitList) 380 return; 381 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 382 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 383 if (!CS) continue; 384 385 Constant *FP = CS->getOperand(1); 386 if (FP->isNullValue()) 387 continue; // Found a sentinal value, ignore. 388 389 // Strip off constant expression casts. 390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 391 if (CE->isCast()) 392 FP = CE->getOperand(0); 393 394 // Execute the ctor/dtor function! 395 if (Function *F = dyn_cast<Function>(FP)) 396 runFunction(F, None); 397 398 // FIXME: It is marginally lame that we just do nothing here if we see an 399 // entry we don't recognize. It might not be unreasonable for the verifier 400 // to not even allow this and just assert here. 401 } 402 } 403 404 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 405 // Execute global ctors/dtors for each module in the program. 406 for (std::unique_ptr<Module> &M : Modules) 407 runStaticConstructorsDestructors(*M, isDtors); 408 } 409 410 #ifndef NDEBUG 411 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 412 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 413 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 414 for (unsigned i = 0; i < PtrSize; ++i) 415 if (*(i + (uint8_t*)Loc)) 416 return false; 417 return true; 418 } 419 #endif 420 421 int ExecutionEngine::runFunctionAsMain(Function *Fn, 422 const std::vector<std::string> &argv, 423 const char * const * envp) { 424 std::vector<GenericValue> GVArgs; 425 GenericValue GVArgc; 426 GVArgc.IntVal = APInt(32, argv.size()); 427 428 // Check main() type 429 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 430 FunctionType *FTy = Fn->getFunctionType(); 431 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 432 433 // Check the argument types. 434 if (NumArgs > 3) 435 report_fatal_error("Invalid number of arguments of main() supplied"); 436 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 437 report_fatal_error("Invalid type for third argument of main() supplied"); 438 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 439 report_fatal_error("Invalid type for second argument of main() supplied"); 440 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 441 report_fatal_error("Invalid type for first argument of main() supplied"); 442 if (!FTy->getReturnType()->isIntegerTy() && 443 !FTy->getReturnType()->isVoidTy()) 444 report_fatal_error("Invalid return type of main() supplied"); 445 446 ArgvArray CArgv; 447 ArgvArray CEnv; 448 if (NumArgs) { 449 GVArgs.push_back(GVArgc); // Arg #0 = argc. 450 if (NumArgs > 1) { 451 // Arg #1 = argv. 452 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 453 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 454 "argv[0] was null after CreateArgv"); 455 if (NumArgs > 2) { 456 std::vector<std::string> EnvVars; 457 for (unsigned i = 0; envp[i]; ++i) 458 EnvVars.emplace_back(envp[i]); 459 // Arg #2 = envp. 460 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 461 } 462 } 463 } 464 465 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 466 } 467 468 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 469 470 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 471 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 472 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 473 RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault), 474 UseOrcMCJITReplacement(false) { 475 // IR module verification is enabled by default in debug builds, and disabled 476 // by default in release builds. 477 #ifndef NDEBUG 478 VerifyModules = true; 479 #else 480 VerifyModules = false; 481 #endif 482 } 483 484 EngineBuilder::~EngineBuilder() = default; 485 486 EngineBuilder &EngineBuilder::setMCJITMemoryManager( 487 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 488 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 489 MemMgr = SharedMM; 490 Resolver = SharedMM; 491 return *this; 492 } 493 494 EngineBuilder& 495 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 496 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 497 return *this; 498 } 499 500 EngineBuilder& 501 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) { 502 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR)); 503 return *this; 504 } 505 506 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 507 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 508 509 // Make sure we can resolve symbols in the program as well. The zero arg 510 // to the function tells DynamicLibrary to load the program, not a library. 511 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 512 return nullptr; 513 514 // If the user specified a memory manager but didn't specify which engine to 515 // create, we assume they only want the JIT, and we fail if they only want 516 // the interpreter. 517 if (MemMgr) { 518 if (WhichEngine & EngineKind::JIT) 519 WhichEngine = EngineKind::JIT; 520 else { 521 if (ErrorStr) 522 *ErrorStr = "Cannot create an interpreter with a memory manager."; 523 return nullptr; 524 } 525 } 526 527 // Unless the interpreter was explicitly selected or the JIT is not linked, 528 // try making a JIT. 529 if ((WhichEngine & EngineKind::JIT) && TheTM) { 530 Triple TT(M->getTargetTriple()); 531 if (!TM->getTarget().hasJIT()) { 532 errs() << "WARNING: This target JIT is not designed for the host" 533 << " you are running. If bad things happen, please choose" 534 << " a different -march switch.\n"; 535 } 536 537 ExecutionEngine *EE = nullptr; 538 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 539 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 540 std::move(Resolver), 541 std::move(TheTM)); 542 EE->addModule(std::move(M)); 543 } else if (ExecutionEngine::MCJITCtor) 544 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 545 std::move(Resolver), std::move(TheTM)); 546 547 if (EE) { 548 EE->setVerifyModules(VerifyModules); 549 return EE; 550 } 551 } 552 553 // If we can't make a JIT and we didn't request one specifically, try making 554 // an interpreter instead. 555 if (WhichEngine & EngineKind::Interpreter) { 556 if (ExecutionEngine::InterpCtor) 557 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 558 if (ErrorStr) 559 *ErrorStr = "Interpreter has not been linked in."; 560 return nullptr; 561 } 562 563 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 564 if (ErrorStr) 565 *ErrorStr = "JIT has not been linked in."; 566 } 567 568 return nullptr; 569 } 570 571 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 572 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 573 return getPointerToFunction(F); 574 575 MutexGuard locked(lock); 576 if (void* P = getPointerToGlobalIfAvailable(GV)) 577 return P; 578 579 // Global variable might have been added since interpreter started. 580 if (GlobalVariable *GVar = 581 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 582 EmitGlobalVariable(GVar); 583 else 584 llvm_unreachable("Global hasn't had an address allocated yet!"); 585 586 return getPointerToGlobalIfAvailable(GV); 587 } 588 589 /// \brief Converts a Constant* into a GenericValue, including handling of 590 /// ConstantExpr values. 591 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 592 // If its undefined, return the garbage. 593 if (isa<UndefValue>(C)) { 594 GenericValue Result; 595 switch (C->getType()->getTypeID()) { 596 default: 597 break; 598 case Type::IntegerTyID: 599 case Type::X86_FP80TyID: 600 case Type::FP128TyID: 601 case Type::PPC_FP128TyID: 602 // Although the value is undefined, we still have to construct an APInt 603 // with the correct bit width. 604 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 605 break; 606 case Type::StructTyID: { 607 // if the whole struct is 'undef' just reserve memory for the value. 608 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 609 unsigned int elemNum = STy->getNumElements(); 610 Result.AggregateVal.resize(elemNum); 611 for (unsigned int i = 0; i < elemNum; ++i) { 612 Type *ElemTy = STy->getElementType(i); 613 if (ElemTy->isIntegerTy()) 614 Result.AggregateVal[i].IntVal = 615 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 616 else if (ElemTy->isAggregateType()) { 617 const Constant *ElemUndef = UndefValue::get(ElemTy); 618 Result.AggregateVal[i] = getConstantValue(ElemUndef); 619 } 620 } 621 } 622 } 623 break; 624 case Type::VectorTyID: 625 // if the whole vector is 'undef' just reserve memory for the value. 626 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 627 const Type *ElemTy = VTy->getElementType(); 628 unsigned int elemNum = VTy->getNumElements(); 629 Result.AggregateVal.resize(elemNum); 630 if (ElemTy->isIntegerTy()) 631 for (unsigned int i = 0; i < elemNum; ++i) 632 Result.AggregateVal[i].IntVal = 633 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 634 break; 635 } 636 return Result; 637 } 638 639 // Otherwise, if the value is a ConstantExpr... 640 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 641 Constant *Op0 = CE->getOperand(0); 642 switch (CE->getOpcode()) { 643 case Instruction::GetElementPtr: { 644 // Compute the index 645 GenericValue Result = getConstantValue(Op0); 646 APInt Offset(DL.getPointerSizeInBits(), 0); 647 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 648 649 char* tmp = (char*) Result.PointerVal; 650 Result = PTOGV(tmp + Offset.getSExtValue()); 651 return Result; 652 } 653 case Instruction::Trunc: { 654 GenericValue GV = getConstantValue(Op0); 655 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 656 GV.IntVal = GV.IntVal.trunc(BitWidth); 657 return GV; 658 } 659 case Instruction::ZExt: { 660 GenericValue GV = getConstantValue(Op0); 661 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 662 GV.IntVal = GV.IntVal.zext(BitWidth); 663 return GV; 664 } 665 case Instruction::SExt: { 666 GenericValue GV = getConstantValue(Op0); 667 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 668 GV.IntVal = GV.IntVal.sext(BitWidth); 669 return GV; 670 } 671 case Instruction::FPTrunc: { 672 // FIXME long double 673 GenericValue GV = getConstantValue(Op0); 674 GV.FloatVal = float(GV.DoubleVal); 675 return GV; 676 } 677 case Instruction::FPExt:{ 678 // FIXME long double 679 GenericValue GV = getConstantValue(Op0); 680 GV.DoubleVal = double(GV.FloatVal); 681 return GV; 682 } 683 case Instruction::UIToFP: { 684 GenericValue GV = getConstantValue(Op0); 685 if (CE->getType()->isFloatTy()) 686 GV.FloatVal = float(GV.IntVal.roundToDouble()); 687 else if (CE->getType()->isDoubleTy()) 688 GV.DoubleVal = GV.IntVal.roundToDouble(); 689 else if (CE->getType()->isX86_FP80Ty()) { 690 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 691 (void)apf.convertFromAPInt(GV.IntVal, 692 false, 693 APFloat::rmNearestTiesToEven); 694 GV.IntVal = apf.bitcastToAPInt(); 695 } 696 return GV; 697 } 698 case Instruction::SIToFP: { 699 GenericValue GV = getConstantValue(Op0); 700 if (CE->getType()->isFloatTy()) 701 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 702 else if (CE->getType()->isDoubleTy()) 703 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 704 else if (CE->getType()->isX86_FP80Ty()) { 705 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 706 (void)apf.convertFromAPInt(GV.IntVal, 707 true, 708 APFloat::rmNearestTiesToEven); 709 GV.IntVal = apf.bitcastToAPInt(); 710 } 711 return GV; 712 } 713 case Instruction::FPToUI: // double->APInt conversion handles sign 714 case Instruction::FPToSI: { 715 GenericValue GV = getConstantValue(Op0); 716 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 717 if (Op0->getType()->isFloatTy()) 718 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 719 else if (Op0->getType()->isDoubleTy()) 720 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 721 else if (Op0->getType()->isX86_FP80Ty()) { 722 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 723 uint64_t v; 724 bool ignored; 725 (void)apf.convertToInteger(&v, BitWidth, 726 CE->getOpcode()==Instruction::FPToSI, 727 APFloat::rmTowardZero, &ignored); 728 GV.IntVal = v; // endian? 729 } 730 return GV; 731 } 732 case Instruction::PtrToInt: { 733 GenericValue GV = getConstantValue(Op0); 734 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 735 assert(PtrWidth <= 64 && "Bad pointer width"); 736 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 737 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 738 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 739 return GV; 740 } 741 case Instruction::IntToPtr: { 742 GenericValue GV = getConstantValue(Op0); 743 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 744 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 745 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 746 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 747 return GV; 748 } 749 case Instruction::BitCast: { 750 GenericValue GV = getConstantValue(Op0); 751 Type* DestTy = CE->getType(); 752 switch (Op0->getType()->getTypeID()) { 753 default: llvm_unreachable("Invalid bitcast operand"); 754 case Type::IntegerTyID: 755 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 756 if (DestTy->isFloatTy()) 757 GV.FloatVal = GV.IntVal.bitsToFloat(); 758 else if (DestTy->isDoubleTy()) 759 GV.DoubleVal = GV.IntVal.bitsToDouble(); 760 break; 761 case Type::FloatTyID: 762 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 763 GV.IntVal = APInt::floatToBits(GV.FloatVal); 764 break; 765 case Type::DoubleTyID: 766 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 767 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 768 break; 769 case Type::PointerTyID: 770 assert(DestTy->isPointerTy() && "Invalid bitcast"); 771 break; // getConstantValue(Op0) above already converted it 772 } 773 return GV; 774 } 775 case Instruction::Add: 776 case Instruction::FAdd: 777 case Instruction::Sub: 778 case Instruction::FSub: 779 case Instruction::Mul: 780 case Instruction::FMul: 781 case Instruction::UDiv: 782 case Instruction::SDiv: 783 case Instruction::URem: 784 case Instruction::SRem: 785 case Instruction::And: 786 case Instruction::Or: 787 case Instruction::Xor: { 788 GenericValue LHS = getConstantValue(Op0); 789 GenericValue RHS = getConstantValue(CE->getOperand(1)); 790 GenericValue GV; 791 switch (CE->getOperand(0)->getType()->getTypeID()) { 792 default: llvm_unreachable("Bad add type!"); 793 case Type::IntegerTyID: 794 switch (CE->getOpcode()) { 795 default: llvm_unreachable("Invalid integer opcode"); 796 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 797 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 798 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 799 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 800 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 801 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 802 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 803 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 804 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 805 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 806 } 807 break; 808 case Type::FloatTyID: 809 switch (CE->getOpcode()) { 810 default: llvm_unreachable("Invalid float opcode"); 811 case Instruction::FAdd: 812 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 813 case Instruction::FSub: 814 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 815 case Instruction::FMul: 816 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 817 case Instruction::FDiv: 818 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 819 case Instruction::FRem: 820 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 821 } 822 break; 823 case Type::DoubleTyID: 824 switch (CE->getOpcode()) { 825 default: llvm_unreachable("Invalid double opcode"); 826 case Instruction::FAdd: 827 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 828 case Instruction::FSub: 829 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 830 case Instruction::FMul: 831 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 832 case Instruction::FDiv: 833 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 834 case Instruction::FRem: 835 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 836 } 837 break; 838 case Type::X86_FP80TyID: 839 case Type::PPC_FP128TyID: 840 case Type::FP128TyID: { 841 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 842 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 843 switch (CE->getOpcode()) { 844 default: llvm_unreachable("Invalid long double opcode"); 845 case Instruction::FAdd: 846 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 847 GV.IntVal = apfLHS.bitcastToAPInt(); 848 break; 849 case Instruction::FSub: 850 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 851 APFloat::rmNearestTiesToEven); 852 GV.IntVal = apfLHS.bitcastToAPInt(); 853 break; 854 case Instruction::FMul: 855 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 856 APFloat::rmNearestTiesToEven); 857 GV.IntVal = apfLHS.bitcastToAPInt(); 858 break; 859 case Instruction::FDiv: 860 apfLHS.divide(APFloat(Sem, RHS.IntVal), 861 APFloat::rmNearestTiesToEven); 862 GV.IntVal = apfLHS.bitcastToAPInt(); 863 break; 864 case Instruction::FRem: 865 apfLHS.mod(APFloat(Sem, RHS.IntVal), 866 APFloat::rmNearestTiesToEven); 867 GV.IntVal = apfLHS.bitcastToAPInt(); 868 break; 869 } 870 } 871 break; 872 } 873 return GV; 874 } 875 default: 876 break; 877 } 878 879 SmallString<256> Msg; 880 raw_svector_ostream OS(Msg); 881 OS << "ConstantExpr not handled: " << *CE; 882 report_fatal_error(OS.str()); 883 } 884 885 // Otherwise, we have a simple constant. 886 GenericValue Result; 887 switch (C->getType()->getTypeID()) { 888 case Type::FloatTyID: 889 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 890 break; 891 case Type::DoubleTyID: 892 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 893 break; 894 case Type::X86_FP80TyID: 895 case Type::FP128TyID: 896 case Type::PPC_FP128TyID: 897 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 898 break; 899 case Type::IntegerTyID: 900 Result.IntVal = cast<ConstantInt>(C)->getValue(); 901 break; 902 case Type::PointerTyID: 903 if (isa<ConstantPointerNull>(C)) 904 Result.PointerVal = nullptr; 905 else if (const Function *F = dyn_cast<Function>(C)) 906 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 907 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 908 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 909 else 910 llvm_unreachable("Unknown constant pointer type!"); 911 break; 912 case Type::VectorTyID: { 913 unsigned elemNum; 914 Type* ElemTy; 915 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 916 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 917 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 918 919 if (CDV) { 920 elemNum = CDV->getNumElements(); 921 ElemTy = CDV->getElementType(); 922 } else if (CV || CAZ) { 923 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 924 elemNum = VTy->getNumElements(); 925 ElemTy = VTy->getElementType(); 926 } else { 927 llvm_unreachable("Unknown constant vector type!"); 928 } 929 930 Result.AggregateVal.resize(elemNum); 931 // Check if vector holds floats. 932 if(ElemTy->isFloatTy()) { 933 if (CAZ) { 934 GenericValue floatZero; 935 floatZero.FloatVal = 0.f; 936 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 937 floatZero); 938 break; 939 } 940 if(CV) { 941 for (unsigned i = 0; i < elemNum; ++i) 942 if (!isa<UndefValue>(CV->getOperand(i))) 943 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 944 CV->getOperand(i))->getValueAPF().convertToFloat(); 945 break; 946 } 947 if(CDV) 948 for (unsigned i = 0; i < elemNum; ++i) 949 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 950 951 break; 952 } 953 // Check if vector holds doubles. 954 if (ElemTy->isDoubleTy()) { 955 if (CAZ) { 956 GenericValue doubleZero; 957 doubleZero.DoubleVal = 0.0; 958 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 959 doubleZero); 960 break; 961 } 962 if(CV) { 963 for (unsigned i = 0; i < elemNum; ++i) 964 if (!isa<UndefValue>(CV->getOperand(i))) 965 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 966 CV->getOperand(i))->getValueAPF().convertToDouble(); 967 break; 968 } 969 if(CDV) 970 for (unsigned i = 0; i < elemNum; ++i) 971 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 972 973 break; 974 } 975 // Check if vector holds integers. 976 if (ElemTy->isIntegerTy()) { 977 if (CAZ) { 978 GenericValue intZero; 979 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 980 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 981 intZero); 982 break; 983 } 984 if(CV) { 985 for (unsigned i = 0; i < elemNum; ++i) 986 if (!isa<UndefValue>(CV->getOperand(i))) 987 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 988 CV->getOperand(i))->getValue(); 989 else { 990 Result.AggregateVal[i].IntVal = 991 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 992 } 993 break; 994 } 995 if(CDV) 996 for (unsigned i = 0; i < elemNum; ++i) 997 Result.AggregateVal[i].IntVal = APInt( 998 CDV->getElementType()->getPrimitiveSizeInBits(), 999 CDV->getElementAsInteger(i)); 1000 1001 break; 1002 } 1003 llvm_unreachable("Unknown constant pointer type!"); 1004 } 1005 break; 1006 1007 default: 1008 SmallString<256> Msg; 1009 raw_svector_ostream OS(Msg); 1010 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1011 report_fatal_error(OS.str()); 1012 } 1013 1014 return Result; 1015 } 1016 1017 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1018 /// with the integer held in IntVal. 1019 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1020 unsigned StoreBytes) { 1021 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1022 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1023 1024 if (sys::IsLittleEndianHost) { 1025 // Little-endian host - the source is ordered from LSB to MSB. Order the 1026 // destination from LSB to MSB: Do a straight copy. 1027 memcpy(Dst, Src, StoreBytes); 1028 } else { 1029 // Big-endian host - the source is an array of 64 bit words ordered from 1030 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1031 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1032 while (StoreBytes > sizeof(uint64_t)) { 1033 StoreBytes -= sizeof(uint64_t); 1034 // May not be aligned so use memcpy. 1035 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1036 Src += sizeof(uint64_t); 1037 } 1038 1039 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1040 } 1041 } 1042 1043 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1044 GenericValue *Ptr, Type *Ty) { 1045 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1046 1047 switch (Ty->getTypeID()) { 1048 default: 1049 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1050 break; 1051 case Type::IntegerTyID: 1052 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1053 break; 1054 case Type::FloatTyID: 1055 *((float*)Ptr) = Val.FloatVal; 1056 break; 1057 case Type::DoubleTyID: 1058 *((double*)Ptr) = Val.DoubleVal; 1059 break; 1060 case Type::X86_FP80TyID: 1061 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1062 break; 1063 case Type::PointerTyID: 1064 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1065 if (StoreBytes != sizeof(PointerTy)) 1066 memset(&(Ptr->PointerVal), 0, StoreBytes); 1067 1068 *((PointerTy*)Ptr) = Val.PointerVal; 1069 break; 1070 case Type::VectorTyID: 1071 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1072 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1073 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1074 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1075 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1076 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1077 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1078 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1079 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1080 } 1081 } 1082 break; 1083 } 1084 1085 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1086 // Host and target are different endian - reverse the stored bytes. 1087 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1088 } 1089 1090 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1091 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1092 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1093 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1094 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1095 const_cast<uint64_t *>(IntVal.getRawData())); 1096 1097 if (sys::IsLittleEndianHost) 1098 // Little-endian host - the destination must be ordered from LSB to MSB. 1099 // The source is ordered from LSB to MSB: Do a straight copy. 1100 memcpy(Dst, Src, LoadBytes); 1101 else { 1102 // Big-endian - the destination is an array of 64 bit words ordered from 1103 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1104 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1105 // a word. 1106 while (LoadBytes > sizeof(uint64_t)) { 1107 LoadBytes -= sizeof(uint64_t); 1108 // May not be aligned so use memcpy. 1109 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1110 Dst += sizeof(uint64_t); 1111 } 1112 1113 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1114 } 1115 } 1116 1117 /// FIXME: document 1118 /// 1119 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1120 GenericValue *Ptr, 1121 Type *Ty) { 1122 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1123 1124 switch (Ty->getTypeID()) { 1125 case Type::IntegerTyID: 1126 // An APInt with all words initially zero. 1127 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1128 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1129 break; 1130 case Type::FloatTyID: 1131 Result.FloatVal = *((float*)Ptr); 1132 break; 1133 case Type::DoubleTyID: 1134 Result.DoubleVal = *((double*)Ptr); 1135 break; 1136 case Type::PointerTyID: 1137 Result.PointerVal = *((PointerTy*)Ptr); 1138 break; 1139 case Type::X86_FP80TyID: { 1140 // This is endian dependent, but it will only work on x86 anyway. 1141 // FIXME: Will not trap if loading a signaling NaN. 1142 uint64_t y[2]; 1143 memcpy(y, Ptr, 10); 1144 Result.IntVal = APInt(80, y); 1145 break; 1146 } 1147 case Type::VectorTyID: { 1148 const VectorType *VT = cast<VectorType>(Ty); 1149 const Type *ElemT = VT->getElementType(); 1150 const unsigned numElems = VT->getNumElements(); 1151 if (ElemT->isFloatTy()) { 1152 Result.AggregateVal.resize(numElems); 1153 for (unsigned i = 0; i < numElems; ++i) 1154 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1155 } 1156 if (ElemT->isDoubleTy()) { 1157 Result.AggregateVal.resize(numElems); 1158 for (unsigned i = 0; i < numElems; ++i) 1159 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1160 } 1161 if (ElemT->isIntegerTy()) { 1162 GenericValue intZero; 1163 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1164 intZero.IntVal = APInt(elemBitWidth, 0); 1165 Result.AggregateVal.resize(numElems, intZero); 1166 for (unsigned i = 0; i < numElems; ++i) 1167 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1168 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1169 } 1170 break; 1171 } 1172 default: 1173 SmallString<256> Msg; 1174 raw_svector_ostream OS(Msg); 1175 OS << "Cannot load value of type " << *Ty << "!"; 1176 report_fatal_error(OS.str()); 1177 } 1178 } 1179 1180 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1181 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1182 DEBUG(Init->dump()); 1183 if (isa<UndefValue>(Init)) 1184 return; 1185 1186 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1187 unsigned ElementSize = 1188 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1189 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1190 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1191 return; 1192 } 1193 1194 if (isa<ConstantAggregateZero>(Init)) { 1195 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1196 return; 1197 } 1198 1199 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1200 unsigned ElementSize = 1201 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1202 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1203 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1204 return; 1205 } 1206 1207 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1208 const StructLayout *SL = 1209 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1210 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1211 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1212 return; 1213 } 1214 1215 if (const ConstantDataSequential *CDS = 1216 dyn_cast<ConstantDataSequential>(Init)) { 1217 // CDS is already laid out in host memory order. 1218 StringRef Data = CDS->getRawDataValues(); 1219 memcpy(Addr, Data.data(), Data.size()); 1220 return; 1221 } 1222 1223 if (Init->getType()->isFirstClassType()) { 1224 GenericValue Val = getConstantValue(Init); 1225 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1226 return; 1227 } 1228 1229 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1230 llvm_unreachable("Unknown constant type to initialize memory with!"); 1231 } 1232 1233 /// EmitGlobals - Emit all of the global variables to memory, storing their 1234 /// addresses into GlobalAddress. This must make sure to copy the contents of 1235 /// their initializers into the memory. 1236 void ExecutionEngine::emitGlobals() { 1237 // Loop over all of the global variables in the program, allocating the memory 1238 // to hold them. If there is more than one module, do a prepass over globals 1239 // to figure out how the different modules should link together. 1240 std::map<std::pair<std::string, Type*>, 1241 const GlobalValue*> LinkedGlobalsMap; 1242 1243 if (Modules.size() != 1) { 1244 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1245 Module &M = *Modules[m]; 1246 for (const auto &GV : M.globals()) { 1247 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1248 GV.hasAppendingLinkage() || !GV.hasName()) 1249 continue;// Ignore external globals and globals with internal linkage. 1250 1251 const GlobalValue *&GVEntry = 1252 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1253 1254 // If this is the first time we've seen this global, it is the canonical 1255 // version. 1256 if (!GVEntry) { 1257 GVEntry = &GV; 1258 continue; 1259 } 1260 1261 // If the existing global is strong, never replace it. 1262 if (GVEntry->hasExternalLinkage()) 1263 continue; 1264 1265 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1266 // symbol. FIXME is this right for common? 1267 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1268 GVEntry = &GV; 1269 } 1270 } 1271 } 1272 1273 std::vector<const GlobalValue*> NonCanonicalGlobals; 1274 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1275 Module &M = *Modules[m]; 1276 for (const auto &GV : M.globals()) { 1277 // In the multi-module case, see what this global maps to. 1278 if (!LinkedGlobalsMap.empty()) { 1279 if (const GlobalValue *GVEntry = 1280 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1281 // If something else is the canonical global, ignore this one. 1282 if (GVEntry != &GV) { 1283 NonCanonicalGlobals.push_back(&GV); 1284 continue; 1285 } 1286 } 1287 } 1288 1289 if (!GV.isDeclaration()) { 1290 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1291 } else { 1292 // External variable reference. Try to use the dynamic loader to 1293 // get a pointer to it. 1294 if (void *SymAddr = 1295 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1296 addGlobalMapping(&GV, SymAddr); 1297 else { 1298 report_fatal_error("Could not resolve external global address: " 1299 +GV.getName()); 1300 } 1301 } 1302 } 1303 1304 // If there are multiple modules, map the non-canonical globals to their 1305 // canonical location. 1306 if (!NonCanonicalGlobals.empty()) { 1307 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1308 const GlobalValue *GV = NonCanonicalGlobals[i]; 1309 const GlobalValue *CGV = 1310 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1311 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1312 assert(Ptr && "Canonical global wasn't codegen'd!"); 1313 addGlobalMapping(GV, Ptr); 1314 } 1315 } 1316 1317 // Now that all of the globals are set up in memory, loop through them all 1318 // and initialize their contents. 1319 for (const auto &GV : M.globals()) { 1320 if (!GV.isDeclaration()) { 1321 if (!LinkedGlobalsMap.empty()) { 1322 if (const GlobalValue *GVEntry = 1323 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1324 if (GVEntry != &GV) // Not the canonical variable. 1325 continue; 1326 } 1327 EmitGlobalVariable(&GV); 1328 } 1329 } 1330 } 1331 } 1332 1333 // EmitGlobalVariable - This method emits the specified global variable to the 1334 // address specified in GlobalAddresses, or allocates new memory if it's not 1335 // already in the map. 1336 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1337 void *GA = getPointerToGlobalIfAvailable(GV); 1338 1339 if (!GA) { 1340 // If it's not already specified, allocate memory for the global. 1341 GA = getMemoryForGV(GV); 1342 1343 // If we failed to allocate memory for this global, return. 1344 if (!GA) return; 1345 1346 addGlobalMapping(GV, GA); 1347 } 1348 1349 // Don't initialize if it's thread local, let the client do it. 1350 if (!GV->isThreadLocal()) 1351 InitializeMemory(GV->getInitializer(), GA); 1352 1353 Type *ElTy = GV->getType()->getElementType(); 1354 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1355 NumInitBytes += (unsigned)GVSize; 1356 ++NumGlobals; 1357 } 1358