1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <math.h> 28 using namespace llvm; 29 30 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 31 STATISTIC(NumGlobals , "Number of global vars initialized"); 32 33 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 34 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 35 36 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 37 LazyCompilationDisabled = false; 38 Modules.push_back(P); 39 assert(P && "ModuleProvider is null?"); 40 } 41 42 ExecutionEngine::ExecutionEngine(Module *M) { 43 LazyCompilationDisabled = false; 44 assert(M && "Module is null?"); 45 Modules.push_back(new ExistingModuleProvider(M)); 46 } 47 48 ExecutionEngine::~ExecutionEngine() { 49 clearAllGlobalMappings(); 50 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 51 delete Modules[i]; 52 } 53 54 /// FindFunctionNamed - Search all of the active modules to find the one that 55 /// defines FnName. This is very slow operation and shouldn't be used for 56 /// general code. 57 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 58 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 59 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 60 return F; 61 } 62 return 0; 63 } 64 65 66 /// addGlobalMapping - Tell the execution engine that the specified global is 67 /// at the specified location. This is used internally as functions are JIT'd 68 /// and as global variables are laid out in memory. It can and should also be 69 /// used by clients of the EE that want to have an LLVM global overlay 70 /// existing data in memory. 71 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 72 MutexGuard locked(lock); 73 74 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 75 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 76 CurVal = Addr; 77 78 // If we are using the reverse mapping, add it too 79 if (!state.getGlobalAddressReverseMap(locked).empty()) { 80 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 81 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 82 V = GV; 83 } 84 } 85 86 /// clearAllGlobalMappings - Clear all global mappings and start over again 87 /// use in dynamic compilation scenarios when you want to move globals 88 void ExecutionEngine::clearAllGlobalMappings() { 89 MutexGuard locked(lock); 90 91 state.getGlobalAddressMap(locked).clear(); 92 state.getGlobalAddressReverseMap(locked).clear(); 93 } 94 95 /// updateGlobalMapping - Replace an existing mapping for GV with a new 96 /// address. This updates both maps as required. If "Addr" is null, the 97 /// entry for the global is removed from the mappings. 98 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 99 MutexGuard locked(lock); 100 101 // Deleting from the mapping? 102 if (Addr == 0) { 103 state.getGlobalAddressMap(locked).erase(GV); 104 if (!state.getGlobalAddressReverseMap(locked).empty()) 105 state.getGlobalAddressReverseMap(locked).erase(Addr); 106 return; 107 } 108 109 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 110 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 111 state.getGlobalAddressReverseMap(locked).erase(CurVal); 112 CurVal = Addr; 113 114 // If we are using the reverse mapping, add it too 115 if (!state.getGlobalAddressReverseMap(locked).empty()) { 116 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 117 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 118 V = GV; 119 } 120 } 121 122 /// getPointerToGlobalIfAvailable - This returns the address of the specified 123 /// global value if it is has already been codegen'd, otherwise it returns null. 124 /// 125 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 126 MutexGuard locked(lock); 127 128 std::map<const GlobalValue*, void*>::iterator I = 129 state.getGlobalAddressMap(locked).find(GV); 130 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 131 } 132 133 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 134 /// at the specified address. 135 /// 136 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 137 MutexGuard locked(lock); 138 139 // If we haven't computed the reverse mapping yet, do so first. 140 if (state.getGlobalAddressReverseMap(locked).empty()) { 141 for (std::map<const GlobalValue*, void *>::iterator 142 I = state.getGlobalAddressMap(locked).begin(), 143 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 144 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 145 I->first)); 146 } 147 148 std::map<void *, const GlobalValue*>::iterator I = 149 state.getGlobalAddressReverseMap(locked).find(Addr); 150 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 151 } 152 153 // CreateArgv - Turn a vector of strings into a nice argv style array of 154 // pointers to null terminated strings. 155 // 156 static void *CreateArgv(ExecutionEngine *EE, 157 const std::vector<std::string> &InputArgv) { 158 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 159 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 160 161 DOUT << "ARGV = " << (void*)Result << "\n"; 162 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 163 164 for (unsigned i = 0; i != InputArgv.size(); ++i) { 165 unsigned Size = InputArgv[i].size()+1; 166 char *Dest = new char[Size]; 167 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 168 169 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 170 Dest[Size-1] = 0; 171 172 // Endian safe: Result[i] = (PointerTy)Dest; 173 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 174 SBytePtr); 175 } 176 177 // Null terminate it 178 EE->StoreValueToMemory(PTOGV(0), 179 (GenericValue*)(Result+InputArgv.size()*PtrSize), 180 SBytePtr); 181 return Result; 182 } 183 184 185 /// runStaticConstructorsDestructors - This method is used to execute all of 186 /// the static constructors or destructors for a program, depending on the 187 /// value of isDtors. 188 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 189 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 190 191 // Execute global ctors/dtors for each module in the program. 192 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 193 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 194 195 // If this global has internal linkage, or if it has a use, then it must be 196 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 197 // this is the case, don't execute any of the global ctors, __main will do 198 // it. 199 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 200 201 // Should be an array of '{ int, void ()* }' structs. The first value is 202 // the init priority, which we ignore. 203 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 204 if (!InitList) continue; 205 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 206 if (ConstantStruct *CS = 207 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 208 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 209 210 Constant *FP = CS->getOperand(1); 211 if (FP->isNullValue()) 212 break; // Found a null terminator, exit. 213 214 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 215 if (CE->isCast()) 216 FP = CE->getOperand(0); 217 if (Function *F = dyn_cast<Function>(FP)) { 218 // Execute the ctor/dtor function! 219 runFunction(F, std::vector<GenericValue>()); 220 } 221 } 222 } 223 } 224 225 /// runFunctionAsMain - This is a helper function which wraps runFunction to 226 /// handle the common task of starting up main with the specified argc, argv, 227 /// and envp parameters. 228 int ExecutionEngine::runFunctionAsMain(Function *Fn, 229 const std::vector<std::string> &argv, 230 const char * const * envp) { 231 std::vector<GenericValue> GVArgs; 232 GenericValue GVArgc; 233 GVArgc.IntVal = APInt(32, argv.size()); 234 235 // Check main() type 236 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 237 const FunctionType *FTy = Fn->getFunctionType(); 238 const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); 239 switch (NumArgs) { 240 case 3: 241 if (FTy->getParamType(2) != PPInt8Ty) { 242 cerr << "Invalid type for third argument of main() supplied\n"; 243 abort(); 244 } 245 // FALLS THROUGH 246 case 2: 247 if (FTy->getParamType(1) != PPInt8Ty) { 248 cerr << "Invalid type for second argument of main() supplied\n"; 249 abort(); 250 } 251 // FALLS THROUGH 252 case 1: 253 if (FTy->getParamType(0) != Type::Int32Ty) { 254 cerr << "Invalid type for first argument of main() supplied\n"; 255 abort(); 256 } 257 // FALLS THROUGH 258 case 0: 259 if (FTy->getReturnType() != Type::Int32Ty && 260 FTy->getReturnType() != Type::VoidTy) { 261 cerr << "Invalid return type of main() supplied\n"; 262 abort(); 263 } 264 break; 265 default: 266 cerr << "Invalid number of arguments of main() supplied\n"; 267 abort(); 268 } 269 270 if (NumArgs) { 271 GVArgs.push_back(GVArgc); // Arg #0 = argc. 272 if (NumArgs > 1) { 273 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 274 assert(((char **)GVTOP(GVArgs[1]))[0] && 275 "argv[0] was null after CreateArgv"); 276 if (NumArgs > 2) { 277 std::vector<std::string> EnvVars; 278 for (unsigned i = 0; envp[i]; ++i) 279 EnvVars.push_back(envp[i]); 280 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 281 } 282 } 283 } 284 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 285 } 286 287 /// If possible, create a JIT, unless the caller specifically requests an 288 /// Interpreter or there's an error. If even an Interpreter cannot be created, 289 /// NULL is returned. 290 /// 291 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 292 bool ForceInterpreter, 293 std::string *ErrorStr) { 294 ExecutionEngine *EE = 0; 295 296 // Unless the interpreter was explicitly selected, try making a JIT. 297 if (!ForceInterpreter && JITCtor) 298 EE = JITCtor(MP, ErrorStr); 299 300 // If we can't make a JIT, make an interpreter instead. 301 if (EE == 0 && InterpCtor) 302 EE = InterpCtor(MP, ErrorStr); 303 304 if (EE) { 305 // Make sure we can resolve symbols in the program as well. The zero arg 306 // to the function tells DynamicLibrary to load the program, not a library. 307 try { 308 sys::DynamicLibrary::LoadLibraryPermanently(0); 309 } catch (...) { 310 } 311 } 312 313 return EE; 314 } 315 316 /// getPointerToGlobal - This returns the address of the specified global 317 /// value. This may involve code generation if it's a function. 318 /// 319 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 320 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 321 return getPointerToFunction(F); 322 323 MutexGuard locked(lock); 324 void *p = state.getGlobalAddressMap(locked)[GV]; 325 if (p) 326 return p; 327 328 // Global variable might have been added since interpreter started. 329 if (GlobalVariable *GVar = 330 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 331 EmitGlobalVariable(GVar); 332 else 333 assert(0 && "Global hasn't had an address allocated yet!"); 334 return state.getGlobalAddressMap(locked)[GV]; 335 } 336 337 /// This function converts a Constant* into a GenericValue. The interesting 338 /// part is if C is a ConstantExpr. 339 /// @brief Get a GenericValue for a Constant* 340 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 341 // If its undefined, return the garbage. 342 if (isa<UndefValue>(C)) 343 return GenericValue(); 344 345 // If the value is a ConstantExpr 346 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 347 Constant *Op0 = CE->getOperand(0); 348 switch (CE->getOpcode()) { 349 case Instruction::GetElementPtr: { 350 // Compute the index 351 GenericValue Result = getConstantValue(Op0); 352 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 353 uint64_t Offset = 354 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 355 356 char* tmp = (char*) Result.PointerVal; 357 Result = PTOGV(tmp + Offset); 358 return Result; 359 } 360 case Instruction::Trunc: { 361 GenericValue GV = getConstantValue(Op0); 362 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 363 GV.IntVal = GV.IntVal.trunc(BitWidth); 364 return GV; 365 } 366 case Instruction::ZExt: { 367 GenericValue GV = getConstantValue(Op0); 368 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 369 GV.IntVal = GV.IntVal.zext(BitWidth); 370 return GV; 371 } 372 case Instruction::SExt: { 373 GenericValue GV = getConstantValue(Op0); 374 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 375 GV.IntVal = GV.IntVal.sext(BitWidth); 376 return GV; 377 } 378 case Instruction::FPTrunc: { 379 // FIXME long double 380 GenericValue GV = getConstantValue(Op0); 381 GV.FloatVal = float(GV.DoubleVal); 382 return GV; 383 } 384 case Instruction::FPExt:{ 385 // FIXME long double 386 GenericValue GV = getConstantValue(Op0); 387 GV.DoubleVal = double(GV.FloatVal); 388 return GV; 389 } 390 case Instruction::UIToFP: { 391 GenericValue GV = getConstantValue(Op0); 392 if (CE->getType() == Type::FloatTy) 393 GV.FloatVal = float(GV.IntVal.roundToDouble()); 394 else if (CE->getType() == Type::DoubleTy) 395 GV.DoubleVal = GV.IntVal.roundToDouble(); 396 else if (CE->getType() == Type::X86_FP80Ty) { 397 const uint64_t zero[] = {0, 0}; 398 APFloat apf = APFloat(APInt(80, 2, zero)); 399 (void)apf.convertFromInteger(GV.IntVal.getRawData(), 2, false, 400 APFloat::rmTowardZero); 401 GV.IntVal = apf.convertToAPInt(); 402 } 403 return GV; 404 } 405 case Instruction::SIToFP: { 406 GenericValue GV = getConstantValue(Op0); 407 if (CE->getType() == Type::FloatTy) 408 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 409 else if (CE->getType() == Type::DoubleTy) 410 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 411 else if (CE->getType() == Type::X86_FP80Ty) { 412 const uint64_t zero[] = { 0, 0}; 413 APFloat apf = APFloat(APInt(80, 2, zero)); 414 (void)apf.convertFromInteger(GV.IntVal.getRawData(), 2, true, 415 APFloat::rmTowardZero); 416 GV.IntVal = apf.convertToAPInt(); 417 } 418 return GV; 419 } 420 case Instruction::FPToUI: // double->APInt conversion handles sign 421 case Instruction::FPToSI: { 422 GenericValue GV = getConstantValue(Op0); 423 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 424 if (Op0->getType() == Type::FloatTy) 425 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 426 else if (Op0->getType() == Type::DoubleTy) 427 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 428 else if (Op0->getType() == Type::X86_FP80Ty) { 429 APFloat apf = APFloat(GV.IntVal); 430 uint64_t v; 431 (void)apf.convertToInteger(&v, BitWidth, 432 CE->getOpcode()==Instruction::FPToSI, 433 APFloat::rmTowardZero); 434 GV.IntVal = v; // endian? 435 } 436 return GV; 437 } 438 case Instruction::PtrToInt: { 439 GenericValue GV = getConstantValue(Op0); 440 uint32_t PtrWidth = TD->getPointerSizeInBits(); 441 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 442 return GV; 443 } 444 case Instruction::IntToPtr: { 445 GenericValue GV = getConstantValue(Op0); 446 uint32_t PtrWidth = TD->getPointerSizeInBits(); 447 if (PtrWidth != GV.IntVal.getBitWidth()) 448 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 449 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 450 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 451 return GV; 452 } 453 case Instruction::BitCast: { 454 GenericValue GV = getConstantValue(Op0); 455 const Type* DestTy = CE->getType(); 456 switch (Op0->getType()->getTypeID()) { 457 default: assert(0 && "Invalid bitcast operand"); 458 case Type::IntegerTyID: 459 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 460 if (DestTy == Type::FloatTy) 461 GV.FloatVal = GV.IntVal.bitsToFloat(); 462 else if (DestTy == Type::DoubleTy) 463 GV.DoubleVal = GV.IntVal.bitsToDouble(); 464 break; 465 case Type::FloatTyID: 466 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 467 GV.IntVal.floatToBits(GV.FloatVal); 468 break; 469 case Type::DoubleTyID: 470 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 471 GV.IntVal.doubleToBits(GV.DoubleVal); 472 break; 473 case Type::PointerTyID: 474 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 475 break; // getConstantValue(Op0) above already converted it 476 } 477 return GV; 478 } 479 case Instruction::Add: 480 case Instruction::Sub: 481 case Instruction::Mul: 482 case Instruction::UDiv: 483 case Instruction::SDiv: 484 case Instruction::URem: 485 case Instruction::SRem: 486 case Instruction::And: 487 case Instruction::Or: 488 case Instruction::Xor: { 489 GenericValue LHS = getConstantValue(Op0); 490 GenericValue RHS = getConstantValue(CE->getOperand(1)); 491 GenericValue GV; 492 switch (CE->getOperand(0)->getType()->getTypeID()) { 493 default: assert(0 && "Bad add type!"); abort(); 494 case Type::IntegerTyID: 495 switch (CE->getOpcode()) { 496 default: assert(0 && "Invalid integer opcode"); 497 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 498 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 499 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 500 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 501 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 502 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 503 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 504 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 505 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 506 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 507 } 508 break; 509 case Type::FloatTyID: 510 switch (CE->getOpcode()) { 511 default: assert(0 && "Invalid float opcode"); abort(); 512 case Instruction::Add: 513 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 514 case Instruction::Sub: 515 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 516 case Instruction::Mul: 517 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 518 case Instruction::FDiv: 519 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 520 case Instruction::FRem: 521 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 522 } 523 break; 524 case Type::DoubleTyID: 525 switch (CE->getOpcode()) { 526 default: assert(0 && "Invalid double opcode"); abort(); 527 case Instruction::Add: 528 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 529 case Instruction::Sub: 530 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 531 case Instruction::Mul: 532 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 533 case Instruction::FDiv: 534 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 535 case Instruction::FRem: 536 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 537 } 538 break; 539 case Type::X86_FP80TyID: 540 case Type::PPC_FP128TyID: 541 case Type::FP128TyID: { 542 APFloat apfLHS = APFloat(LHS.IntVal); 543 switch (CE->getOpcode()) { 544 default: assert(0 && "Invalid long double opcode"); abort(); 545 case Instruction::Add: 546 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 547 GV.IntVal = apfLHS.convertToAPInt(); 548 break; 549 case Instruction::Sub: 550 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 551 GV.IntVal = apfLHS.convertToAPInt(); 552 break; 553 case Instruction::Mul: 554 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 555 GV.IntVal = apfLHS.convertToAPInt(); 556 break; 557 case Instruction::FDiv: 558 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 559 GV.IntVal = apfLHS.convertToAPInt(); 560 break; 561 case Instruction::FRem: 562 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 563 GV.IntVal = apfLHS.convertToAPInt(); 564 break; 565 } 566 } 567 break; 568 } 569 return GV; 570 } 571 default: 572 break; 573 } 574 cerr << "ConstantExpr not handled: " << *CE << "\n"; 575 abort(); 576 } 577 578 GenericValue Result; 579 switch (C->getType()->getTypeID()) { 580 case Type::FloatTyID: 581 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 582 break; 583 case Type::DoubleTyID: 584 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 585 break; 586 case Type::X86_FP80TyID: 587 case Type::FP128TyID: 588 case Type::PPC_FP128TyID: 589 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt(); 590 break; 591 case Type::IntegerTyID: 592 Result.IntVal = cast<ConstantInt>(C)->getValue(); 593 break; 594 case Type::PointerTyID: 595 if (isa<ConstantPointerNull>(C)) 596 Result.PointerVal = 0; 597 else if (const Function *F = dyn_cast<Function>(C)) 598 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 599 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 600 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 601 else 602 assert(0 && "Unknown constant pointer type!"); 603 break; 604 default: 605 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 606 abort(); 607 } 608 return Result; 609 } 610 611 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 612 /// is the address of the memory at which to store Val, cast to GenericValue *. 613 /// It is not a pointer to a GenericValue containing the address at which to 614 /// store Val. 615 /// 616 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 617 const Type *Ty) { 618 switch (Ty->getTypeID()) { 619 case Type::IntegerTyID: { 620 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 621 GenericValue TmpVal = Val; 622 if (BitWidth <= 8) 623 *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); 624 else if (BitWidth <= 16) { 625 *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); 626 } else if (BitWidth <= 32) { 627 *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); 628 } else if (BitWidth <= 64) { 629 *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); 630 } else { 631 uint64_t *Dest = (uint64_t*)Ptr; 632 const uint64_t *Src = Val.IntVal.getRawData(); 633 for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) 634 Dest[i] = Src[i]; 635 } 636 break; 637 } 638 case Type::FloatTyID: 639 *((float*)Ptr) = Val.FloatVal; 640 break; 641 case Type::DoubleTyID: 642 *((double*)Ptr) = Val.DoubleVal; 643 break; 644 case Type::X86_FP80TyID: { 645 uint16_t *Dest = (uint16_t*)Ptr; 646 const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData(); 647 // This is endian dependent, but it will only work on x86 anyway. 648 Dest[0] = Src[4]; 649 Dest[1] = Src[0]; 650 Dest[2] = Src[1]; 651 Dest[3] = Src[2]; 652 Dest[4] = Src[3]; 653 break; 654 } 655 case Type::PointerTyID: 656 *((PointerTy*)Ptr) = Val.PointerVal; 657 break; 658 default: 659 cerr << "Cannot store value of type " << *Ty << "!\n"; 660 } 661 } 662 663 /// FIXME: document 664 /// 665 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 666 GenericValue *Ptr, 667 const Type *Ty) { 668 switch (Ty->getTypeID()) { 669 case Type::IntegerTyID: { 670 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 671 if (BitWidth <= 8) 672 Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); 673 else if (BitWidth <= 16) { 674 Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); 675 } else if (BitWidth <= 32) { 676 Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); 677 } else if (BitWidth <= 64) { 678 Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); 679 } else 680 Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr); 681 break; 682 } 683 case Type::FloatTyID: 684 Result.FloatVal = *((float*)Ptr); 685 break; 686 case Type::DoubleTyID: 687 Result.DoubleVal = *((double*)Ptr); 688 break; 689 case Type::PointerTyID: 690 Result.PointerVal = *((PointerTy*)Ptr); 691 break; 692 case Type::X86_FP80TyID: { 693 // This is endian dependent, but it will only work on x86 anyway. 694 uint16_t x[8], *p = (uint16_t*)Ptr; 695 x[0] = p[1]; 696 x[1] = p[2]; 697 x[2] = p[3]; 698 x[3] = p[4]; 699 x[4] = p[0]; 700 Result.IntVal = APInt(80, 2, x); 701 break; 702 } 703 default: 704 cerr << "Cannot load value of type " << *Ty << "!\n"; 705 abort(); 706 } 707 } 708 709 // InitializeMemory - Recursive function to apply a Constant value into the 710 // specified memory location... 711 // 712 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 713 if (isa<UndefValue>(Init)) { 714 return; 715 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 716 unsigned ElementSize = 717 getTargetData()->getTypeSize(CP->getType()->getElementType()); 718 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 719 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 720 return; 721 } else if (Init->getType()->isFirstClassType()) { 722 GenericValue Val = getConstantValue(Init); 723 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 724 return; 725 } else if (isa<ConstantAggregateZero>(Init)) { 726 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 727 return; 728 } 729 730 switch (Init->getType()->getTypeID()) { 731 case Type::ArrayTyID: { 732 const ConstantArray *CPA = cast<ConstantArray>(Init); 733 unsigned ElementSize = 734 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 735 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 736 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 737 return; 738 } 739 740 case Type::StructTyID: { 741 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 742 const StructLayout *SL = 743 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 744 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 745 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 746 return; 747 } 748 749 default: 750 cerr << "Bad Type: " << *Init->getType() << "\n"; 751 assert(0 && "Unknown constant type to initialize memory with!"); 752 } 753 } 754 755 /// EmitGlobals - Emit all of the global variables to memory, storing their 756 /// addresses into GlobalAddress. This must make sure to copy the contents of 757 /// their initializers into the memory. 758 /// 759 void ExecutionEngine::emitGlobals() { 760 const TargetData *TD = getTargetData(); 761 762 // Loop over all of the global variables in the program, allocating the memory 763 // to hold them. If there is more than one module, do a prepass over globals 764 // to figure out how the different modules should link together. 765 // 766 std::map<std::pair<std::string, const Type*>, 767 const GlobalValue*> LinkedGlobalsMap; 768 769 if (Modules.size() != 1) { 770 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 771 Module &M = *Modules[m]->getModule(); 772 for (Module::const_global_iterator I = M.global_begin(), 773 E = M.global_end(); I != E; ++I) { 774 const GlobalValue *GV = I; 775 if (GV->hasInternalLinkage() || GV->isDeclaration() || 776 GV->hasAppendingLinkage() || !GV->hasName()) 777 continue;// Ignore external globals and globals with internal linkage. 778 779 const GlobalValue *&GVEntry = 780 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 781 782 // If this is the first time we've seen this global, it is the canonical 783 // version. 784 if (!GVEntry) { 785 GVEntry = GV; 786 continue; 787 } 788 789 // If the existing global is strong, never replace it. 790 if (GVEntry->hasExternalLinkage() || 791 GVEntry->hasDLLImportLinkage() || 792 GVEntry->hasDLLExportLinkage()) 793 continue; 794 795 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 796 // symbol. 797 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 798 GVEntry = GV; 799 } 800 } 801 } 802 803 std::vector<const GlobalValue*> NonCanonicalGlobals; 804 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 805 Module &M = *Modules[m]->getModule(); 806 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 807 I != E; ++I) { 808 // In the multi-module case, see what this global maps to. 809 if (!LinkedGlobalsMap.empty()) { 810 if (const GlobalValue *GVEntry = 811 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 812 // If something else is the canonical global, ignore this one. 813 if (GVEntry != &*I) { 814 NonCanonicalGlobals.push_back(I); 815 continue; 816 } 817 } 818 } 819 820 if (!I->isDeclaration()) { 821 // Get the type of the global. 822 const Type *Ty = I->getType()->getElementType(); 823 824 // Allocate some memory for it! 825 unsigned Size = TD->getTypeSize(Ty); 826 addGlobalMapping(I, new char[Size]); 827 } else { 828 // External variable reference. Try to use the dynamic loader to 829 // get a pointer to it. 830 if (void *SymAddr = 831 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 832 addGlobalMapping(I, SymAddr); 833 else { 834 cerr << "Could not resolve external global address: " 835 << I->getName() << "\n"; 836 abort(); 837 } 838 } 839 } 840 841 // If there are multiple modules, map the non-canonical globals to their 842 // canonical location. 843 if (!NonCanonicalGlobals.empty()) { 844 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 845 const GlobalValue *GV = NonCanonicalGlobals[i]; 846 const GlobalValue *CGV = 847 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 848 void *Ptr = getPointerToGlobalIfAvailable(CGV); 849 assert(Ptr && "Canonical global wasn't codegen'd!"); 850 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 851 } 852 } 853 854 // Now that all of the globals are set up in memory, loop through them all 855 // and initialize their contents. 856 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 857 I != E; ++I) { 858 if (!I->isDeclaration()) { 859 if (!LinkedGlobalsMap.empty()) { 860 if (const GlobalValue *GVEntry = 861 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 862 if (GVEntry != &*I) // Not the canonical variable. 863 continue; 864 } 865 EmitGlobalVariable(I); 866 } 867 } 868 } 869 } 870 871 // EmitGlobalVariable - This method emits the specified global variable to the 872 // address specified in GlobalAddresses, or allocates new memory if it's not 873 // already in the map. 874 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 875 void *GA = getPointerToGlobalIfAvailable(GV); 876 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 877 878 const Type *ElTy = GV->getType()->getElementType(); 879 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 880 if (GA == 0) { 881 // If it's not already specified, allocate memory for the global. 882 GA = new char[GVSize]; 883 addGlobalMapping(GV, GA); 884 } 885 886 InitializeMemory(GV->getInitializer(), GA); 887 NumInitBytes += (unsigned)GVSize; 888 ++NumGlobals; 889 } 890