1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/System/DynamicLibrary.h" 25 #include "llvm/Target/TargetData.h" 26 #include <iostream> 27 using namespace llvm; 28 29 namespace { 30 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 31 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 32 } 33 34 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 35 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 36 37 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : 38 CurMod(*P->getModule()), MP(P) { 39 assert(P && "ModuleProvider is null?"); 40 } 41 42 ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { 43 assert(M && "Module is null?"); 44 } 45 46 ExecutionEngine::~ExecutionEngine() { 47 delete MP; 48 } 49 50 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 51 /// at the specified address. 52 /// 53 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 54 MutexGuard locked(lock); 55 56 // If we haven't computed the reverse mapping yet, do so first. 57 if (state.getGlobalAddressReverseMap(locked).empty()) { 58 for (std::map<const GlobalValue*, void *>::iterator I = 59 state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 60 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); 61 } 62 63 std::map<void *, const GlobalValue*>::iterator I = 64 state.getGlobalAddressReverseMap(locked).find(Addr); 65 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 66 } 67 68 // CreateArgv - Turn a vector of strings into a nice argv style array of 69 // pointers to null terminated strings. 70 // 71 static void *CreateArgv(ExecutionEngine *EE, 72 const std::vector<std::string> &InputArgv) { 73 unsigned PtrSize = EE->getTargetData().getPointerSize(); 74 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 75 76 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 77 const Type *SBytePtr = PointerType::get(Type::SByteTy); 78 79 for (unsigned i = 0; i != InputArgv.size(); ++i) { 80 unsigned Size = InputArgv[i].size()+1; 81 char *Dest = new char[Size]; 82 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 83 84 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 85 Dest[Size-1] = 0; 86 87 // Endian safe: Result[i] = (PointerTy)Dest; 88 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 89 SBytePtr); 90 } 91 92 // Null terminate it 93 EE->StoreValueToMemory(PTOGV(0), 94 (GenericValue*)(Result+InputArgv.size()*PtrSize), 95 SBytePtr); 96 return Result; 97 } 98 99 100 /// runStaticConstructorsDestructors - This method is used to execute all of 101 /// the static constructors or destructors for a module, depending on the 102 /// value of isDtors. 103 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 104 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 105 GlobalVariable *GV = CurMod.getNamedGlobal(Name); 106 if (!GV || GV->isExternal() || !GV->hasInternalLinkage()) return; 107 108 // Should be an array of '{ int, void ()* }' structs. The first value is the 109 // init priority, which we ignore. 110 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 111 if (!InitList) return; 112 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 113 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 114 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 115 116 Constant *FP = CS->getOperand(1); 117 if (FP->isNullValue()) 118 return; // Found a null terminator, exit. 119 120 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 121 if (CE->getOpcode() == Instruction::Cast) 122 FP = CE->getOperand(0); 123 if (Function *F = dyn_cast<Function>(FP)) { 124 // Execute the ctor/dtor function! 125 runFunction(F, std::vector<GenericValue>()); 126 } 127 } 128 } 129 130 /// runFunctionAsMain - This is a helper function which wraps runFunction to 131 /// handle the common task of starting up main with the specified argc, argv, 132 /// and envp parameters. 133 int ExecutionEngine::runFunctionAsMain(Function *Fn, 134 const std::vector<std::string> &argv, 135 const char * const * envp) { 136 std::vector<GenericValue> GVArgs; 137 GenericValue GVArgc; 138 GVArgc.IntVal = argv.size(); 139 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 140 if (NumArgs) { 141 GVArgs.push_back(GVArgc); // Arg #0 = argc. 142 if (NumArgs > 1) { 143 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 144 assert(((char **)GVTOP(GVArgs[1]))[0] && 145 "argv[0] was null after CreateArgv"); 146 if (NumArgs > 2) { 147 std::vector<std::string> EnvVars; 148 for (unsigned i = 0; envp[i]; ++i) 149 EnvVars.push_back(envp[i]); 150 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 151 } 152 } 153 } 154 return runFunction(Fn, GVArgs).IntVal; 155 } 156 157 /// If possible, create a JIT, unless the caller specifically requests an 158 /// Interpreter or there's an error. If even an Interpreter cannot be created, 159 /// NULL is returned. 160 /// 161 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 162 bool ForceInterpreter) { 163 ExecutionEngine *EE = 0; 164 165 // Unless the interpreter was explicitly selected, try making a JIT. 166 if (!ForceInterpreter && JITCtor) 167 EE = JITCtor(MP); 168 169 // If we can't make a JIT, make an interpreter instead. 170 if (EE == 0 && InterpCtor) 171 EE = InterpCtor(MP); 172 173 if (EE) { 174 // Make sure we can resolve symbols in the program as well. The zero arg 175 // to the function tells DynamicLibrary to load the program, not a library. 176 sys::DynamicLibrary::LoadLibraryPermanently(0); 177 } 178 179 return EE; 180 } 181 182 /// getPointerToGlobal - This returns the address of the specified global 183 /// value. This may involve code generation if it's a function. 184 /// 185 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 186 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 187 return getPointerToFunction(F); 188 189 MutexGuard locked(lock); 190 void *p = state.getGlobalAddressMap(locked)[GV]; 191 if (p) 192 return p; 193 194 // Global variable might have been added since interpreter started. 195 if (GlobalVariable *GVar = 196 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 197 EmitGlobalVariable(GVar); 198 else 199 assert("Global hasn't had an address allocated yet!"); 200 return state.getGlobalAddressMap(locked)[GV]; 201 } 202 203 /// FIXME: document 204 /// 205 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 206 GenericValue Result; 207 if (isa<UndefValue>(C)) return Result; 208 209 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 210 switch (CE->getOpcode()) { 211 case Instruction::GetElementPtr: { 212 Result = getConstantValue(CE->getOperand(0)); 213 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 214 uint64_t Offset = 215 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 216 217 if (getTargetData().getPointerSize() == 4) 218 Result.IntVal += Offset; 219 else 220 Result.LongVal += Offset; 221 return Result; 222 } 223 case Instruction::Cast: { 224 // We only need to handle a few cases here. Almost all casts will 225 // automatically fold, just the ones involving pointers won't. 226 // 227 Constant *Op = CE->getOperand(0); 228 GenericValue GV = getConstantValue(Op); 229 230 // Handle cast of pointer to pointer... 231 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 232 return GV; 233 234 // Handle a cast of pointer to any integral type... 235 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 236 return GV; 237 238 // Handle cast of integer to a pointer... 239 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 240 switch (Op->getType()->getTypeID()) { 241 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 242 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 243 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 244 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 245 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 246 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 247 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 248 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 249 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 250 default: assert(0 && "Unknown integral type!"); 251 } 252 break; 253 } 254 255 case Instruction::Add: 256 switch (CE->getOperand(0)->getType()->getTypeID()) { 257 default: assert(0 && "Bad add type!"); abort(); 258 case Type::LongTyID: 259 case Type::ULongTyID: 260 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 261 getConstantValue(CE->getOperand(1)).LongVal; 262 break; 263 case Type::IntTyID: 264 case Type::UIntTyID: 265 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + 266 getConstantValue(CE->getOperand(1)).IntVal; 267 break; 268 case Type::ShortTyID: 269 case Type::UShortTyID: 270 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + 271 getConstantValue(CE->getOperand(1)).ShortVal; 272 break; 273 case Type::SByteTyID: 274 case Type::UByteTyID: 275 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + 276 getConstantValue(CE->getOperand(1)).SByteVal; 277 break; 278 case Type::FloatTyID: 279 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + 280 getConstantValue(CE->getOperand(1)).FloatVal; 281 break; 282 case Type::DoubleTyID: 283 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + 284 getConstantValue(CE->getOperand(1)).DoubleVal; 285 break; 286 } 287 return Result; 288 default: 289 break; 290 } 291 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 292 abort(); 293 } 294 295 switch (C->getType()->getTypeID()) { 296 #define GET_CONST_VAL(TY, CTY, CLASS) \ 297 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break 298 GET_CONST_VAL(Bool , bool , ConstantBool); 299 GET_CONST_VAL(UByte , unsigned char , ConstantUInt); 300 GET_CONST_VAL(SByte , signed char , ConstantSInt); 301 GET_CONST_VAL(UShort , unsigned short, ConstantUInt); 302 GET_CONST_VAL(Short , signed short , ConstantSInt); 303 GET_CONST_VAL(UInt , unsigned int , ConstantUInt); 304 GET_CONST_VAL(Int , signed int , ConstantSInt); 305 GET_CONST_VAL(ULong , uint64_t , ConstantUInt); 306 GET_CONST_VAL(Long , int64_t , ConstantSInt); 307 GET_CONST_VAL(Float , float , ConstantFP); 308 GET_CONST_VAL(Double , double , ConstantFP); 309 #undef GET_CONST_VAL 310 case Type::PointerTyID: 311 if (isa<ConstantPointerNull>(C)) 312 Result.PointerVal = 0; 313 else if (const Function *F = dyn_cast<Function>(C)) 314 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 315 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 316 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 317 else 318 assert(0 && "Unknown constant pointer type!"); 319 break; 320 default: 321 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; 322 abort(); 323 } 324 return Result; 325 } 326 327 /// FIXME: document 328 /// 329 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 330 const Type *Ty) { 331 if (getTargetData().isLittleEndian()) { 332 switch (Ty->getTypeID()) { 333 case Type::BoolTyID: 334 case Type::UByteTyID: 335 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 336 case Type::UShortTyID: 337 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 338 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 339 break; 340 Store4BytesLittleEndian: 341 case Type::FloatTyID: 342 case Type::UIntTyID: 343 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 344 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 345 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 346 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 347 break; 348 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 349 goto Store4BytesLittleEndian; 350 case Type::DoubleTyID: 351 case Type::ULongTyID: 352 case Type::LongTyID: 353 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); 354 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); 355 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); 356 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); 357 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); 358 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); 359 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); 360 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); 361 break; 362 default: 363 std::cout << "Cannot store value of type " << *Ty << "!\n"; 364 } 365 } else { 366 switch (Ty->getTypeID()) { 367 case Type::BoolTyID: 368 case Type::UByteTyID: 369 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 370 case Type::UShortTyID: 371 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 372 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 373 break; 374 Store4BytesBigEndian: 375 case Type::FloatTyID: 376 case Type::UIntTyID: 377 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 378 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 379 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 380 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 381 break; 382 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 383 goto Store4BytesBigEndian; 384 case Type::DoubleTyID: 385 case Type::ULongTyID: 386 case Type::LongTyID: 387 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); 388 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); 389 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); 390 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); 391 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); 392 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); 393 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); 394 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); 395 break; 396 default: 397 std::cout << "Cannot store value of type " << *Ty << "!\n"; 398 } 399 } 400 } 401 402 /// FIXME: document 403 /// 404 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 405 const Type *Ty) { 406 GenericValue Result; 407 if (getTargetData().isLittleEndian()) { 408 switch (Ty->getTypeID()) { 409 case Type::BoolTyID: 410 case Type::UByteTyID: 411 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 412 case Type::UShortTyID: 413 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 414 ((unsigned)Ptr->Untyped[1] << 8); 415 break; 416 Load4BytesLittleEndian: 417 case Type::FloatTyID: 418 case Type::UIntTyID: 419 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 420 ((unsigned)Ptr->Untyped[1] << 8) | 421 ((unsigned)Ptr->Untyped[2] << 16) | 422 ((unsigned)Ptr->Untyped[3] << 24); 423 break; 424 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 425 goto Load4BytesLittleEndian; 426 case Type::DoubleTyID: 427 case Type::ULongTyID: 428 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 429 ((uint64_t)Ptr->Untyped[1] << 8) | 430 ((uint64_t)Ptr->Untyped[2] << 16) | 431 ((uint64_t)Ptr->Untyped[3] << 24) | 432 ((uint64_t)Ptr->Untyped[4] << 32) | 433 ((uint64_t)Ptr->Untyped[5] << 40) | 434 ((uint64_t)Ptr->Untyped[6] << 48) | 435 ((uint64_t)Ptr->Untyped[7] << 56); 436 break; 437 default: 438 std::cout << "Cannot load value of type " << *Ty << "!\n"; 439 abort(); 440 } 441 } else { 442 switch (Ty->getTypeID()) { 443 case Type::BoolTyID: 444 case Type::UByteTyID: 445 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 446 case Type::UShortTyID: 447 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 448 ((unsigned)Ptr->Untyped[0] << 8); 449 break; 450 Load4BytesBigEndian: 451 case Type::FloatTyID: 452 case Type::UIntTyID: 453 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 454 ((unsigned)Ptr->Untyped[2] << 8) | 455 ((unsigned)Ptr->Untyped[1] << 16) | 456 ((unsigned)Ptr->Untyped[0] << 24); 457 break; 458 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 459 goto Load4BytesBigEndian; 460 case Type::DoubleTyID: 461 case Type::ULongTyID: 462 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 463 ((uint64_t)Ptr->Untyped[6] << 8) | 464 ((uint64_t)Ptr->Untyped[5] << 16) | 465 ((uint64_t)Ptr->Untyped[4] << 24) | 466 ((uint64_t)Ptr->Untyped[3] << 32) | 467 ((uint64_t)Ptr->Untyped[2] << 40) | 468 ((uint64_t)Ptr->Untyped[1] << 48) | 469 ((uint64_t)Ptr->Untyped[0] << 56); 470 break; 471 default: 472 std::cout << "Cannot load value of type " << *Ty << "!\n"; 473 abort(); 474 } 475 } 476 return Result; 477 } 478 479 // InitializeMemory - Recursive function to apply a Constant value into the 480 // specified memory location... 481 // 482 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 483 if (isa<UndefValue>(Init)) { 484 return; 485 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { 486 unsigned ElementSize = 487 getTargetData().getTypeSize(CP->getType()->getElementType()); 488 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 489 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 490 return; 491 } else if (Init->getType()->isFirstClassType()) { 492 GenericValue Val = getConstantValue(Init); 493 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 494 return; 495 } else if (isa<ConstantAggregateZero>(Init)) { 496 memset(Addr, 0, (size_t)getTargetData().getTypeSize(Init->getType())); 497 return; 498 } 499 500 switch (Init->getType()->getTypeID()) { 501 case Type::ArrayTyID: { 502 const ConstantArray *CPA = cast<ConstantArray>(Init); 503 unsigned ElementSize = 504 getTargetData().getTypeSize(CPA->getType()->getElementType()); 505 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 506 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 507 return; 508 } 509 510 case Type::StructTyID: { 511 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 512 const StructLayout *SL = 513 getTargetData().getStructLayout(cast<StructType>(CPS->getType())); 514 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 515 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); 516 return; 517 } 518 519 default: 520 std::cerr << "Bad Type: " << *Init->getType() << "\n"; 521 assert(0 && "Unknown constant type to initialize memory with!"); 522 } 523 } 524 525 /// EmitGlobals - Emit all of the global variables to memory, storing their 526 /// addresses into GlobalAddress. This must make sure to copy the contents of 527 /// their initializers into the memory. 528 /// 529 void ExecutionEngine::emitGlobals() { 530 const TargetData &TD = getTargetData(); 531 532 // Loop over all of the global variables in the program, allocating the memory 533 // to hold them. 534 Module &M = getModule(); 535 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 536 I != E; ++I) 537 if (!I->isExternal()) { 538 // Get the type of the global... 539 const Type *Ty = I->getType()->getElementType(); 540 541 // Allocate some memory for it! 542 unsigned Size = TD.getTypeSize(Ty); 543 addGlobalMapping(I, new char[Size]); 544 } else { 545 // External variable reference. Try to use the dynamic loader to 546 // get a pointer to it. 547 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( 548 I->getName().c_str())) 549 addGlobalMapping(I, SymAddr); 550 else { 551 std::cerr << "Could not resolve external global address: " 552 << I->getName() << "\n"; 553 abort(); 554 } 555 } 556 557 // Now that all of the globals are set up in memory, loop through them all and 558 // initialize their contents. 559 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 560 I != E; ++I) 561 if (!I->isExternal()) 562 EmitGlobalVariable(I); 563 } 564 565 // EmitGlobalVariable - This method emits the specified global variable to the 566 // address specified in GlobalAddresses, or allocates new memory if it's not 567 // already in the map. 568 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 569 void *GA = getPointerToGlobalIfAvailable(GV); 570 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 571 572 const Type *ElTy = GV->getType()->getElementType(); 573 size_t GVSize = (size_t)getTargetData().getTypeSize(ElTy); 574 if (GA == 0) { 575 // If it's not already specified, allocate memory for the global. 576 GA = new char[GVSize]; 577 addGlobalMapping(GV, GA); 578 } 579 580 InitializeMemory(GV->getInitializer(), GA); 581 NumInitBytes += (unsigned)GVSize; 582 ++NumGlobals; 583 } 584