1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/ObjectBuffer.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/Archive.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DynamicLibrary.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Host.h" 33 #include "llvm/Support/MutexGuard.h" 34 #include "llvm/Support/TargetRegistry.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <cmath> 38 #include <cstring> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jit" 42 43 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 44 STATISTIC(NumGlobals , "Number of global vars initialized"); 45 46 // Pin the vtable to this file. 47 void ObjectCache::anchor() {} 48 void ObjectBuffer::anchor() {} 49 void ObjectBufferStream::anchor() {} 50 51 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 52 std::unique_ptr<Module> M, std::string *ErrorStr, 53 RTDyldMemoryManager *MCJMM, std::unique_ptr<TargetMachine> TM) = nullptr; 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 55 std::string *ErrorStr) =nullptr; 56 57 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 58 : EEState(*this), 59 LazyFunctionCreator(nullptr) { 60 CompilingLazily = false; 61 GVCompilationDisabled = false; 62 SymbolSearchingDisabled = false; 63 64 // IR module verification is enabled by default in debug builds, and disabled 65 // by default in release builds. 66 #ifndef NDEBUG 67 VerifyModules = true; 68 #else 69 VerifyModules = false; 70 #endif 71 72 assert(M && "Module is null?"); 73 Modules.push_back(std::move(M)); 74 } 75 76 ExecutionEngine::~ExecutionEngine() { 77 clearAllGlobalMappings(); 78 } 79 80 namespace { 81 /// \brief Helper class which uses a value handler to automatically deletes the 82 /// memory block when the GlobalVariable is destroyed. 83 class GVMemoryBlock : public CallbackVH { 84 GVMemoryBlock(const GlobalVariable *GV) 85 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 86 87 public: 88 /// \brief Returns the address the GlobalVariable should be written into. The 89 /// GVMemoryBlock object prefixes that. 90 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 91 Type *ElTy = GV->getType()->getElementType(); 92 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 93 void *RawMemory = ::operator new( 94 RoundUpToAlignment(sizeof(GVMemoryBlock), 95 TD.getPreferredAlignment(GV)) 96 + GVSize); 97 new(RawMemory) GVMemoryBlock(GV); 98 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 99 } 100 101 void deleted() override { 102 // We allocated with operator new and with some extra memory hanging off the 103 // end, so don't just delete this. I'm not sure if this is actually 104 // required. 105 this->~GVMemoryBlock(); 106 ::operator delete(this); 107 } 108 }; 109 } // anonymous namespace 110 111 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 112 return GVMemoryBlock::Create(GV, *getDataLayout()); 113 } 114 115 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 116 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 117 } 118 119 void 120 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 121 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 122 } 123 124 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 125 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 126 } 127 128 bool ExecutionEngine::removeModule(Module *M) { 129 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 130 Module *Found = I->get(); 131 if (Found == M) { 132 I->release(); 133 Modules.erase(I); 134 clearGlobalMappingsFromModule(M); 135 return true; 136 } 137 } 138 return false; 139 } 140 141 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 142 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 143 if (Function *F = Modules[i]->getFunction(FnName)) 144 return F; 145 } 146 return nullptr; 147 } 148 149 150 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 151 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 152 void *OldVal; 153 154 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 155 // GlobalAddressMap. 156 if (I == GlobalAddressMap.end()) 157 OldVal = nullptr; 158 else { 159 OldVal = I->second; 160 GlobalAddressMap.erase(I); 161 } 162 163 GlobalAddressReverseMap.erase(OldVal); 164 return OldVal; 165 } 166 167 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 168 MutexGuard locked(lock); 169 170 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 171 << "\' to [" << Addr << "]\n";); 172 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 173 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 174 CurVal = Addr; 175 176 // If we are using the reverse mapping, add it too. 177 if (!EEState.getGlobalAddressReverseMap().empty()) { 178 AssertingVH<const GlobalValue> &V = 179 EEState.getGlobalAddressReverseMap()[Addr]; 180 assert((!V || !GV) && "GlobalMapping already established!"); 181 V = GV; 182 } 183 } 184 185 void ExecutionEngine::clearAllGlobalMappings() { 186 MutexGuard locked(lock); 187 188 EEState.getGlobalAddressMap().clear(); 189 EEState.getGlobalAddressReverseMap().clear(); 190 } 191 192 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 193 MutexGuard locked(lock); 194 195 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 196 EEState.RemoveMapping(FI); 197 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 198 GI != GE; ++GI) 199 EEState.RemoveMapping(GI); 200 } 201 202 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 203 MutexGuard locked(lock); 204 205 ExecutionEngineState::GlobalAddressMapTy &Map = 206 EEState.getGlobalAddressMap(); 207 208 // Deleting from the mapping? 209 if (!Addr) 210 return EEState.RemoveMapping(GV); 211 212 void *&CurVal = Map[GV]; 213 void *OldVal = CurVal; 214 215 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 216 EEState.getGlobalAddressReverseMap().erase(CurVal); 217 CurVal = Addr; 218 219 // If we are using the reverse mapping, add it too. 220 if (!EEState.getGlobalAddressReverseMap().empty()) { 221 AssertingVH<const GlobalValue> &V = 222 EEState.getGlobalAddressReverseMap()[Addr]; 223 assert((!V || !GV) && "GlobalMapping already established!"); 224 V = GV; 225 } 226 return OldVal; 227 } 228 229 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 230 MutexGuard locked(lock); 231 232 ExecutionEngineState::GlobalAddressMapTy::iterator I = 233 EEState.getGlobalAddressMap().find(GV); 234 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 235 } 236 237 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 238 MutexGuard locked(lock); 239 240 // If we haven't computed the reverse mapping yet, do so first. 241 if (EEState.getGlobalAddressReverseMap().empty()) { 242 for (ExecutionEngineState::GlobalAddressMapTy::iterator 243 I = EEState.getGlobalAddressMap().begin(), 244 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 245 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 246 I->second, I->first)); 247 } 248 249 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 250 EEState.getGlobalAddressReverseMap().find(Addr); 251 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 252 } 253 254 namespace { 255 class ArgvArray { 256 std::unique_ptr<char[]> Array; 257 std::vector<std::unique_ptr<char[]>> Values; 258 public: 259 /// Turn a vector of strings into a nice argv style array of pointers to null 260 /// terminated strings. 261 void *reset(LLVMContext &C, ExecutionEngine *EE, 262 const std::vector<std::string> &InputArgv); 263 }; 264 } // anonymous namespace 265 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 266 const std::vector<std::string> &InputArgv) { 267 Values.clear(); // Free the old contents. 268 Values.reserve(InputArgv.size()); 269 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 270 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 271 272 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 273 Type *SBytePtr = Type::getInt8PtrTy(C); 274 275 for (unsigned i = 0; i != InputArgv.size(); ++i) { 276 unsigned Size = InputArgv[i].size()+1; 277 auto Dest = make_unique<char[]>(Size); 278 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 279 280 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 281 Dest[Size-1] = 0; 282 283 // Endian safe: Array[i] = (PointerTy)Dest; 284 EE->StoreValueToMemory(PTOGV(Dest.get()), 285 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 286 Values.push_back(std::move(Dest)); 287 } 288 289 // Null terminate it 290 EE->StoreValueToMemory(PTOGV(nullptr), 291 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 292 SBytePtr); 293 return Array.get(); 294 } 295 296 void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 297 bool isDtors) { 298 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 299 GlobalVariable *GV = module.getNamedGlobal(Name); 300 301 // If this global has internal linkage, or if it has a use, then it must be 302 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 303 // this is the case, don't execute any of the global ctors, __main will do 304 // it. 305 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 306 307 // Should be an array of '{ i32, void ()* }' structs. The first value is 308 // the init priority, which we ignore. 309 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 310 if (!InitList) 311 return; 312 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 313 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 314 if (!CS) continue; 315 316 Constant *FP = CS->getOperand(1); 317 if (FP->isNullValue()) 318 continue; // Found a sentinal value, ignore. 319 320 // Strip off constant expression casts. 321 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 322 if (CE->isCast()) 323 FP = CE->getOperand(0); 324 325 // Execute the ctor/dtor function! 326 if (Function *F = dyn_cast<Function>(FP)) 327 runFunction(F, std::vector<GenericValue>()); 328 329 // FIXME: It is marginally lame that we just do nothing here if we see an 330 // entry we don't recognize. It might not be unreasonable for the verifier 331 // to not even allow this and just assert here. 332 } 333 } 334 335 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 336 // Execute global ctors/dtors for each module in the program. 337 for (std::unique_ptr<Module> &M : Modules) 338 runStaticConstructorsDestructors(*M, isDtors); 339 } 340 341 #ifndef NDEBUG 342 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 343 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 344 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 345 for (unsigned i = 0; i < PtrSize; ++i) 346 if (*(i + (uint8_t*)Loc)) 347 return false; 348 return true; 349 } 350 #endif 351 352 int ExecutionEngine::runFunctionAsMain(Function *Fn, 353 const std::vector<std::string> &argv, 354 const char * const * envp) { 355 std::vector<GenericValue> GVArgs; 356 GenericValue GVArgc; 357 GVArgc.IntVal = APInt(32, argv.size()); 358 359 // Check main() type 360 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 361 FunctionType *FTy = Fn->getFunctionType(); 362 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 363 364 // Check the argument types. 365 if (NumArgs > 3) 366 report_fatal_error("Invalid number of arguments of main() supplied"); 367 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 368 report_fatal_error("Invalid type for third argument of main() supplied"); 369 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 370 report_fatal_error("Invalid type for second argument of main() supplied"); 371 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 372 report_fatal_error("Invalid type for first argument of main() supplied"); 373 if (!FTy->getReturnType()->isIntegerTy() && 374 !FTy->getReturnType()->isVoidTy()) 375 report_fatal_error("Invalid return type of main() supplied"); 376 377 ArgvArray CArgv; 378 ArgvArray CEnv; 379 if (NumArgs) { 380 GVArgs.push_back(GVArgc); // Arg #0 = argc. 381 if (NumArgs > 1) { 382 // Arg #1 = argv. 383 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 384 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 385 "argv[0] was null after CreateArgv"); 386 if (NumArgs > 2) { 387 std::vector<std::string> EnvVars; 388 for (unsigned i = 0; envp[i]; ++i) 389 EnvVars.push_back(envp[i]); 390 // Arg #2 = envp. 391 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 392 } 393 } 394 } 395 396 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 397 } 398 399 void EngineBuilder::InitEngine() { 400 WhichEngine = EngineKind::Either; 401 ErrorStr = nullptr; 402 OptLevel = CodeGenOpt::Default; 403 MCJMM = nullptr; 404 Options = TargetOptions(); 405 RelocModel = Reloc::Default; 406 CMModel = CodeModel::JITDefault; 407 408 // IR module verification is enabled by default in debug builds, and disabled 409 // by default in release builds. 410 #ifndef NDEBUG 411 VerifyModules = true; 412 #else 413 VerifyModules = false; 414 #endif 415 } 416 417 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 418 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 419 420 // Make sure we can resolve symbols in the program as well. The zero arg 421 // to the function tells DynamicLibrary to load the program, not a library. 422 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 423 return nullptr; 424 425 // If the user specified a memory manager but didn't specify which engine to 426 // create, we assume they only want the JIT, and we fail if they only want 427 // the interpreter. 428 if (MCJMM) { 429 if (WhichEngine & EngineKind::JIT) 430 WhichEngine = EngineKind::JIT; 431 else { 432 if (ErrorStr) 433 *ErrorStr = "Cannot create an interpreter with a memory manager."; 434 return nullptr; 435 } 436 } 437 438 // Unless the interpreter was explicitly selected or the JIT is not linked, 439 // try making a JIT. 440 if ((WhichEngine & EngineKind::JIT) && TheTM) { 441 Triple TT(M->getTargetTriple()); 442 if (!TM->getTarget().hasJIT()) { 443 errs() << "WARNING: This target JIT is not designed for the host" 444 << " you are running. If bad things happen, please choose" 445 << " a different -march switch.\n"; 446 } 447 448 ExecutionEngine *EE = nullptr; 449 if (ExecutionEngine::MCJITCtor) 450 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, MCJMM, 451 std::move(TheTM)); 452 if (EE) { 453 EE->setVerifyModules(VerifyModules); 454 return EE; 455 } 456 } 457 458 // If we can't make a JIT and we didn't request one specifically, try making 459 // an interpreter instead. 460 if (WhichEngine & EngineKind::Interpreter) { 461 if (ExecutionEngine::InterpCtor) 462 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 463 if (ErrorStr) 464 *ErrorStr = "Interpreter has not been linked in."; 465 return nullptr; 466 } 467 468 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 469 if (ErrorStr) 470 *ErrorStr = "JIT has not been linked in."; 471 } 472 473 return nullptr; 474 } 475 476 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 477 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 478 return getPointerToFunction(F); 479 480 MutexGuard locked(lock); 481 if (void *P = EEState.getGlobalAddressMap()[GV]) 482 return P; 483 484 // Global variable might have been added since interpreter started. 485 if (GlobalVariable *GVar = 486 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 487 EmitGlobalVariable(GVar); 488 else 489 llvm_unreachable("Global hasn't had an address allocated yet!"); 490 491 return EEState.getGlobalAddressMap()[GV]; 492 } 493 494 /// \brief Converts a Constant* into a GenericValue, including handling of 495 /// ConstantExpr values. 496 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 497 // If its undefined, return the garbage. 498 if (isa<UndefValue>(C)) { 499 GenericValue Result; 500 switch (C->getType()->getTypeID()) { 501 default: 502 break; 503 case Type::IntegerTyID: 504 case Type::X86_FP80TyID: 505 case Type::FP128TyID: 506 case Type::PPC_FP128TyID: 507 // Although the value is undefined, we still have to construct an APInt 508 // with the correct bit width. 509 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 510 break; 511 case Type::StructTyID: { 512 // if the whole struct is 'undef' just reserve memory for the value. 513 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 514 unsigned int elemNum = STy->getNumElements(); 515 Result.AggregateVal.resize(elemNum); 516 for (unsigned int i = 0; i < elemNum; ++i) { 517 Type *ElemTy = STy->getElementType(i); 518 if (ElemTy->isIntegerTy()) 519 Result.AggregateVal[i].IntVal = 520 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 521 else if (ElemTy->isAggregateType()) { 522 const Constant *ElemUndef = UndefValue::get(ElemTy); 523 Result.AggregateVal[i] = getConstantValue(ElemUndef); 524 } 525 } 526 } 527 } 528 break; 529 case Type::VectorTyID: 530 // if the whole vector is 'undef' just reserve memory for the value. 531 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 532 const Type *ElemTy = VTy->getElementType(); 533 unsigned int elemNum = VTy->getNumElements(); 534 Result.AggregateVal.resize(elemNum); 535 if (ElemTy->isIntegerTy()) 536 for (unsigned int i = 0; i < elemNum; ++i) 537 Result.AggregateVal[i].IntVal = 538 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 539 break; 540 } 541 return Result; 542 } 543 544 // Otherwise, if the value is a ConstantExpr... 545 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 546 Constant *Op0 = CE->getOperand(0); 547 switch (CE->getOpcode()) { 548 case Instruction::GetElementPtr: { 549 // Compute the index 550 GenericValue Result = getConstantValue(Op0); 551 APInt Offset(DL->getPointerSizeInBits(), 0); 552 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 553 554 char* tmp = (char*) Result.PointerVal; 555 Result = PTOGV(tmp + Offset.getSExtValue()); 556 return Result; 557 } 558 case Instruction::Trunc: { 559 GenericValue GV = getConstantValue(Op0); 560 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 561 GV.IntVal = GV.IntVal.trunc(BitWidth); 562 return GV; 563 } 564 case Instruction::ZExt: { 565 GenericValue GV = getConstantValue(Op0); 566 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 567 GV.IntVal = GV.IntVal.zext(BitWidth); 568 return GV; 569 } 570 case Instruction::SExt: { 571 GenericValue GV = getConstantValue(Op0); 572 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 573 GV.IntVal = GV.IntVal.sext(BitWidth); 574 return GV; 575 } 576 case Instruction::FPTrunc: { 577 // FIXME long double 578 GenericValue GV = getConstantValue(Op0); 579 GV.FloatVal = float(GV.DoubleVal); 580 return GV; 581 } 582 case Instruction::FPExt:{ 583 // FIXME long double 584 GenericValue GV = getConstantValue(Op0); 585 GV.DoubleVal = double(GV.FloatVal); 586 return GV; 587 } 588 case Instruction::UIToFP: { 589 GenericValue GV = getConstantValue(Op0); 590 if (CE->getType()->isFloatTy()) 591 GV.FloatVal = float(GV.IntVal.roundToDouble()); 592 else if (CE->getType()->isDoubleTy()) 593 GV.DoubleVal = GV.IntVal.roundToDouble(); 594 else if (CE->getType()->isX86_FP80Ty()) { 595 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 596 (void)apf.convertFromAPInt(GV.IntVal, 597 false, 598 APFloat::rmNearestTiesToEven); 599 GV.IntVal = apf.bitcastToAPInt(); 600 } 601 return GV; 602 } 603 case Instruction::SIToFP: { 604 GenericValue GV = getConstantValue(Op0); 605 if (CE->getType()->isFloatTy()) 606 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 607 else if (CE->getType()->isDoubleTy()) 608 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 609 else if (CE->getType()->isX86_FP80Ty()) { 610 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 611 (void)apf.convertFromAPInt(GV.IntVal, 612 true, 613 APFloat::rmNearestTiesToEven); 614 GV.IntVal = apf.bitcastToAPInt(); 615 } 616 return GV; 617 } 618 case Instruction::FPToUI: // double->APInt conversion handles sign 619 case Instruction::FPToSI: { 620 GenericValue GV = getConstantValue(Op0); 621 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 622 if (Op0->getType()->isFloatTy()) 623 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 624 else if (Op0->getType()->isDoubleTy()) 625 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 626 else if (Op0->getType()->isX86_FP80Ty()) { 627 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 628 uint64_t v; 629 bool ignored; 630 (void)apf.convertToInteger(&v, BitWidth, 631 CE->getOpcode()==Instruction::FPToSI, 632 APFloat::rmTowardZero, &ignored); 633 GV.IntVal = v; // endian? 634 } 635 return GV; 636 } 637 case Instruction::PtrToInt: { 638 GenericValue GV = getConstantValue(Op0); 639 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 640 assert(PtrWidth <= 64 && "Bad pointer width"); 641 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 642 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 643 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 644 return GV; 645 } 646 case Instruction::IntToPtr: { 647 GenericValue GV = getConstantValue(Op0); 648 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 649 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 650 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 651 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 652 return GV; 653 } 654 case Instruction::BitCast: { 655 GenericValue GV = getConstantValue(Op0); 656 Type* DestTy = CE->getType(); 657 switch (Op0->getType()->getTypeID()) { 658 default: llvm_unreachable("Invalid bitcast operand"); 659 case Type::IntegerTyID: 660 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 661 if (DestTy->isFloatTy()) 662 GV.FloatVal = GV.IntVal.bitsToFloat(); 663 else if (DestTy->isDoubleTy()) 664 GV.DoubleVal = GV.IntVal.bitsToDouble(); 665 break; 666 case Type::FloatTyID: 667 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 668 GV.IntVal = APInt::floatToBits(GV.FloatVal); 669 break; 670 case Type::DoubleTyID: 671 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 672 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 673 break; 674 case Type::PointerTyID: 675 assert(DestTy->isPointerTy() && "Invalid bitcast"); 676 break; // getConstantValue(Op0) above already converted it 677 } 678 return GV; 679 } 680 case Instruction::Add: 681 case Instruction::FAdd: 682 case Instruction::Sub: 683 case Instruction::FSub: 684 case Instruction::Mul: 685 case Instruction::FMul: 686 case Instruction::UDiv: 687 case Instruction::SDiv: 688 case Instruction::URem: 689 case Instruction::SRem: 690 case Instruction::And: 691 case Instruction::Or: 692 case Instruction::Xor: { 693 GenericValue LHS = getConstantValue(Op0); 694 GenericValue RHS = getConstantValue(CE->getOperand(1)); 695 GenericValue GV; 696 switch (CE->getOperand(0)->getType()->getTypeID()) { 697 default: llvm_unreachable("Bad add type!"); 698 case Type::IntegerTyID: 699 switch (CE->getOpcode()) { 700 default: llvm_unreachable("Invalid integer opcode"); 701 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 702 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 703 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 704 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 705 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 706 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 707 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 708 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 709 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 710 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 711 } 712 break; 713 case Type::FloatTyID: 714 switch (CE->getOpcode()) { 715 default: llvm_unreachable("Invalid float opcode"); 716 case Instruction::FAdd: 717 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 718 case Instruction::FSub: 719 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 720 case Instruction::FMul: 721 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 722 case Instruction::FDiv: 723 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 724 case Instruction::FRem: 725 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 726 } 727 break; 728 case Type::DoubleTyID: 729 switch (CE->getOpcode()) { 730 default: llvm_unreachable("Invalid double opcode"); 731 case Instruction::FAdd: 732 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 733 case Instruction::FSub: 734 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 735 case Instruction::FMul: 736 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 737 case Instruction::FDiv: 738 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 739 case Instruction::FRem: 740 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 741 } 742 break; 743 case Type::X86_FP80TyID: 744 case Type::PPC_FP128TyID: 745 case Type::FP128TyID: { 746 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 747 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 748 switch (CE->getOpcode()) { 749 default: llvm_unreachable("Invalid long double opcode"); 750 case Instruction::FAdd: 751 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 752 GV.IntVal = apfLHS.bitcastToAPInt(); 753 break; 754 case Instruction::FSub: 755 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 756 APFloat::rmNearestTiesToEven); 757 GV.IntVal = apfLHS.bitcastToAPInt(); 758 break; 759 case Instruction::FMul: 760 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 761 APFloat::rmNearestTiesToEven); 762 GV.IntVal = apfLHS.bitcastToAPInt(); 763 break; 764 case Instruction::FDiv: 765 apfLHS.divide(APFloat(Sem, RHS.IntVal), 766 APFloat::rmNearestTiesToEven); 767 GV.IntVal = apfLHS.bitcastToAPInt(); 768 break; 769 case Instruction::FRem: 770 apfLHS.mod(APFloat(Sem, RHS.IntVal), 771 APFloat::rmNearestTiesToEven); 772 GV.IntVal = apfLHS.bitcastToAPInt(); 773 break; 774 } 775 } 776 break; 777 } 778 return GV; 779 } 780 default: 781 break; 782 } 783 784 SmallString<256> Msg; 785 raw_svector_ostream OS(Msg); 786 OS << "ConstantExpr not handled: " << *CE; 787 report_fatal_error(OS.str()); 788 } 789 790 // Otherwise, we have a simple constant. 791 GenericValue Result; 792 switch (C->getType()->getTypeID()) { 793 case Type::FloatTyID: 794 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 795 break; 796 case Type::DoubleTyID: 797 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 798 break; 799 case Type::X86_FP80TyID: 800 case Type::FP128TyID: 801 case Type::PPC_FP128TyID: 802 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 803 break; 804 case Type::IntegerTyID: 805 Result.IntVal = cast<ConstantInt>(C)->getValue(); 806 break; 807 case Type::PointerTyID: 808 if (isa<ConstantPointerNull>(C)) 809 Result.PointerVal = nullptr; 810 else if (const Function *F = dyn_cast<Function>(C)) 811 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 812 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 813 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 814 else 815 llvm_unreachable("Unknown constant pointer type!"); 816 break; 817 case Type::VectorTyID: { 818 unsigned elemNum; 819 Type* ElemTy; 820 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 821 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 822 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 823 824 if (CDV) { 825 elemNum = CDV->getNumElements(); 826 ElemTy = CDV->getElementType(); 827 } else if (CV || CAZ) { 828 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 829 elemNum = VTy->getNumElements(); 830 ElemTy = VTy->getElementType(); 831 } else { 832 llvm_unreachable("Unknown constant vector type!"); 833 } 834 835 Result.AggregateVal.resize(elemNum); 836 // Check if vector holds floats. 837 if(ElemTy->isFloatTy()) { 838 if (CAZ) { 839 GenericValue floatZero; 840 floatZero.FloatVal = 0.f; 841 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 842 floatZero); 843 break; 844 } 845 if(CV) { 846 for (unsigned i = 0; i < elemNum; ++i) 847 if (!isa<UndefValue>(CV->getOperand(i))) 848 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 849 CV->getOperand(i))->getValueAPF().convertToFloat(); 850 break; 851 } 852 if(CDV) 853 for (unsigned i = 0; i < elemNum; ++i) 854 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 855 856 break; 857 } 858 // Check if vector holds doubles. 859 if (ElemTy->isDoubleTy()) { 860 if (CAZ) { 861 GenericValue doubleZero; 862 doubleZero.DoubleVal = 0.0; 863 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 864 doubleZero); 865 break; 866 } 867 if(CV) { 868 for (unsigned i = 0; i < elemNum; ++i) 869 if (!isa<UndefValue>(CV->getOperand(i))) 870 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 871 CV->getOperand(i))->getValueAPF().convertToDouble(); 872 break; 873 } 874 if(CDV) 875 for (unsigned i = 0; i < elemNum; ++i) 876 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 877 878 break; 879 } 880 // Check if vector holds integers. 881 if (ElemTy->isIntegerTy()) { 882 if (CAZ) { 883 GenericValue intZero; 884 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 885 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 886 intZero); 887 break; 888 } 889 if(CV) { 890 for (unsigned i = 0; i < elemNum; ++i) 891 if (!isa<UndefValue>(CV->getOperand(i))) 892 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 893 CV->getOperand(i))->getValue(); 894 else { 895 Result.AggregateVal[i].IntVal = 896 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 897 } 898 break; 899 } 900 if(CDV) 901 for (unsigned i = 0; i < elemNum; ++i) 902 Result.AggregateVal[i].IntVal = APInt( 903 CDV->getElementType()->getPrimitiveSizeInBits(), 904 CDV->getElementAsInteger(i)); 905 906 break; 907 } 908 llvm_unreachable("Unknown constant pointer type!"); 909 } 910 break; 911 912 default: 913 SmallString<256> Msg; 914 raw_svector_ostream OS(Msg); 915 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 916 report_fatal_error(OS.str()); 917 } 918 919 return Result; 920 } 921 922 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 923 /// with the integer held in IntVal. 924 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 925 unsigned StoreBytes) { 926 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 927 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 928 929 if (sys::IsLittleEndianHost) { 930 // Little-endian host - the source is ordered from LSB to MSB. Order the 931 // destination from LSB to MSB: Do a straight copy. 932 memcpy(Dst, Src, StoreBytes); 933 } else { 934 // Big-endian host - the source is an array of 64 bit words ordered from 935 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 936 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 937 while (StoreBytes > sizeof(uint64_t)) { 938 StoreBytes -= sizeof(uint64_t); 939 // May not be aligned so use memcpy. 940 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 941 Src += sizeof(uint64_t); 942 } 943 944 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 945 } 946 } 947 948 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 949 GenericValue *Ptr, Type *Ty) { 950 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 951 952 switch (Ty->getTypeID()) { 953 default: 954 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 955 break; 956 case Type::IntegerTyID: 957 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 958 break; 959 case Type::FloatTyID: 960 *((float*)Ptr) = Val.FloatVal; 961 break; 962 case Type::DoubleTyID: 963 *((double*)Ptr) = Val.DoubleVal; 964 break; 965 case Type::X86_FP80TyID: 966 memcpy(Ptr, Val.IntVal.getRawData(), 10); 967 break; 968 case Type::PointerTyID: 969 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 970 if (StoreBytes != sizeof(PointerTy)) 971 memset(&(Ptr->PointerVal), 0, StoreBytes); 972 973 *((PointerTy*)Ptr) = Val.PointerVal; 974 break; 975 case Type::VectorTyID: 976 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 977 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 978 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 979 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 980 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 981 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 982 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 983 StoreIntToMemory(Val.AggregateVal[i].IntVal, 984 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 985 } 986 } 987 break; 988 } 989 990 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 991 // Host and target are different endian - reverse the stored bytes. 992 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 993 } 994 995 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 996 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 997 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 998 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 999 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1000 const_cast<uint64_t *>(IntVal.getRawData())); 1001 1002 if (sys::IsLittleEndianHost) 1003 // Little-endian host - the destination must be ordered from LSB to MSB. 1004 // The source is ordered from LSB to MSB: Do a straight copy. 1005 memcpy(Dst, Src, LoadBytes); 1006 else { 1007 // Big-endian - the destination is an array of 64 bit words ordered from 1008 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1009 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1010 // a word. 1011 while (LoadBytes > sizeof(uint64_t)) { 1012 LoadBytes -= sizeof(uint64_t); 1013 // May not be aligned so use memcpy. 1014 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1015 Dst += sizeof(uint64_t); 1016 } 1017 1018 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1019 } 1020 } 1021 1022 /// FIXME: document 1023 /// 1024 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1025 GenericValue *Ptr, 1026 Type *Ty) { 1027 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1028 1029 switch (Ty->getTypeID()) { 1030 case Type::IntegerTyID: 1031 // An APInt with all words initially zero. 1032 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1033 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1034 break; 1035 case Type::FloatTyID: 1036 Result.FloatVal = *((float*)Ptr); 1037 break; 1038 case Type::DoubleTyID: 1039 Result.DoubleVal = *((double*)Ptr); 1040 break; 1041 case Type::PointerTyID: 1042 Result.PointerVal = *((PointerTy*)Ptr); 1043 break; 1044 case Type::X86_FP80TyID: { 1045 // This is endian dependent, but it will only work on x86 anyway. 1046 // FIXME: Will not trap if loading a signaling NaN. 1047 uint64_t y[2]; 1048 memcpy(y, Ptr, 10); 1049 Result.IntVal = APInt(80, y); 1050 break; 1051 } 1052 case Type::VectorTyID: { 1053 const VectorType *VT = cast<VectorType>(Ty); 1054 const Type *ElemT = VT->getElementType(); 1055 const unsigned numElems = VT->getNumElements(); 1056 if (ElemT->isFloatTy()) { 1057 Result.AggregateVal.resize(numElems); 1058 for (unsigned i = 0; i < numElems; ++i) 1059 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1060 } 1061 if (ElemT->isDoubleTy()) { 1062 Result.AggregateVal.resize(numElems); 1063 for (unsigned i = 0; i < numElems; ++i) 1064 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1065 } 1066 if (ElemT->isIntegerTy()) { 1067 GenericValue intZero; 1068 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1069 intZero.IntVal = APInt(elemBitWidth, 0); 1070 Result.AggregateVal.resize(numElems, intZero); 1071 for (unsigned i = 0; i < numElems; ++i) 1072 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1073 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1074 } 1075 break; 1076 } 1077 default: 1078 SmallString<256> Msg; 1079 raw_svector_ostream OS(Msg); 1080 OS << "Cannot load value of type " << *Ty << "!"; 1081 report_fatal_error(OS.str()); 1082 } 1083 } 1084 1085 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1086 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1087 DEBUG(Init->dump()); 1088 if (isa<UndefValue>(Init)) 1089 return; 1090 1091 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1092 unsigned ElementSize = 1093 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1094 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1095 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1096 return; 1097 } 1098 1099 if (isa<ConstantAggregateZero>(Init)) { 1100 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1101 return; 1102 } 1103 1104 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1105 unsigned ElementSize = 1106 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1107 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1108 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1109 return; 1110 } 1111 1112 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1113 const StructLayout *SL = 1114 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1115 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1116 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1117 return; 1118 } 1119 1120 if (const ConstantDataSequential *CDS = 1121 dyn_cast<ConstantDataSequential>(Init)) { 1122 // CDS is already laid out in host memory order. 1123 StringRef Data = CDS->getRawDataValues(); 1124 memcpy(Addr, Data.data(), Data.size()); 1125 return; 1126 } 1127 1128 if (Init->getType()->isFirstClassType()) { 1129 GenericValue Val = getConstantValue(Init); 1130 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1131 return; 1132 } 1133 1134 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1135 llvm_unreachable("Unknown constant type to initialize memory with!"); 1136 } 1137 1138 /// EmitGlobals - Emit all of the global variables to memory, storing their 1139 /// addresses into GlobalAddress. This must make sure to copy the contents of 1140 /// their initializers into the memory. 1141 void ExecutionEngine::emitGlobals() { 1142 // Loop over all of the global variables in the program, allocating the memory 1143 // to hold them. If there is more than one module, do a prepass over globals 1144 // to figure out how the different modules should link together. 1145 std::map<std::pair<std::string, Type*>, 1146 const GlobalValue*> LinkedGlobalsMap; 1147 1148 if (Modules.size() != 1) { 1149 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1150 Module &M = *Modules[m]; 1151 for (const auto &GV : M.globals()) { 1152 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1153 GV.hasAppendingLinkage() || !GV.hasName()) 1154 continue;// Ignore external globals and globals with internal linkage. 1155 1156 const GlobalValue *&GVEntry = 1157 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1158 1159 // If this is the first time we've seen this global, it is the canonical 1160 // version. 1161 if (!GVEntry) { 1162 GVEntry = &GV; 1163 continue; 1164 } 1165 1166 // If the existing global is strong, never replace it. 1167 if (GVEntry->hasExternalLinkage()) 1168 continue; 1169 1170 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1171 // symbol. FIXME is this right for common? 1172 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1173 GVEntry = &GV; 1174 } 1175 } 1176 } 1177 1178 std::vector<const GlobalValue*> NonCanonicalGlobals; 1179 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1180 Module &M = *Modules[m]; 1181 for (const auto &GV : M.globals()) { 1182 // In the multi-module case, see what this global maps to. 1183 if (!LinkedGlobalsMap.empty()) { 1184 if (const GlobalValue *GVEntry = 1185 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1186 // If something else is the canonical global, ignore this one. 1187 if (GVEntry != &GV) { 1188 NonCanonicalGlobals.push_back(&GV); 1189 continue; 1190 } 1191 } 1192 } 1193 1194 if (!GV.isDeclaration()) { 1195 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1196 } else { 1197 // External variable reference. Try to use the dynamic loader to 1198 // get a pointer to it. 1199 if (void *SymAddr = 1200 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1201 addGlobalMapping(&GV, SymAddr); 1202 else { 1203 report_fatal_error("Could not resolve external global address: " 1204 +GV.getName()); 1205 } 1206 } 1207 } 1208 1209 // If there are multiple modules, map the non-canonical globals to their 1210 // canonical location. 1211 if (!NonCanonicalGlobals.empty()) { 1212 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1213 const GlobalValue *GV = NonCanonicalGlobals[i]; 1214 const GlobalValue *CGV = 1215 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1216 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1217 assert(Ptr && "Canonical global wasn't codegen'd!"); 1218 addGlobalMapping(GV, Ptr); 1219 } 1220 } 1221 1222 // Now that all of the globals are set up in memory, loop through them all 1223 // and initialize their contents. 1224 for (const auto &GV : M.globals()) { 1225 if (!GV.isDeclaration()) { 1226 if (!LinkedGlobalsMap.empty()) { 1227 if (const GlobalValue *GVEntry = 1228 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1229 if (GVEntry != &GV) // Not the canonical variable. 1230 continue; 1231 } 1232 EmitGlobalVariable(&GV); 1233 } 1234 } 1235 } 1236 } 1237 1238 // EmitGlobalVariable - This method emits the specified global variable to the 1239 // address specified in GlobalAddresses, or allocates new memory if it's not 1240 // already in the map. 1241 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1242 void *GA = getPointerToGlobalIfAvailable(GV); 1243 1244 if (!GA) { 1245 // If it's not already specified, allocate memory for the global. 1246 GA = getMemoryForGV(GV); 1247 1248 // If we failed to allocate memory for this global, return. 1249 if (!GA) return; 1250 1251 addGlobalMapping(GV, GA); 1252 } 1253 1254 // Don't initialize if it's thread local, let the client do it. 1255 if (!GV->isThreadLocal()) 1256 InitializeMemory(GV->getInitializer(), GA); 1257 1258 Type *ElTy = GV->getType()->getElementType(); 1259 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1260 NumInitBytes += (unsigned)GVSize; 1261 ++NumGlobals; 1262 } 1263 1264 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1265 : EE(EE), GlobalAddressMap(this) { 1266 } 1267 1268 sys::Mutex * 1269 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1270 return &EES->EE.lock; 1271 } 1272 1273 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1274 const GlobalValue *Old) { 1275 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1276 EES->GlobalAddressReverseMap.erase(OldVal); 1277 } 1278 1279 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1280 const GlobalValue *, 1281 const GlobalValue *) { 1282 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1283 " RAUW on a value it has a global mapping for."); 1284 } 1285