1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ModuleProvider.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/DynamicLibrary.h" 30 #include "llvm/System/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include <cmath> 33 #include <cstring> 34 using namespace llvm; 35 36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37 STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode) = 0; 44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 45 std::string *ErrorStr) = 0; 46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 50 LazyCompilationDisabled = false; 51 GVCompilationDisabled = false; 52 SymbolSearchingDisabled = false; 53 DlsymStubsEnabled = false; 54 Modules.push_back(P); 55 assert(P && "ModuleProvider is null?"); 56 } 57 58 ExecutionEngine::~ExecutionEngine() { 59 clearAllGlobalMappings(); 60 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 61 delete Modules[i]; 62 } 63 64 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 65 const Type *ElTy = GV->getType()->getElementType(); 66 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 67 return new char[GVSize]; 68 } 69 70 /// removeModuleProvider - Remove a ModuleProvider from the list of modules. 71 /// Relases the Module from the ModuleProvider, materializing it in the 72 /// process, and returns the materialized Module. 73 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 74 std::string *ErrInfo) { 75 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 76 E = Modules.end(); I != E; ++I) { 77 ModuleProvider *MP = *I; 78 if (MP == P) { 79 Modules.erase(I); 80 clearGlobalMappingsFromModule(MP->getModule()); 81 return MP->releaseModule(ErrInfo); 82 } 83 } 84 return NULL; 85 } 86 87 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 88 /// and deletes the ModuleProvider and owned Module. Avoids materializing 89 /// the underlying module. 90 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 91 std::string *ErrInfo) { 92 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 93 E = Modules.end(); I != E; ++I) { 94 ModuleProvider *MP = *I; 95 if (MP == P) { 96 Modules.erase(I); 97 clearGlobalMappingsFromModule(MP->getModule()); 98 delete MP; 99 return; 100 } 101 } 102 } 103 104 /// FindFunctionNamed - Search all of the active modules to find the one that 105 /// defines FnName. This is very slow operation and shouldn't be used for 106 /// general code. 107 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 108 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 109 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 110 return F; 111 } 112 return 0; 113 } 114 115 116 /// addGlobalMapping - Tell the execution engine that the specified global is 117 /// at the specified location. This is used internally as functions are JIT'd 118 /// and as global variables are laid out in memory. It can and should also be 119 /// used by clients of the EE that want to have an LLVM global overlay 120 /// existing data in memory. 121 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 122 MutexGuard locked(lock); 123 124 DEBUG(errs() << "JIT: Map \'" << GV->getName() 125 << "\' to [" << Addr << "]\n";); 126 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 127 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 128 CurVal = Addr; 129 130 // If we are using the reverse mapping, add it too 131 if (!state.getGlobalAddressReverseMap(locked).empty()) { 132 AssertingVH<const GlobalValue> &V = 133 state.getGlobalAddressReverseMap(locked)[Addr]; 134 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 135 V = GV; 136 } 137 } 138 139 /// clearAllGlobalMappings - Clear all global mappings and start over again 140 /// use in dynamic compilation scenarios when you want to move globals 141 void ExecutionEngine::clearAllGlobalMappings() { 142 MutexGuard locked(lock); 143 144 state.getGlobalAddressMap(locked).clear(); 145 state.getGlobalAddressReverseMap(locked).clear(); 146 } 147 148 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a 149 /// particular module, because it has been removed from the JIT. 150 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 151 MutexGuard locked(lock); 152 153 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 154 state.getGlobalAddressMap(locked).erase(&*FI); 155 state.getGlobalAddressReverseMap(locked).erase(&*FI); 156 } 157 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 158 GI != GE; ++GI) { 159 state.getGlobalAddressMap(locked).erase(&*GI); 160 state.getGlobalAddressReverseMap(locked).erase(&*GI); 161 } 162 } 163 164 /// updateGlobalMapping - Replace an existing mapping for GV with a new 165 /// address. This updates both maps as required. If "Addr" is null, the 166 /// entry for the global is removed from the mappings. 167 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 168 MutexGuard locked(lock); 169 170 std::map<AssertingVH<const GlobalValue>, void *> &Map = 171 state.getGlobalAddressMap(locked); 172 173 // Deleting from the mapping? 174 if (Addr == 0) { 175 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV); 176 void *OldVal; 177 if (I == Map.end()) 178 OldVal = 0; 179 else { 180 OldVal = I->second; 181 Map.erase(I); 182 } 183 184 if (!state.getGlobalAddressReverseMap(locked).empty()) 185 state.getGlobalAddressReverseMap(locked).erase(OldVal); 186 return OldVal; 187 } 188 189 void *&CurVal = Map[GV]; 190 void *OldVal = CurVal; 191 192 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 193 state.getGlobalAddressReverseMap(locked).erase(CurVal); 194 CurVal = Addr; 195 196 // If we are using the reverse mapping, add it too 197 if (!state.getGlobalAddressReverseMap(locked).empty()) { 198 AssertingVH<const GlobalValue> &V = 199 state.getGlobalAddressReverseMap(locked)[Addr]; 200 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 201 V = GV; 202 } 203 return OldVal; 204 } 205 206 /// getPointerToGlobalIfAvailable - This returns the address of the specified 207 /// global value if it is has already been codegen'd, otherwise it returns null. 208 /// 209 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 210 MutexGuard locked(lock); 211 212 std::map<AssertingVH<const GlobalValue>, void*>::iterator I = 213 state.getGlobalAddressMap(locked).find(GV); 214 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 215 } 216 217 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 218 /// at the specified address. 219 /// 220 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 221 MutexGuard locked(lock); 222 223 // If we haven't computed the reverse mapping yet, do so first. 224 if (state.getGlobalAddressReverseMap(locked).empty()) { 225 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator 226 I = state.getGlobalAddressMap(locked).begin(), 227 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 228 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 229 I->first)); 230 } 231 232 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 233 state.getGlobalAddressReverseMap(locked).find(Addr); 234 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 235 } 236 237 // CreateArgv - Turn a vector of strings into a nice argv style array of 238 // pointers to null terminated strings. 239 // 240 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 241 const std::vector<std::string> &InputArgv) { 242 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 243 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 244 245 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); 246 const Type *SBytePtr = Type::getInt8PtrTy(C); 247 248 for (unsigned i = 0; i != InputArgv.size(); ++i) { 249 unsigned Size = InputArgv[i].size()+1; 250 char *Dest = new char[Size]; 251 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 252 253 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 254 Dest[Size-1] = 0; 255 256 // Endian safe: Result[i] = (PointerTy)Dest; 257 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 258 SBytePtr); 259 } 260 261 // Null terminate it 262 EE->StoreValueToMemory(PTOGV(0), 263 (GenericValue*)(Result+InputArgv.size()*PtrSize), 264 SBytePtr); 265 return Result; 266 } 267 268 269 /// runStaticConstructorsDestructors - This method is used to execute all of 270 /// the static constructors or destructors for a module, depending on the 271 /// value of isDtors. 272 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 273 bool isDtors) { 274 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 275 276 // Execute global ctors/dtors for each module in the program. 277 278 GlobalVariable *GV = module->getNamedGlobal(Name); 279 280 // If this global has internal linkage, or if it has a use, then it must be 281 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 282 // this is the case, don't execute any of the global ctors, __main will do 283 // it. 284 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 285 286 // Should be an array of '{ int, void ()* }' structs. The first value is 287 // the init priority, which we ignore. 288 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 289 if (!InitList) return; 290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 291 if (ConstantStruct *CS = 292 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 293 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 294 295 Constant *FP = CS->getOperand(1); 296 if (FP->isNullValue()) 297 break; // Found a null terminator, exit. 298 299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 300 if (CE->isCast()) 301 FP = CE->getOperand(0); 302 if (Function *F = dyn_cast<Function>(FP)) { 303 // Execute the ctor/dtor function! 304 runFunction(F, std::vector<GenericValue>()); 305 } 306 } 307 } 308 309 /// runStaticConstructorsDestructors - This method is used to execute all of 310 /// the static constructors or destructors for a program, depending on the 311 /// value of isDtors. 312 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 313 // Execute global ctors/dtors for each module in the program. 314 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 315 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 316 } 317 318 #ifndef NDEBUG 319 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 320 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 321 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 322 for (unsigned i = 0; i < PtrSize; ++i) 323 if (*(i + (uint8_t*)Loc)) 324 return false; 325 return true; 326 } 327 #endif 328 329 /// runFunctionAsMain - This is a helper function which wraps runFunction to 330 /// handle the common task of starting up main with the specified argc, argv, 331 /// and envp parameters. 332 int ExecutionEngine::runFunctionAsMain(Function *Fn, 333 const std::vector<std::string> &argv, 334 const char * const * envp) { 335 std::vector<GenericValue> GVArgs; 336 GenericValue GVArgc; 337 GVArgc.IntVal = APInt(32, argv.size()); 338 339 // Check main() type 340 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 341 const FunctionType *FTy = Fn->getFunctionType(); 342 const Type* PPInt8Ty = 343 PointerType::getUnqual(PointerType::getUnqual( 344 Type::getInt8Ty(Fn->getContext()))); 345 switch (NumArgs) { 346 case 3: 347 if (FTy->getParamType(2) != PPInt8Ty) { 348 llvm_report_error("Invalid type for third argument of main() supplied"); 349 } 350 // FALLS THROUGH 351 case 2: 352 if (FTy->getParamType(1) != PPInt8Ty) { 353 llvm_report_error("Invalid type for second argument of main() supplied"); 354 } 355 // FALLS THROUGH 356 case 1: 357 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 358 llvm_report_error("Invalid type for first argument of main() supplied"); 359 } 360 // FALLS THROUGH 361 case 0: 362 if (!isa<IntegerType>(FTy->getReturnType()) && 363 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 364 llvm_report_error("Invalid return type of main() supplied"); 365 } 366 break; 367 default: 368 llvm_report_error("Invalid number of arguments of main() supplied"); 369 } 370 371 if (NumArgs) { 372 GVArgs.push_back(GVArgc); // Arg #0 = argc. 373 if (NumArgs > 1) { 374 // Arg #1 = argv. 375 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 376 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 377 "argv[0] was null after CreateArgv"); 378 if (NumArgs > 2) { 379 std::vector<std::string> EnvVars; 380 for (unsigned i = 0; envp[i]; ++i) 381 EnvVars.push_back(envp[i]); 382 // Arg #2 = envp. 383 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 384 } 385 } 386 } 387 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 388 } 389 390 /// If possible, create a JIT, unless the caller specifically requests an 391 /// Interpreter or there's an error. If even an Interpreter cannot be created, 392 /// NULL is returned. 393 /// 394 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 395 bool ForceInterpreter, 396 std::string *ErrorStr, 397 CodeGenOpt::Level OptLevel, 398 bool GVsWithCode) { 399 return EngineBuilder(MP) 400 .setEngineKind(ForceInterpreter 401 ? EngineKind::Interpreter 402 : EngineKind::JIT) 403 .setErrorStr(ErrorStr) 404 .setOptLevel(OptLevel) 405 .setAllocateGVsWithCode(GVsWithCode) 406 .create(); 407 } 408 409 ExecutionEngine *ExecutionEngine::create(Module *M) { 410 return EngineBuilder(M).create(); 411 } 412 413 /// EngineBuilder - Overloaded constructor that automatically creates an 414 /// ExistingModuleProvider for an existing module. 415 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 416 InitEngine(); 417 } 418 419 ExecutionEngine *EngineBuilder::create() { 420 // Make sure we can resolve symbols in the program as well. The zero arg 421 // to the function tells DynamicLibrary to load the program, not a library. 422 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 423 return 0; 424 425 // If the user specified a memory manager but didn't specify which engine to 426 // create, we assume they only want the JIT, and we fail if they only want 427 // the interpreter. 428 if (JMM) { 429 if (WhichEngine & EngineKind::JIT) 430 WhichEngine = EngineKind::JIT; 431 else { 432 if (ErrorStr) 433 *ErrorStr = "Cannot create an interpreter with a memory manager."; 434 return 0; 435 } 436 } 437 438 // Unless the interpreter was explicitly selected or the JIT is not linked, 439 // try making a JIT. 440 if (WhichEngine & EngineKind::JIT) { 441 if (ExecutionEngine::JITCtor) { 442 ExecutionEngine *EE = 443 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 444 AllocateGVsWithCode); 445 if (EE) return EE; 446 } 447 } 448 449 // If we can't make a JIT and we didn't request one specifically, try making 450 // an interpreter instead. 451 if (WhichEngine & EngineKind::Interpreter) { 452 if (ExecutionEngine::InterpCtor) 453 return ExecutionEngine::InterpCtor(MP, ErrorStr); 454 if (ErrorStr) 455 *ErrorStr = "Interpreter has not been linked in."; 456 return 0; 457 } 458 459 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 460 if (ErrorStr) 461 *ErrorStr = "JIT has not been linked in."; 462 } 463 return 0; 464 } 465 466 /// getPointerToGlobal - This returns the address of the specified global 467 /// value. This may involve code generation if it's a function. 468 /// 469 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 470 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 471 return getPointerToFunction(F); 472 473 MutexGuard locked(lock); 474 void *p = state.getGlobalAddressMap(locked)[GV]; 475 if (p) 476 return p; 477 478 // Global variable might have been added since interpreter started. 479 if (GlobalVariable *GVar = 480 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 481 EmitGlobalVariable(GVar); 482 else 483 llvm_unreachable("Global hasn't had an address allocated yet!"); 484 return state.getGlobalAddressMap(locked)[GV]; 485 } 486 487 /// This function converts a Constant* into a GenericValue. The interesting 488 /// part is if C is a ConstantExpr. 489 /// @brief Get a GenericValue for a Constant* 490 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 491 // If its undefined, return the garbage. 492 if (isa<UndefValue>(C)) 493 return GenericValue(); 494 495 // If the value is a ConstantExpr 496 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 497 Constant *Op0 = CE->getOperand(0); 498 switch (CE->getOpcode()) { 499 case Instruction::GetElementPtr: { 500 // Compute the index 501 GenericValue Result = getConstantValue(Op0); 502 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 503 uint64_t Offset = 504 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 505 506 char* tmp = (char*) Result.PointerVal; 507 Result = PTOGV(tmp + Offset); 508 return Result; 509 } 510 case Instruction::Trunc: { 511 GenericValue GV = getConstantValue(Op0); 512 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 513 GV.IntVal = GV.IntVal.trunc(BitWidth); 514 return GV; 515 } 516 case Instruction::ZExt: { 517 GenericValue GV = getConstantValue(Op0); 518 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 519 GV.IntVal = GV.IntVal.zext(BitWidth); 520 return GV; 521 } 522 case Instruction::SExt: { 523 GenericValue GV = getConstantValue(Op0); 524 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 525 GV.IntVal = GV.IntVal.sext(BitWidth); 526 return GV; 527 } 528 case Instruction::FPTrunc: { 529 // FIXME long double 530 GenericValue GV = getConstantValue(Op0); 531 GV.FloatVal = float(GV.DoubleVal); 532 return GV; 533 } 534 case Instruction::FPExt:{ 535 // FIXME long double 536 GenericValue GV = getConstantValue(Op0); 537 GV.DoubleVal = double(GV.FloatVal); 538 return GV; 539 } 540 case Instruction::UIToFP: { 541 GenericValue GV = getConstantValue(Op0); 542 if (CE->getType()->isFloatTy()) 543 GV.FloatVal = float(GV.IntVal.roundToDouble()); 544 else if (CE->getType()->isDoubleTy()) 545 GV.DoubleVal = GV.IntVal.roundToDouble(); 546 else if (CE->getType()->isX86_FP80Ty()) { 547 const uint64_t zero[] = {0, 0}; 548 APFloat apf = APFloat(APInt(80, 2, zero)); 549 (void)apf.convertFromAPInt(GV.IntVal, 550 false, 551 APFloat::rmNearestTiesToEven); 552 GV.IntVal = apf.bitcastToAPInt(); 553 } 554 return GV; 555 } 556 case Instruction::SIToFP: { 557 GenericValue GV = getConstantValue(Op0); 558 if (CE->getType()->isFloatTy()) 559 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 560 else if (CE->getType()->isDoubleTy()) 561 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 562 else if (CE->getType()->isX86_FP80Ty()) { 563 const uint64_t zero[] = { 0, 0}; 564 APFloat apf = APFloat(APInt(80, 2, zero)); 565 (void)apf.convertFromAPInt(GV.IntVal, 566 true, 567 APFloat::rmNearestTiesToEven); 568 GV.IntVal = apf.bitcastToAPInt(); 569 } 570 return GV; 571 } 572 case Instruction::FPToUI: // double->APInt conversion handles sign 573 case Instruction::FPToSI: { 574 GenericValue GV = getConstantValue(Op0); 575 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 576 if (Op0->getType()->isFloatTy()) 577 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 578 else if (Op0->getType()->isDoubleTy()) 579 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 580 else if (Op0->getType()->isX86_FP80Ty()) { 581 APFloat apf = APFloat(GV.IntVal); 582 uint64_t v; 583 bool ignored; 584 (void)apf.convertToInteger(&v, BitWidth, 585 CE->getOpcode()==Instruction::FPToSI, 586 APFloat::rmTowardZero, &ignored); 587 GV.IntVal = v; // endian? 588 } 589 return GV; 590 } 591 case Instruction::PtrToInt: { 592 GenericValue GV = getConstantValue(Op0); 593 uint32_t PtrWidth = TD->getPointerSizeInBits(); 594 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 595 return GV; 596 } 597 case Instruction::IntToPtr: { 598 GenericValue GV = getConstantValue(Op0); 599 uint32_t PtrWidth = TD->getPointerSizeInBits(); 600 if (PtrWidth != GV.IntVal.getBitWidth()) 601 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 602 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 603 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 604 return GV; 605 } 606 case Instruction::BitCast: { 607 GenericValue GV = getConstantValue(Op0); 608 const Type* DestTy = CE->getType(); 609 switch (Op0->getType()->getTypeID()) { 610 default: llvm_unreachable("Invalid bitcast operand"); 611 case Type::IntegerTyID: 612 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 613 if (DestTy->isFloatTy()) 614 GV.FloatVal = GV.IntVal.bitsToFloat(); 615 else if (DestTy->isDoubleTy()) 616 GV.DoubleVal = GV.IntVal.bitsToDouble(); 617 break; 618 case Type::FloatTyID: 619 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 620 "Invalid bitcast"); 621 GV.IntVal.floatToBits(GV.FloatVal); 622 break; 623 case Type::DoubleTyID: 624 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 625 "Invalid bitcast"); 626 GV.IntVal.doubleToBits(GV.DoubleVal); 627 break; 628 case Type::PointerTyID: 629 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 630 break; // getConstantValue(Op0) above already converted it 631 } 632 return GV; 633 } 634 case Instruction::Add: 635 case Instruction::FAdd: 636 case Instruction::Sub: 637 case Instruction::FSub: 638 case Instruction::Mul: 639 case Instruction::FMul: 640 case Instruction::UDiv: 641 case Instruction::SDiv: 642 case Instruction::URem: 643 case Instruction::SRem: 644 case Instruction::And: 645 case Instruction::Or: 646 case Instruction::Xor: { 647 GenericValue LHS = getConstantValue(Op0); 648 GenericValue RHS = getConstantValue(CE->getOperand(1)); 649 GenericValue GV; 650 switch (CE->getOperand(0)->getType()->getTypeID()) { 651 default: llvm_unreachable("Bad add type!"); 652 case Type::IntegerTyID: 653 switch (CE->getOpcode()) { 654 default: llvm_unreachable("Invalid integer opcode"); 655 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 656 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 657 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 658 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 659 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 660 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 661 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 662 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 663 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 664 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 665 } 666 break; 667 case Type::FloatTyID: 668 switch (CE->getOpcode()) { 669 default: llvm_unreachable("Invalid float opcode"); 670 case Instruction::FAdd: 671 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 672 case Instruction::FSub: 673 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 674 case Instruction::FMul: 675 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 676 case Instruction::FDiv: 677 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 678 case Instruction::FRem: 679 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 680 } 681 break; 682 case Type::DoubleTyID: 683 switch (CE->getOpcode()) { 684 default: llvm_unreachable("Invalid double opcode"); 685 case Instruction::FAdd: 686 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 687 case Instruction::FSub: 688 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 689 case Instruction::FMul: 690 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 691 case Instruction::FDiv: 692 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 693 case Instruction::FRem: 694 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 695 } 696 break; 697 case Type::X86_FP80TyID: 698 case Type::PPC_FP128TyID: 699 case Type::FP128TyID: { 700 APFloat apfLHS = APFloat(LHS.IntVal); 701 switch (CE->getOpcode()) { 702 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 703 case Instruction::FAdd: 704 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 705 GV.IntVal = apfLHS.bitcastToAPInt(); 706 break; 707 case Instruction::FSub: 708 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 709 GV.IntVal = apfLHS.bitcastToAPInt(); 710 break; 711 case Instruction::FMul: 712 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 713 GV.IntVal = apfLHS.bitcastToAPInt(); 714 break; 715 case Instruction::FDiv: 716 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 717 GV.IntVal = apfLHS.bitcastToAPInt(); 718 break; 719 case Instruction::FRem: 720 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 721 GV.IntVal = apfLHS.bitcastToAPInt(); 722 break; 723 } 724 } 725 break; 726 } 727 return GV; 728 } 729 default: 730 break; 731 } 732 std::string msg; 733 raw_string_ostream Msg(msg); 734 Msg << "ConstantExpr not handled: " << *CE; 735 llvm_report_error(Msg.str()); 736 } 737 738 GenericValue Result; 739 switch (C->getType()->getTypeID()) { 740 case Type::FloatTyID: 741 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 742 break; 743 case Type::DoubleTyID: 744 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 745 break; 746 case Type::X86_FP80TyID: 747 case Type::FP128TyID: 748 case Type::PPC_FP128TyID: 749 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 750 break; 751 case Type::IntegerTyID: 752 Result.IntVal = cast<ConstantInt>(C)->getValue(); 753 break; 754 case Type::PointerTyID: 755 if (isa<ConstantPointerNull>(C)) 756 Result.PointerVal = 0; 757 else if (const Function *F = dyn_cast<Function>(C)) 758 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 759 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 760 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 761 else 762 llvm_unreachable("Unknown constant pointer type!"); 763 break; 764 default: 765 std::string msg; 766 raw_string_ostream Msg(msg); 767 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 768 llvm_report_error(Msg.str()); 769 } 770 return Result; 771 } 772 773 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 774 /// with the integer held in IntVal. 775 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 776 unsigned StoreBytes) { 777 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 778 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 779 780 if (sys::isLittleEndianHost()) 781 // Little-endian host - the source is ordered from LSB to MSB. Order the 782 // destination from LSB to MSB: Do a straight copy. 783 memcpy(Dst, Src, StoreBytes); 784 else { 785 // Big-endian host - the source is an array of 64 bit words ordered from 786 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 787 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 788 while (StoreBytes > sizeof(uint64_t)) { 789 StoreBytes -= sizeof(uint64_t); 790 // May not be aligned so use memcpy. 791 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 792 Src += sizeof(uint64_t); 793 } 794 795 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 796 } 797 } 798 799 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 800 /// is the address of the memory at which to store Val, cast to GenericValue *. 801 /// It is not a pointer to a GenericValue containing the address at which to 802 /// store Val. 803 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 804 GenericValue *Ptr, const Type *Ty) { 805 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 806 807 switch (Ty->getTypeID()) { 808 case Type::IntegerTyID: 809 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 810 break; 811 case Type::FloatTyID: 812 *((float*)Ptr) = Val.FloatVal; 813 break; 814 case Type::DoubleTyID: 815 *((double*)Ptr) = Val.DoubleVal; 816 break; 817 case Type::X86_FP80TyID: 818 memcpy(Ptr, Val.IntVal.getRawData(), 10); 819 break; 820 case Type::PointerTyID: 821 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 822 if (StoreBytes != sizeof(PointerTy)) 823 memset(Ptr, 0, StoreBytes); 824 825 *((PointerTy*)Ptr) = Val.PointerVal; 826 break; 827 default: 828 errs() << "Cannot store value of type " << *Ty << "!\n"; 829 } 830 831 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 832 // Host and target are different endian - reverse the stored bytes. 833 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 834 } 835 836 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 837 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 838 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 839 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 840 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 841 842 if (sys::isLittleEndianHost()) 843 // Little-endian host - the destination must be ordered from LSB to MSB. 844 // The source is ordered from LSB to MSB: Do a straight copy. 845 memcpy(Dst, Src, LoadBytes); 846 else { 847 // Big-endian - the destination is an array of 64 bit words ordered from 848 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 849 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 850 // a word. 851 while (LoadBytes > sizeof(uint64_t)) { 852 LoadBytes -= sizeof(uint64_t); 853 // May not be aligned so use memcpy. 854 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 855 Dst += sizeof(uint64_t); 856 } 857 858 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 859 } 860 } 861 862 /// FIXME: document 863 /// 864 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 865 GenericValue *Ptr, 866 const Type *Ty) { 867 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 868 869 switch (Ty->getTypeID()) { 870 case Type::IntegerTyID: 871 // An APInt with all words initially zero. 872 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 873 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 874 break; 875 case Type::FloatTyID: 876 Result.FloatVal = *((float*)Ptr); 877 break; 878 case Type::DoubleTyID: 879 Result.DoubleVal = *((double*)Ptr); 880 break; 881 case Type::PointerTyID: 882 Result.PointerVal = *((PointerTy*)Ptr); 883 break; 884 case Type::X86_FP80TyID: { 885 // This is endian dependent, but it will only work on x86 anyway. 886 // FIXME: Will not trap if loading a signaling NaN. 887 uint64_t y[2]; 888 memcpy(y, Ptr, 10); 889 Result.IntVal = APInt(80, 2, y); 890 break; 891 } 892 default: 893 std::string msg; 894 raw_string_ostream Msg(msg); 895 Msg << "Cannot load value of type " << *Ty << "!"; 896 llvm_report_error(Msg.str()); 897 } 898 } 899 900 // InitializeMemory - Recursive function to apply a Constant value into the 901 // specified memory location... 902 // 903 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 904 DEBUG(errs() << "JIT: Initializing " << Addr << " "); 905 DEBUG(Init->dump()); 906 if (isa<UndefValue>(Init)) { 907 return; 908 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 909 unsigned ElementSize = 910 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 911 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 912 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 913 return; 914 } else if (isa<ConstantAggregateZero>(Init)) { 915 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 916 return; 917 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 918 unsigned ElementSize = 919 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 920 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 921 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 922 return; 923 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 924 const StructLayout *SL = 925 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 926 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 927 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 928 return; 929 } else if (Init->getType()->isFirstClassType()) { 930 GenericValue Val = getConstantValue(Init); 931 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 932 return; 933 } 934 935 errs() << "Bad Type: " << *Init->getType() << "\n"; 936 llvm_unreachable("Unknown constant type to initialize memory with!"); 937 } 938 939 /// EmitGlobals - Emit all of the global variables to memory, storing their 940 /// addresses into GlobalAddress. This must make sure to copy the contents of 941 /// their initializers into the memory. 942 /// 943 void ExecutionEngine::emitGlobals() { 944 945 // Loop over all of the global variables in the program, allocating the memory 946 // to hold them. If there is more than one module, do a prepass over globals 947 // to figure out how the different modules should link together. 948 // 949 std::map<std::pair<std::string, const Type*>, 950 const GlobalValue*> LinkedGlobalsMap; 951 952 if (Modules.size() != 1) { 953 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 954 Module &M = *Modules[m]->getModule(); 955 for (Module::const_global_iterator I = M.global_begin(), 956 E = M.global_end(); I != E; ++I) { 957 const GlobalValue *GV = I; 958 if (GV->hasLocalLinkage() || GV->isDeclaration() || 959 GV->hasAppendingLinkage() || !GV->hasName()) 960 continue;// Ignore external globals and globals with internal linkage. 961 962 const GlobalValue *&GVEntry = 963 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 964 965 // If this is the first time we've seen this global, it is the canonical 966 // version. 967 if (!GVEntry) { 968 GVEntry = GV; 969 continue; 970 } 971 972 // If the existing global is strong, never replace it. 973 if (GVEntry->hasExternalLinkage() || 974 GVEntry->hasDLLImportLinkage() || 975 GVEntry->hasDLLExportLinkage()) 976 continue; 977 978 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 979 // symbol. FIXME is this right for common? 980 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 981 GVEntry = GV; 982 } 983 } 984 } 985 986 std::vector<const GlobalValue*> NonCanonicalGlobals; 987 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 988 Module &M = *Modules[m]->getModule(); 989 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 990 I != E; ++I) { 991 // In the multi-module case, see what this global maps to. 992 if (!LinkedGlobalsMap.empty()) { 993 if (const GlobalValue *GVEntry = 994 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 995 // If something else is the canonical global, ignore this one. 996 if (GVEntry != &*I) { 997 NonCanonicalGlobals.push_back(I); 998 continue; 999 } 1000 } 1001 } 1002 1003 if (!I->isDeclaration()) { 1004 addGlobalMapping(I, getMemoryForGV(I)); 1005 } else { 1006 // External variable reference. Try to use the dynamic loader to 1007 // get a pointer to it. 1008 if (void *SymAddr = 1009 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1010 addGlobalMapping(I, SymAddr); 1011 else { 1012 llvm_report_error("Could not resolve external global address: " 1013 +I->getName()); 1014 } 1015 } 1016 } 1017 1018 // If there are multiple modules, map the non-canonical globals to their 1019 // canonical location. 1020 if (!NonCanonicalGlobals.empty()) { 1021 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1022 const GlobalValue *GV = NonCanonicalGlobals[i]; 1023 const GlobalValue *CGV = 1024 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1025 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1026 assert(Ptr && "Canonical global wasn't codegen'd!"); 1027 addGlobalMapping(GV, Ptr); 1028 } 1029 } 1030 1031 // Now that all of the globals are set up in memory, loop through them all 1032 // and initialize their contents. 1033 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1034 I != E; ++I) { 1035 if (!I->isDeclaration()) { 1036 if (!LinkedGlobalsMap.empty()) { 1037 if (const GlobalValue *GVEntry = 1038 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1039 if (GVEntry != &*I) // Not the canonical variable. 1040 continue; 1041 } 1042 EmitGlobalVariable(I); 1043 } 1044 } 1045 } 1046 } 1047 1048 // EmitGlobalVariable - This method emits the specified global variable to the 1049 // address specified in GlobalAddresses, or allocates new memory if it's not 1050 // already in the map. 1051 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1052 void *GA = getPointerToGlobalIfAvailable(GV); 1053 1054 if (GA == 0) { 1055 // If it's not already specified, allocate memory for the global. 1056 GA = getMemoryForGV(GV); 1057 addGlobalMapping(GV, GA); 1058 } 1059 1060 // Don't initialize if it's thread local, let the client do it. 1061 if (!GV->isThreadLocal()) 1062 InitializeMemory(GV->getInitializer(), GA); 1063 1064 const Type *ElTy = GV->getType()->getElementType(); 1065 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1066 NumInitBytes += (unsigned)GVSize; 1067 ++NumGlobals; 1068 } 1069